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Central dopaminergic and noradrenergic systems play essential roles in con-
trolling several forebrain functions. Consequently, perturbations of these neu-
rotransmissions may contribute to the pathophysiology of neuropsychiatric
disorders. For many years, there was a focus on the serotonin (5-HT) system
because of the efficacy of selective serotonin reuptake inhibitors (SSRIs), the
most prescribed antidepressants in the treatment of major depressive disorder
(MDD). Given the interconnectivity within the monoaminergic network, any
action on one system may reverberate in the other systems. Analysis of this
network and its dysfunctions suggests that drugs with selective or multiple
modes of action on dopamine (DA) and norepinephrine (NE) may have ro-
bust therapeutic effects. This review focuses on NE-DA interactions as demon-
strated in electrophysiological and neurochemical studies, as well as on the
mechanisms of action of agents with either selective or dual actions on DA and
NE. Understanding the mode of action of drugs targeting these catecholamin-
ergic neurotransmitters can improve their utilization in monotherapy and in
combination with other compounds particularly the SSRIs. The elucidation of
such relationships can help design new treatment strategies for MDD, espe-
cially treatment-resistant depression.

Introduction

Given that the therapeutic efficacy of the tricyclic drugs
was based on their ability to inhibit norepinephrine (NE)
and serotonin (5-HT) transporters, the role of brain 5-HT
and NE neurotransmissions in the mechanism of action
of antidepressant drugs prompted extensive studies [1–4].
Dopamine (DA) on the other hand, despite evidence of its
involvement in the action of certain antidepressants, at-
tracted less attention [5]. First, reserpine which depletes
catecholamines (NE, DA, and epinephrine) results in low-
ering mood; second, the monoamine oxidase inhibitors
(MAOIs), which increase the synaptic availability of cat-
echolamines, have clinical efficacy in depression [6,7].
Furthermore, it was reported that the catecholamine syn-
thesis inhibitor α-methylparatyrosine produced a resur-
gence of depressive symptoms in patients improved by
the NE reuptake inhibitor (NRI) desipramine, but not
by the SSRI fluoxetine [8]. This suggests that not all

antidepressants work via a single monoamine-related
mechanism. While dietary depletion of the DA precur-
sors phenylalanine and tyrosine does not result in the
relapse of formerly depressed patients off their medi-
cation [9], an inhibition of tyrosine hydroxylase by α-
methylparatyrosine decreases catecholamine metabolites
levels and induces a worsening of depressive symptoms
in patients being treated with catecholamine reuptake in-
hibitors [8]. The fact that pure dopaminergic drugs, such
as pramipexole, are effective antidepressants suggests that
enhancing DA function may underlie, at least in part, a
therapeutic response in major depressive disorder (MDD)
[10,11].

Mounting evidence indicates that acting on different
systems may have a greater therapeutic effect in depres-
sion [12,13]. Understanding the relationship between the
NE and DA systems, and how therapeutic drugs modulate
them, may open new avenues to treat depression, partic-
ularly treatment-resistant depression.
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DA Modulation of the Noradrenergic
Transmission

Although retrograde tracer studies showed few projec-
tions from ventral tegmental area (VTA) neurons to
the locus coeruleus (LC) [14,15], dense expression of
D2/3 mRNA and high density of binding sites using
[125I]iodosulpiride have been documented [16–19]. Fur-
ther evidence for the projection of VTA neurons to the
LC comes from the observation that the DA content of
the LC is decreased following a 6-hydroxydopamine (6-
OHDA) lesion of the VTA [20].

Experiments have been carried out to determine the
role of DA and NE in their projection areas (Figure 1).
Iontophoretic studies showed that local application of DA
suppressed the firing activity of NE neurons in the LC
[21–23]. Given this preponderant inhibitory role of DA
input to the LC, the selective lesioning of VTA DA neu-
rons resulted in a significant increase of the mean firing
rate of LC NE neurons with a greater increase in neu-
rons displaying bursting activities [24]. An initial study
aimed at characterizing the receptor involved in this ef-

