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Abstract

Background and aim—Overdose of acetaminophen (APAP) leads to liver injury, which is one 

of the most common causes of liver failure in the United States. We previously demonstrated that 

pharmacological activation of autophagy protects against APAP-induced liver injury in mice via 

removal of damaged mitochondria and APAP-adducts (APAP-ADs). Using an image-based high-

throughput screening for autophagy modulators, we recently identified that chlorpromazine (CPZ), 

a dopamine inhibitor used for anti-schizophrenia, is a potent autophagy inducer in vitro. 

Therefore, the aim of the present study is to determine whether CPZ may protect against APAP-

induced liver injury via inducing autophagy.

Methods—Wild type C57BL/6J mice were injected with APAP to induce liver injury. CPZ was 

administrated either at the same time with APAP (co-treatment) or 2 h later after APAP 

administration (post-treatment). Hemotoxyline and eosin (H&E) staining of liver histology, 

terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) 

staining of necrotic cell death as well as serum levels of alanine aminotransferase (ALT) were used 

to monitor liver injury.

Results—We found that CPZ markedly protected against APAP-induced liver injury as 

demonstrated by decreased serum levels of ALT, liver necrotic areas as well as TUNEL-positive 

cells in mice that were either co-treated or post-treated with CPZ. Mechanistically, we observed 

that CPZ increased the number of autolysosomes and decreased APAP-induced c-Jun N-terminal 

kinase activation without affecting the metabolic activation of APAP. Pharmacological inhibition 

of autophagy by chloroquine partially weakened the protective effects of CPZ against APAP-

induced liver injury.

Conclusions—Our results indicate that CPZ ameliorates APAP-induced liver injury partially via 

activating hepatic autophagy and inhibiting JNK activation.
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1. Introduction

Acetaminophen (APAP) is a common over-the-counter analgesic prescription. APAP 

overdose leads to severe hepatotoxicity and remains one of the top causes of acute liver 

failure in the United States.1 A large portion of APAP in liver undergoes glucuronidation and 

sulfation and is secreted into bile and plasma, while a small portion is metabolized by 

cytochrome P450 2E1 (CYP2E1) and generates a reactive metabolite, N-acetyl-p-

benzoquinone imine (NAPQI).2 The highly reactive electrophile NAPQI depletes liver 

glutathione (GSH), and excessive NAPQI then covalently binds to intracellular proteins and 

nucleic acids to form APAP-adducts (APAP-ADs). The excessive NAPQI and subsequent 

formation of APAP-ADs are believed to be the trigger of mitochondrial dysfunction and the 

generation of reactive oxygen species (ROS) resulting in hepatocellular necrosis.3,4 Current 

treatment options for APAP-induced acute liver failure are still limited. N-acetylcysteine 

(NAC), the current standard of care treatment for patients with APAP overdose, restores the 

hepatic GSH content and therefore enhances the capacity of the liver to detoxify NAPQI 

during the metabolism phase and also the capacity to scavenge ROS and peroxynitrite during 

the progression phase of the injury.5,6 Hence, NAC is most effective when administered as 

early as possible after an overdose with declining efficacy when patients present at later time 

points.7 Thus, novel treatments for APAP-induced liver injury are still needed.

c-Jun N-terminal kinase (JNK) is a serine/threonine kinase of the mitogen-activated protein 

kinase (MAPK) family. JNK has three isoforms JNK1, 2, 3, and JNK1 and JNK2 are 

universally expressed including in the liver.8 Under various stress stimuli, JNK is 

phosphorylated, activated and subsequently induces or inhibits its downstream proteins 

controlling cell survival and cell death. Prolonged activation of JNK is involved in liver 

inflammation, steatosis, fibrosis and hepatocellular carcinoma.9,10 Previous studies have 

shown JNK phosphorylation and mitochondrial translocation of phospho-JNK (p-JNK) after 

APAP administration.11,12 Mice deficient of JNK1 or JNK2 are not protected against APAP-

induced liver injury, possibly due to the compensatory effect of the alternative JNK protein.
13 However, knockdown with antisense oligonucleotides or pharmacological inhibition of 

both JNK1 and JNK2 protects against APAP-induced hepatotoxicity in mice and in primary 

human hepatocytes.12,14,15 The mechanistic role of JNK in the development of APAP-

induced cell death is the amplification of the mitochondrial oxidant stress, which is a central 

event in the pathophysiology.16

Macroautophagy/autophagy is a highly conserved lysosomal degradation pathway regulated 

by a series of autophagy-related genes. Unselective autophagy, activated by nutrient 

deprivation, breaks down cellular components to provide sources of energy and nutrients to 

survive.17 Selective autophagy, activated under nutrient-sufficient and -insufficient 

conditions, removes damaged or excessive organelles and protein aggregates as a protective 
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mechanism.18–22 Autophagy is crucial in many physiological and pathological conditions, 

including aging, liver diseases, heart diseases, myopathies, cancers, adipocyte 

differentiation, and immune responses.23–29 We recently demonstrated that the activation of 