fect showed that DA has an inhibitory effect on cell fir-
ing in the LC, through stimulation of α2-adrenoceptors
[23]. Furthermore, the inhibitory effect of intravenously
administered (+)-3-PP, a partial D2 receptor agonist,
which was shown to inhibit substantia nigra DA neu-
rons, was partially blocked by the α2-adrenoceptor
antagonist yohimbine, but not by the α1-adrenoceptor
antagonist prazosin, or the D2 receptor antagonist
haloperidol [22]. Although the selective D2-like recep-
tor antagonist haloperidol has been reported to enhance
the spontaneous firing activity of NE neuron in the LC
[25,26], another study has shown that systemic admin-
istration of haloperidol affected neither LC NE neuronal
firing nor the inhibitory action of DA [21]. Furthermore,
the effectiveness of iontophoretically applied NE and DA
to suppress NE neuronal firing was blocked by the α2-
adrenoceptor antagonist idazoxan, but not by the D2-like
receptor antagonist raclopride. This suggests that only α2-
adrenoceptors are involved in the effect of DA in the
LC [21]. This type of overlap in function for DA and
NE is not unexpected as the molecules differ by only
one hydroxy group in the β-carbon of their side chain

Figure 1 Schematic representation of the reciprocal interaction between

serotonin (5-HT) neurons in the dorsal raphe nucleus, norepinephrine (NE)

neurons in the locus coeruleus and dopamine (DA) neurons in the ven-

tral tegmental area. It also shows the nature of modulation of different

neurotransmitters on diverse classes of auto- and heteroreceptors. (+)

signs indicate an agonism or stimulatory effect and (–) signs indicate an

antagonism or an inhibitory effect.
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Figure 2 Illustration of the conversion of DA to NE by β-hydroxylase. Note that the difference between these two molecules resides only in one hydroxy

group, thus imparting these two transmitters with only small differential three-dimentional configurations.

(Figure 2). It is interesting that the D2/3 receptor agonist
pramipexole and the catecholamine releaser bupropion
significantly inhibited LC NE discharge after 2 days of sus-
tained administration [27–29]. This effect was reported
to be through stimulation of α2-adrenoceptor, since ida-
zoxan increased LC NE neuron firing to the same level
as in controls and in rats treated subcutaneously with
either compound [27,29,30]. Furthermore, DA inhibits
paradoxical sleep (likely through an action on NE neu-
rons) in the LC via activation of α2-adrenoceptors since
this effect was mimicked by the α2-adrenoceptor ago-
nist clonidine and blocked by α2-adrenoceptor antagonist
RX821002 [31].

Norepinephrine Modulation
of the DA Transmission

Several studies using tracing techniques have shown that
NE neurons in the LC project to the VTA and that
immunoreactivity for NE transporters (NET) is present
within the VTA region [32–36]. The presence of such
projections was recently confirmed as being bilateral,
but they were shown to also originate from the cau-
dal medulla [37]. Moreover, an ultrastructural study
has demonstrated that some NE terminals make close
contacts onto VTA neurons [38]. Because the major-
ity of contacts were not in direct synaptic apposition,
it was suggested that most NE actions on DA neu-
rons in the VTA are through extrasynaptic modulation.
Furthermore, using quantitative autoradiography, α1-
adrenoceptors have also been detected in the VTA [39]
and immunoreactivity for α2C-adrenoceptors was also on
DA neurons of VTA [40]. Finally, the selective NRI de-
sipramine increased NE concentrations in VTA [41].

The lesion of the LC NE neurons, using local injection
of 6-OHDA, resulted in a significant decrease in brain NE

and an increase in the discharge rate of VTA DA neurons
attributable to a higher number of bursts and action po-
tentials per burst [24] (see Figure 1). Despite these results
being consistent with an inhibitory action of NE on VTA
DA neurons, contradictory data have also been reported.
For example, systemic administration of idazoxan or the
selective NRI reboxetine, which raises extracellular NE
levels in the VTA [41], increased the burst firing activity
of DA neurons in the VTA [42–45]. It has been demon-
strated that the local application of the α2-adrenoceptor
agonist clonidine in the VTA did not inhibit DA neurons
[46,47]. As a result, it is unlikely that the inhibitory effect
of NE involved postsynaptic α2-adrenoceptors. However,
recent data from Guiard et al. [21] indicate that idazoxan
attenuates the inhibitory effect of iontophoretically ap-
plied NE on VTA DA neurons. Furthermore, electrophys-
iological studies have shown that the D2-like receptor an-
tagonist sulpiride prevented the inhibitory effect of NE on
VTA DA neurons [46–49]. It thus seems possible that this
neurotransmitter may act through activation of both α2-
adrenoceptors and D2 receptors [21,46,49]. On the other
hand, electrophysiological studies demonstrated that mi-
croiontophoretic application of DA in the VTA reduced
the firing of DA neurons while this effect was blocked by
sulpiride and also by the nonselective α-adrenoreceptor
antagonist piperoxane [46]. This is concordant with re-
sults showing that DA inhibits the discharge of DA neu-
rons by acting both on D2 and α2-adrenoceptors, since
this inhibitory effect was prevented by idazoxan [21]. It
is worth noting that intravenous injection of a high dose
of clonidine increases both firing and burst activity of VTA
DA neurons [50,51]. It is thus possible that clonidine sup-
pressed the firing rate of NE and 5-HT neurons, as well
as directly decreasing NE and 5-HT release, through ac-
tion on terminal α2-adrenoceptors. Such action would re-
move inhibitory tones exerted by NE and 5-HT on DA
neurons.
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Figure 3 Effect of single- and dual-acting