autophagy protects against APAP-induced hepatotoxicity by removing APAP-ADs and 

damaged mitochondria in vivo and in vitro.30–34

Researchers have been actively seeking autophagy inducers and inhibitors for clinical 

applications. Previously we developed a cell-based high-throughput image screening system 

and identified a few autophagy inducers.35 Among them chlorpromazine (CPZ) induces 

autophagy in mouse embryonic fibroblasts and two other human cancer cell lines, human 

colorectal tumor (HCT) 116 and A549. CPZ is a classic antipsychotic drug, and its 

mechanism of action is still poorly understood. In the present study, we aimed to determine 

whether CPZ would protect against APAP-induced liver injury in mice and its possible 

underlying mechanisms. We found co-treatment or post-treatment with CPZ markedly 

decreased APAP-induced liver injury in mice. CPZ increased the number of autolysosomes 

and decreased APAP-induced JNK activation without affecting APAP metabolism.

2. Materials and methods

2.1. Reagents

For animal experiments, stock solutions of CPZ hydrochloride, chloroquine (CQ), and 

buthionine sulphoximine (BSO) were prepared in double distilled water (ddH2O), and 

diluted with saline before use. APAP (Sigma) was dissolved in saline and warmed up to 

ensure its complete dissolution prior to injection. All reagents were either from Sigma or 

Thermal Fisher Scientific.

2.2. Antibodies

The rabbit anti-APAP-AD antibody was a kind gift from Dr. Lance Pohl (National Heart, 

Lung and Blood Institute).31 The other antibodies were: CYP2E1 (Abcam, #ab28146),p62 

(Abnova, #H00008878-M01), phospho-eukaryotic initiation factor 4E-binding protein 1 

(p-4EBP1) (Cell Signaling, #9451), total 4EBP1 (Cell Signaling, #9452), p-JNK (Cell 

Signaling, #4668), total JNK (BD Pharmingen, #554285), β-actin (Sigma, #a5541), and 

glyceralde-hyde phosphate dehydrogenase (GAPDH) (Cell Signaling, #2118). The 

microtubule-associated protein 1 light chain 3 (LC3) antibody was developed as described 

previously.36 The secondary antibodies were horseradish peroxidase (HRP)-conjugated goat-

anti-rabbit (Jackson ImmunoResearch, #111–035-045), and HRP-conjugated goat-anti-

mouse (Jackson ImmunoResearch, #115-035-062).

2.3. Animals

Two-month old (C57BL/6J) male mice were caged with free access to chow food and water 

in 12/12 light cycle. Mice were injected with 500 mg/kg of APAP intraperitoneally (i.p.) in 

the morning. In co-treatment model, 6 mg/kg of CPZ was injected i.p. at the same time with 

APAP, and the mice were euthanized at 0.5, 2, 6, or 24 h after treatment. In post-treatment 

model, 6 mg/kg of CPZ was injected i.p. 2 h after APAP treatment, and the mice were 

euthanized 6 h after APAP. In post-treatment + CQ model, CQ (60 mg/kg) was injected i.p. 
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at the same time with APAP. BSO (2 mmol/kg) was injected i.p. 1 h after APAP treatment. 

Matched volume of saline was injected as control. All animal protocols were approved by 

the Institutional Animal Care and Use Committee of the University of Kansas Medical 

Center.

2.4. Immunoblot

For total liver lysates, livers were dissected and snap-frozen in liquid nitrogen after the mice 

were euthanized, and liver tissues were homogenized in radioimmunoprecipitation assay 

buffer. For nuclear/cytosolic fractionation, frozen liver tissues were processed using a 

NE/PER kit (Thermo Fisher) following the manufacturer’s instructions. All the protein 

lysates were supplied with a protease inhibitor cocktail (BioTool), mixed with sodium 

dodecyl sulfate (SDS) loading buffer containing dithiothreitol and boiled at 95 °C for 10 

min. Thirty microgram of protein was loaded for SDS-polyacrylamide gel electrophoresis 

and transferred onto polyvinylidene difluoride membrane. The membranes were blocked in 

5% milk in Tris-buffered saline with 0.1% Tween 20 buffer, and then incubated with primary 

antibody and secondary antibody prepared in 5% milk in Tris-buffered saline with 0.1% 

Tween 20. The signals were detected with SuperSignal™ West Pico Chemiluminescent 

Substrate (Thermal) and/or Immobilon Western HRP Substrate (Millipore). Densitometry 

was analyzed with Image J software (National Institutes of Health (NIH), USA).

2.5. Histology analysis

Fresh liver tissues were kept in 10% formaldehyde overnight and transferred to 70% ethanol 

for at least 24 h. Then the tissues were dehydrated, embedded in paraffin, and cut into 5 μm 

slices. For general morphology, slides were stained with hemotoxyline and eosin (H&E). For 

terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling 

(TUNEL) assay, slides were stained with the In Situ Cell Death Detection Kit, AP (Roche 

Diagnostics) following the instruction manual. The percentage of necrotic area was 

measured with Image J software.