catecholaminergic reuptake inhibitors on

escitalopram-induced decrease in DRN 5-HT

neuronal activity. (A, B): Examples of integrated

firing histograms showing the effects of

cumulative intravenous doses of escitalopram

on the spontaneous activity of DRN 5-HT

neurons in presence of vehicle (A), or of the

DA/NE reuptake inhibitor nomifensine (5 mg/kg;

iv; B). The arrows indicate the compounds

administered and the time at which the

injection of the specified doses was completed.

The escitalopram-induced inhibition of firing

rate was reversed with the 5-HT1A receptor

antagonist WAY100635. (C) Symbols represent

the mean (± SEM) of percent of baseline firing

rate of DRN 5-HT neurons observed at each

dose of escitalopram after the administration

of vehicle; GBR 12909, reboxetine and

nomifensine. These means were calculated on

the 60 second-period preceding each drug

administration. ∗∗∗P < 0.001. Statistical

significance was taken as P < 0.05.

Further evidence for a synergy between NE and DA
was provided by recent electrophysiological studies show-
ing that concurrent inhibition of NE and DA reuptake
with intravenous injection of nomifensine produced a
complete inhibition of firing of DA neurons, whereas the
selective DA reuptake inhibitor GBR12909 failed to do
so. In addition, nomifensine compromises the inhibitory
potential of SSRI escitalopram on 5-HT neuronal fir-
ing [52] (Figure 3). Because growing evidence demon-
strates that both NE and DA exert an excitatory ac-
tion on dorsal raphe nucleus (DRN) 5-HT neuronal fir-
ing [13,53,54], the capacity of NET and DAT to alter the
inhibitory effect of SSRI escitalopram on 5-HT neuronal
firing was investigated using the selective NRI reboxe-
tine, the selective DA reuptake inhibitor GBR12909, and
the dual NE and DA reuptake inhibitor nomifensine. It

was found that neither pretreatment with reboxetine nor
with GBR12909, at doses previously shown to elevate ex-
tracellular NE [55] or DA levels [56], respectively, atten-
uated the escitalopram-induced decrease in DRN 5-HT
firing rates. However, when NE and DA levels were si-
multaneously increased by systemic administration of the
dual-acting reuptake inhibitor nomifensine, an upward
shift of the dose-response curve of escitalopram was ob-
served demonstrating that both catecholamines were re-
quired to counteract the inhibitory effect of escitalopram
on 5-HT neurons [52]. It was therefore concluded that
when the excitatory influence of both NE and DA is en-
hanced, the inhibitory effect of 5-HT1A autoreceptor on
5-HT neuronal firing is dampened. This is strengthened
by the results of electrophysiological studies of the triple
reuptake inhibitor SEP225289, showing that it was more
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potent at inhibiting NE neurons than 5-HT neurons, de-
spite apparent identical affinity of this compound for all
three reuptake transporters [57].

NE-DA Interactions in the Forebrain

Several lines of evidence point out to an intricate rela-
tionship between NE and DA not only at the somato-
dendritic level as described above, but at the terminal
areas as well. Electrophysiological interactions between
NE and DA were mainly studied in the hippocampus. It
was found that partial and total inhibition of CA3 pyra-
midal neuronal activity obtained with, respectively, ion-
tophoretic application of DA and NE was not blocked by
systemic injection of the D2 receptor antagonist haloperi-
dol nor by local application of the D2 receptor antagonist
raclopride [21]. However, as in the VTA and LC, idazoxan
prevented the inhibitory effect of DA as well as NE on
CA3 pyramidal cells [21]. To understand better the phys-
iological importance of these effects, the possibility that
the NE neurons themselves could be the main source of
DA in the hippocampus was addressed. Indeed, the obser-
vation that the selective NRI, desipramine, but not the DA
reuptake inhibitor GBR12909, prolonged the inhibitory
effects of microiontophoretic applied-DA strongly sug-
gests that the clearance of DA in the hippocampus is
mediated by the NET. This is consistent with previous
data showing that DA reuptake by NE terminals occurs
in the prefrontal cortex (PFC), the nucleus accumbens
shell, and the bed nucleus of stria terminalis [58,59]. NE
and DA neurons converge in the medial PFC where NE
terminals regulate DA release in this brain region. Micro-
dialysis studies first suggested that DA in frontal cortex
is elevated not only by blockade of DA uptake sites on
DA terminals, but also by NET located on NE terminals
[59–63], where NET is known to have a higher affinity
for DA than DA transporter (DAT) [63–65]. Indeed, in the
presence of blockade of NET by desipramine, GBR12909
further increased the extracellular concentrations of cor-
tical DA [66]. Using NET knock-out mice, it was shown
that DA uptake into frontal cortex synaptosomes is the
result of NET and not DAT blockade, because a selective
concentration of GBR12909 did not block DA uptake into
frontal cortex synaptosomes from NET knock-out mice
[67]. While controversial [68], it was also hypothesized
that DA in the cerebral cortex may be released from no-
radrenergic neurons [59], since after 6-OHDA lesion of
VTA, there was no change in the concentration of extra-
cellular DA in cerebral cortex, while there was a marked
decrease in the ipsilateral nucleus accumbens. Further-
more, the administration of haloperidol failed to modify

extracellular levels of DA in cortex while increasing it in
nucleus accumbens [69].

The PFC network activity is fundamental in process-
ing information in the brain [70] and malfunctioning of
this structure can underlie a variety of symptoms com-
mon to several psychiatric illnesses [71], including mood
disorder [72]. The PFC circuits are modulated by NE and
DA which play a complementary and critical role in PFC
function, where their depletion has been shown to be as
detrimental as removing the cortex itself [73]. The action
of NE through α2A-adrenoceptors and DA through D1 re-
ceptors is key to PFC function [74–76]. These receptors
regulate incoming glutamate signals at the level of den-
dritic spines on pyramidal cells in PFC. Indeed, these sig-
nals are sorted at the level of the head of a dendritic spine
where it can pass to the apical dendrite.

In normal condition, where neurons efficiently process
information, NE is released to strengthen signal detected
as desirable, while in the case of neurons receiving in-
puts considered as noise, DA is released to weaken these
inappropriate connections [77]. Under optimal neuro-
chemical conditions, moderate levels of NE engage α2A-
adrenoceptors and increase signal in form of responses
to preferred special directions, whereas moderate levels
of D1 receptor stimulation decrease “noise” measured as
responses to nonpreferred spatial directions. PFC work-
ing memory function is improved by α2A-adrenoceptor
stimulation and moderate levels of D1 receptor stimula-
tion, but impaired by high levels of D1, α1, and β1 re-
ceptor stimulation [78,79]. Stress exposure impairs work-
ing memory function through excessive stimulation of
DA and NE receptors in PFC [78]. Optimal levels of D1

stimulation appear to focus signal transmission, convey-
ing only large or temporally coincident signals to the cell
body. However, higher concentration of DA or a D1 re-
ceptor agonist effectively impedes information transfer
from dendrite to soma [76,80]. This interruption of in-
formation transfer may underlie the working memory
impairment seen at high levels of D1 receptor stimu-
lation [76]. When moderate doses of atomoxetine and
methylphenidate, which increase endogenous NE and
DA levels in PFC [81,82] were administered, there was
an improvement of PFC function via actions on α2A-
adrenoceptor and D1 receptors [83,84]. PFC functioning
is also improved through stimulation of postsynaptic α2A-
adrenoceptors, as with guanfacine [74]. Indeed, animal
studies have shown that guanfacine improves a variety of
PFC functions, including working memory, response in-
hibition, attention regulation and conditional motor re-
sponding [78,85]. Altogether, these data indicate that NE
and DA act in complementary fashion to regulate the
processing of information in the PFC pyramidal cells and
that this processing is improved by optimal doses of drugs

CNS Neuroscience & Therapeutics 16 (2010) e1–e17 c© 2010 Blackwell Publishing Ltd e5



Relevance of Norepinephrine–Dopamine Interactions M. El Mansari et al.

acting on NE and DA systems, thus reducing related psy-
chiatric symptoms.

Single and Dual DA and NE Acting
Antidepressants

In this section, we will discuss the effects of different
drugs acting on NE or DA or both, via an action on DA
and/or NE receptors or transporters. Understanding the
mode of action of drugs targeting these catecholamin-
ergic neurotransmitters can improve their utilization in
monotherapy and in combination with other compounds
particularly the SSRIs. The elucidation of such relation-
ships can help design new treatment strategies for MDD,
especially treatment-resistant depression.

Pramipexole

Several antidepressants enhance DA neurotransmission
[5,86] and it is interesting to examine results obtained
with the D2/D3 receptor agonist pramipexole, a drug with
no known affinity for either NE or 5-HT neuronal el-
ements. In a randomized double-blind study, Corrigan
et al. [87] showed that by week 8, patients with MDD re-
ceiving pramipexole alone had significant improvement
over baseline compared to the placebo group. Several
other studies reported the efficacy of pramipexole as an
augmentation strategy in resistant unipolar and bipolar
depression [88–93].

While subacute administration of pramipexole signif-
icantly decreases the spontaneous firing rate of VTA
DA neurons and the extracellular concentration of DA
in striatum [27,94], sustained administration over two
weeks resulted in recovery of discharge to normal level
[27] (Figure 4) due to desensitization of D2 autoreceptor
[27,95] (Figure 5). While the percentage of bursts was de-
creased at 14 days, it was compensated by a return to the
normal level of the number of bursts per minute. Restora-
tion of firing rate of DA neurons, despite a decrease in
its bursting activity, may lead to a net enhancement of
the DA transmission in postsynaptic brain targets. Assess-
ment of the tonic activation of DA receptors in postsy-
naptic regions is deemed crucial to confirm this possibility
and is currently underway in our laboratory.

Given the reciprocal interactions between DA, NE, and
5-HT neurons, it is important to consider the effects of
pramipexole on all three systems. It has been shown that
short-term administration of pramipexole resulted in sig-
nificant reduction of LC NE firing activity. Despite the
previously reported lack of affinity of pramipexole for NE
neuronal elements, this effect may still happen through
a direct activation of α2-adrenergic autoreceptors, since

Figure 4 Diagrams of DA neurons representing their response and adap-

tations to the activation of D2 receptor by the D2/3 receptor agonist

pramipexole or the inhibition of the NE and DA transporters with nomifen-

sine. The spikes on the axon represent the firing activity of DA neurons.

The dots around the DA neurons represent DA molecules. These neurons

have D2/3 autoreceptors that inhibit firing and release when activated by

an excess amount of DA. The effects of DA on postsynaptic neurons are

mediated by several subtypes of DA receptors.

idazoxan effectively reversed this inhibition [27]. Indeed,
after long-term administration of pramipexole, NE neu-
rons regained their normal firing rate, due to desensitiza-
tion of the α2-adrenergic autoreceptors [27]. Importantly,
a recent study showed that while the sensitivity of post-
synaptic α2-adrenoceptors and 5-HT1A receptors are not
changed after 14 days of administration of pramipexole,
there was an enhancement of tonic activation of the 5-
HT1A receptors in hippocampus, and an increase of firing
of 5-HT neurons in the DRN [27,96]. This confirms the in-
crease in net 5-HT transmission following long-term ad-
ministration of pramipexole.

These data revealed that in addition to its effects on the
DA system, pramipexole exerts a facilitating action on 5-
HT neurotransmission. Drugs with dopaminergic proper-
ties may thus act, at least in part, through an action on the
5-HT system. Altogether, these observations strengthen
the importance of the interactions between DA, NE, and
5-HT systems.
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Figure 5 Assessment of the sensitivity of the VTA DA D2/3 autorecep-

tor: Integrated firing rate histogram illustrating the effect of apomorphine

administration on VTA DA firing activity in controls and rats treated with

pramipexole for 14 days. The apomorphine-induced inhibition of firing

rate was reversed with the D2 receptor antagonist haloperidol. Note that

the inhibitory effect of apomorphine in control rats is dampened in rats

treated with pramipexole, indicating a desensitization of D2/3 receptors.

Nomifensine

Nomifensine, an antidepressant with potent NE and DA
reuptake inhibiting properties, was as effective as tradi-
tional antidepressants. A comprehensive assessment of
the pooled studies provided strong evidence for equal
efficacy of nomifensine and imipramine [97,98]. It was
removed from the market because of aplastic anemia,
unrelated to its reuptake inhibitory actions. Pooled anal-
yses undertaken to explore the generalizability of treat-
ment efficacy provided statistical evidence that more
severely depressed patients showed enhanced response
to nomifensine relative to placebo.

Animal studies showed that nomifensine markedly de-
creased the firing rate of NE neurons in the LC after
2 days, with no recovery of the firing rate of these neu-
rons after 14 days [52] (Figure 6), similar to previous re-
sults found with the NRI reboxetine and MAOIs [99]. The
absence of a recovery in the firing rate of these neurons is
likely due to a lack of desensitization of somatodendritic
α2-adrenoceptors, which are known to inhibit NE neu-
ronal firing [99]. These α2-adrenoceptors have neverthe-

less the capacity to desensitize and allow a recovery of fir-
ing of NE neurons. This has initially been documented us-
ing the SSRI/5-HT2A receptor antagonist, YM992, a drug
that enhances NE release [100,101].

Similar to NE neurons, the firing rate of DA neurons
in the VTA was significantly decreased with the short-
term nomifensine regimen (Figure 4). Unlike NE neu-
rons, however, both the firing rate and burst activity of
DA neurons completely recovered to control levels fol-
lowing 14-day of nomifensine administration (Figure 4),
due to the desensitization of the somatodendritic D2 au-
toreceptor, as was reported for a 14-day regimen of the
D2 agonist quinpirole [52,95]. Interestingly, nomifensine
induced a significant increase in the firing rate of 5-HT
neurons after 2 days, which remained significantly ele-
vated after the 14-day regimen. It is well documented
that increases in synaptically available NE and DA cause
an excitation of DRN 5-HT neurons via α1-adrenoceptors
[102] and D2 receptors [53,103], respectively. Although
it has been previously reported that acute administra-
tion of the NRI reboxetine increases 5-HT firing [42], sus-
tained administration of reboxetine is without effect [99].
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Figure 6 Diagrams of NE neurons representing their response and adap-

tations to the inhibition of the NE and DA transporters with nomifensine

or release of DA and NE by bupropion. The spikes on the axons represent

the firing activity of NE neurons. The dots around NE neuron represent NE

molecules. These neurons have α2 autoreceptors that inhibit firing and

release when activated by an excess amount of NE. The effects of NE

on postsynaptic neurons are mediated by several subtypes of α- and β

-adrenergic receptors. NRI, norepinephrine reuptake inhibitor.

Prolonged administration of desipramine and reboxetine
desensitize α2-adrenergic receptors present on 5-HT ter-
minals, leading to an increase in synaptic availability
of endogenous 5-HT in the rat hippocampus [104,105].
Nevertheless, as for pramipexole, the increase in 5-HT fir-
ing following nomifensine administration indicates that
the dopaminergic property of nomifensine likely con-
tributes to increase 5-HT neuronal firing.

The increase in 5-HT neuronal firing following 2 days
of nomifensine administration implies a synergistic effect
of the dual action of this drug since GBR 12909 and se-
lective NRIs produced no such effect [52,99]. However,
the elevation of 5-HT neuronal firing following 2 days
of nomifensine administration was abolished by lesion
of NE neurons, but not by the administration of the D2

receptor antagonist paliperidone [52,106,107]. This indi-
cates on the one hand that NE plays a significant role
in this increase, and on the other hand, that enhanced
DA levels may also play a role but may not be sufficient
on its own to induce such an increase. A similar increase
in the firing rate of 5-HT neurons was obtained follow-
ing a 2-day administration of aripiprazole, a D2 and 5-
HT1A receptor partial agonist; this increase was reversed
by paliperidone, indicating again that it was mediated by
D2 receptors [107]. These data show that nomifensine

increases DA, NE and 5-HT transmission. Interestingly,
a similar increase in DRN 5-HT neurons firing was ob-
tained following an action through α1-adrenoceptors in
the case of nomifensine and through D2 receptors with
aripiprazole.

Bupropion

Bupropion is an effective antidepressant when used alone
or in combination with SSRIs as an augmentation strat-
egy [108,109]. It has been shown that bupropion has no
significant affinity for various types of receptors such as
α- or β-adrenoceptors, 5-HT, DA, or nicotinic receptors
[110–112]. Although the mechanism of action of bupro-
pion is not fully understood, DAT inhibition is unlikely
because four positron emission tomography (PET) scan
studies have reported that clinically effective doses of
bupropion produce very low occupancy of dopamine re-
uptake sites [113–116]. It is unlikely that such low DAT
occupancy has an effect on DA transmission since the
value obtained is hardly different from baseline [113].
Moreover, a lack of NE reuptake inhibition is indicated
by its lack of inhibitory effect on the tyramine pressor
response, contrarily to NRIs [117]. In preclinical studies,
bupropion was hypothesized to be a NE releaser in LC
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and at the level of NE terminals in DRN [29]. Indeed,
administration of subacute bupropion increases firing of
5-HT neurons whereas NRIs do not. This effect was no
longer present in NE-lesioned rats. Finally, it is thought
to be mediated through activation of α1-adrenoceptor,
which exerts an excitatory action on 5-HT neurons ac-
tivity [29,118,119]. Administration of bupropion for two
days decreased the firing activity of LC neurons (Figure 6)
through an overactivation of α2-adrenoceptors, as the se-
lective α2-adrenoceptor antagonist idazoxan reversed this
effect [29]. In addition, it was shown that NE neuronal
firing recovers after 14 days of bupropion administration
[28] (Figure 6), a phenomenon that does not occur with
reboxetine, desipramine, or even MAOIs [99,120]. Im-
portantly, the recovery of the firing of LC NE neurons
and the desensitization of the autoreceptors after admin-
istration of bupropion for 14 days (Figure 7) imply that
there could be a sustained increase in NE neurotransmis-
sion in brain target areas. Interestingly, the tonic activa-
tion of α1-, α2-adrenenergic and 5-HT1A receptors by en-
dogenous NE and 5-HT, respectively, was increased fol-
lowing 14 days of bupropion administration [121]. The
bupropion regimen that alters NE and 5-HT neuronal fir-
ing had no effect on the firing of DA neurons. Previ-
ous studies showed that only high intravenous doses of
bupropion dose-dependently reduced firing of brainstem
dopamine neurons in the rat [30], therefore suggesting
that this effect does not constitute a basis for its clinical ef-
fects. In vivo brain microdialysis studies demonstrated that
after both acute and chronic administration, there was
an enhancement of bupropion-induced increase in extra-
cellular DA in the nucleus accumbens and hippocampus
regions, but not in the striatum [122–124]. Taken to-
gether, these data indicate that the increase in DA re-
lease is independent of the firing activity of VTA DA
neurons, during not only subacute but also long-term
administration of bupropion [28,29]. It is difficult to dis-
sociate changes in DA release from changes in DA neu-
ronal activity. However, in vivo studies have shown that
a bupropion-induced sensitization is rather due to an in-
crease in the ability of bupropion to release DA [125,126].
Nevertheless, unlike bupropion, the selective DA reup-
take inhibitor GBR12909, also known to increase extra-
cellular levels of DA in the cortex [127], decreases both
the firing and burst activity of DA neurons in the VTA fol-
lowing a 2-day administration [52]. In summary, it was
shown that bupropion has the capacity to enhance synap-
tic availability of NE and DA in some brain regions, as
well as to promptly increase the firing activity of 5-HT
neurons. These effects combined with the gradual nor-
malization of NE neurotransmission following long-term
administration, may thus be the mechanisms whereby
bupropion exerts its delayed therapeutic effect in MDD.

Atypical Antipsychotics

Atypical antipsychotics, despite being D2 receptor antag-
onists, are even more potent 5-HT2A receptor antagonists
[128]. These two properties are believed to underlie their
therapeutic action in psychosis, while producing minimal
motor side effects. They also have affinities for receptors
other than the D2 and the 5-HT2A receptors. Quetiapine
apparently differs from other typical and atypical antipsy-
chotic drugs by its antidepressant activity and its proven
efficacy in unipolar and bipolar disorders, as well as gen-
eralized anxiety disorder [129–131]. Its antidepressant
activity could well stem from its α2-adrenoceptor antag-
onistic activity, which would then be akin to that of mir-
tazapine, an α2-adrenergic and 5-HT2A receptor antago-
nist [132,133]. Systemic administration of quetiapine also
enhances the extracellular levels of NE and DA in the rat
PFC as for mirtazapine [132,134]. Some atypical antipsy-
chotics may thus increase NE and 5-HT transmission by
blocking α2-adrenoceptors on LC NE cell body as well as
antagonizing α2-adrenoceptors on NE and 5-HT terminals
in projection areas [104]. However, not all atypical an-
tipsychotics have activity at α2-adrenoceptors, like olan-
zapine, which was shown to have a beneficial therapeutic
effect in MDD resistant patients to SSRIs [135–137]. This
effect is thought to be through action on 5-HT2A recep-
tors located on GABA neurons controlling NE neuronal
firing [100]. Indeed, because of their ability to block 5-
HT2A receptors, atypical antipsychotics reverse the SSRI-
induced inhibition of the firing rate and burst activity of
NE neurons, as it was demonstrated for the combination
of SSRIs fluoxetine and escitalopram with olanzapine and
risperidone, respectively [136–138]. In addition, an im-
portant metabolite of quetiapine in humans, norquetiap-
ine, appears to be a blocker of NET (Ki = 58 nM; [139]).
Previous studies have shown that blockade of NET to-
gether with α2-adrenoceptor antagonism leads to a syn-
ergistic effect on extracellular levels of NE [140]. Sus-
tained treatment with NET blockers results in a decrease
of NE firing activity without a recovery due to the absence
of α2-adrenoceptor desensitization [99]. Antagonism of
the α2-adrenoceptors could thus potentiate the effect of
NET inhibitors, as will be discussed below when the SNRI
venlafaxine is combined with mirtazapine in treatment-
resistant patients.

Antidepressant Combinations Acting on NE
and/or DA

As mentioned above, the use of a dual DA and NRI,
nomifensine, was shown to exert a robust antidepres-
sant effect. This strategy has not been exploited since,
although triple reuptake inhibitors (5-HT, NE, and DA)
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Figure 7 (A) The upper panel represents the integrated histogram of the

firing activity of a LC NE neuron (lower panel) that was inhibited by the

selective α2-adrenoceptor agonist clonidine and reversed by the selective

α2-adrenoceptor receptor antagonist idazoxan. (B) Integrated histogram

of the firing activity of a LC NE neuron (lower panel) illustrating the de-

creased responsiveness to three consecutive intravenous injections of

clonidine in a rat treated with bupropion for 14 days, thus indicating a

desensitization of α2-autoreceptors.

are currently in development. Most of these agents, how-
ever, have a low affinity for DAT. Nevertheless, combina-
tions of antidepressants resulting in at least a dual action
on NE and DA have been used with success not only in

treatment-resistant depression, but also in drug-naı̈ve pa-
tients [141].

For instance, the combination of bupropion and mir-
tazapine has been shown to nearly double the remission
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Table 1 Effect of long-term administration of various antidepressant medications with affinities for NE and DA elements on DA, NE and 5-HT

neurotransmissions

Cell body α2 Cell body D2 Cell body 5-HT1A Net NE Net DA Net 5-HT

autoreceptor autoreceptor autoreceptor transmission transmission transmission

Pramipexole ↓ ↓ ↓ N.D. ↑ ↑
NRI Ø N.D. Ø ↑ ↑∗ ↑
Nomifensine Ø ↓ ↓ ↑∗ ↑∗ ↑∗

Bupropion ↓ N.D. ↓ ↑ ↑∗ ↑
Mirtazapine Ø # N.D. ↓ ↑ ↑ ↑
SSRI N.D. N.D. ↓ ↓ ↓ ↑

N.D., not determined; ø, no change; ↑, increased; ↓, decreased; ∗, presumed from their acute effect; #, these experiments were carried out after a

washout, but in the presence of mirtazapine this receptor is antagonized.

rate in MDD after 6 weeks of concomitant administra-
tion from treatment initiation in a double-blind random-
ized trial. In the same study, a noradrenergic regimen of
venlafaxine combined with mirtazapine produced a 58%
remission rate [141]. Similarly, addition of bupropion to
the SNRI duloxetine has been reported in an open labeled
study to be an effective strategy [142]. Trials examining
the antidepressant potential of the addition of the atyp-
ical antipsychotics risperidone (an α2-adrenoceptor an-
tagonist) and aripiprazole (a D2 receptor partial agonist)
at subtherapeutic regimens for psychosis, therefore not
functionally antagonizing D2 receptors, have been shown
to be effective with the SNRI venlafaxine [143–145].

Conclusion

In summary, agents that act selectively on DA or NE neu-
ronal elements to enhance net transmission of these cat-
echolamines can produce a clear antidepressant action.
In addition, these two neuronal systems have important
reciprocal anatomical and physiologically important in-
teractions. Some strategies acting on both systems have
been shown to be effective, not only in drug naı̈ve pa-
tients, but also in treatment-resistant depression. Finally,
because the DA and NE systems also have reciprocal in-
teractions with the 5-HT system, drugs impacting the DA
and NE systems also end up increasing 5-HT transmis-
sion (Figure 1, Table 1). On such premises, it can be pro-
posed that combinations of catecholamine actions could
help further improve the treatment of MDD.
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