2.6. Electron microscopy (EM) analysis

For EM studies, fresh liver tissues were fixed with EM fixation buffer (2.5% glutaraldehyde, 

1% OsO4, 100 mM sodium cacodylate buffer, pH 7.4). The tissues were further dehydrated, 

cut into thin sections and stained with uranyl acetate and lead citrate. All the images were 

obtained using a JEM 1016CX electron microscope with a digital camera. Autophagic 

vesicles were counted in at least 15 cells in each group. The area of cytoplasm was measured 

with Image J software.

2.7. GSH/glutathione disulfide (GSSG) measurement

GSH and GSSG levels in liver tissue were measured as previously described.37 For GSH 

measurement, frozen liver tissues were homogenized in 3% sulfosalicylic acid, centrifuged, 

and diluted in 0.01 N hydrochloric acid for GSH measurement with the modified Tietze 

assay. Another aliquot was added to potassium phosphate buffer containing N-

ethylmaleimide to trap GSH for GSSG measurement. The residual N-ethylmaleimide was 

removed by a Sep-Pak column and GSSG was measured by a modified Tietze assay.37
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2.8. Serum alanine aminotransferase (ALT) measurement

Blood samples were collected from auxiliary artery after the mice were euthanized. Samples 

were allowed to sit for 30 min, then centrifuged at 3000 rpm at 4 °C for 10 min, and the 

supernatant serum was collected. ALT activities were measured using the ALT (SGPT) 

Reagent Set (POINTE Scientific) following the instruction manual at λ = 340 nm. Millipore 

water was used as blank control.

2.9. Statistical analysis

Data were presented as the mean ± standard error of the mean (SEM). Experimental data 

were subjected to Student’s t-test when 2 groups are compared or one-way analysis of 

variance (ANOVA) where appropriate. P < 0.05 was considered statistically significant. All 

statistical analyses were performed using IBM SPSS software (IBM, USA).

3. Results

3.1. CPZ co-treatment and post-treatment protect against APAP-induced liver injury

To determine whether CPZ would protect against APAP-induced liver injury, fed C57BL/6J 

mice were treated with CPZ i.p. at the same time when APAP was administered (Fig. 1A). 

APAP led to significantly elevated serum ALT levels at 6 and 24 h (Fig. 1B). Liver H&E 

staining and TUNEL staining at 6 h showed severe centrilobular necrosis, hemorrhage and 

increased TUNEL-positive cells in pericentral vein areas, which was almost abolished in the 

presence of CPZ (Figs. 1C–E). Consistent with the histological changes and TUNEL 

staining, the serum levels of ALT were also markedly lower in the CPZ-treated animals for 

up to 24 h (Fig. 1B). To test whether CPZ post-treatment would also have a protective effect 

against APAP-induced liver injury, mice were treated with CPZ i.p. 2 h after APAP 

administration (Fig. 2A), at which time most of the APAP was already metabolized. CPZ 

post-treatment significantly inhibited APAP-induced serum ALT elevation (Fig. 2B), liver 

necrosis and TUNEL-positive cells (Figs. 2C–E). These results indicate that both co-

treatment and post-treatment with CPZ protect against APAP-induced liver injury.

3.2. CPZ does not affect APAP metabolism in mouse livers

APAP is mainly metabolized by liver CYP2E1, and its metabolite NAPQI binds to various 

intracellular proteins and forms APAP-ADs. After CPZ co-treatment, neither the levels of 

liver CYP2E1 nor APAP-ADs were altered at 6 h compared with APAP treatment alone 

(Figs. 3A and B), suggesting that CPZ did not inhibit CYP2E1-mediated APAP metabolism. 

Consistent with the CYP2E1 and APAP-ADs data, hepatic GSH levels were depleted to the 

same levels regardless of the presence or absence of CPZ after mice were treated with APAP 

for 2 h. The levels of hepatic GSH started to recover at 6 h and completely recovered to the 

basal levels after APAP treatment for 24 h in the presence or absence of CPZ (Fig. 3C). The 

GSSG levels and the GSSG/GSH ratios were significantly higher at 24 h in APAP group, 

which was markedly decreased in APAP and CPZ co-treatment group. These data suggest 

that CPZ does not affect APAP metabolism but inhibits APAP-induced oxidative stress at the 

late phase in mouse livers. CPZ increases the number of autolysosomes and autophagic flux 

in APAP-treated mouse livers.
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3.3. CPZ increases the number of autolysosomes and autophagic flux in APAP-treated 
mouse livers

We previous reported that APAP increased autophagosome formation in mouse livers.30,38 

Consistent with these findings, we found that APAP treatment increased LC3-II levels (Figs. 

4A and B) and the number of autophagic vacuoles in mouse livers (Figs. 5A and B). 

Interestingly, the p62 protein expression was also increased after APAP treatment, possibly 

due to autophagy-independent transcriptional upregulation (data not shown). CPZ alone 

decreased LC3-I expression, increased LC3-II expression and significantly increased late 

autophagic vacuoles. Co-treatment of CPZ with APAP decreased the levels of LC3-II and 

p62 compared with APAP treatment alone (Figs. 4A and B), suggesting a possible increased 

autophagic degradation of both LC3-II and p62 in the cotreatment group. Indeed, EM 

studies also revealed that co-treatment of CPZ with APAP increased the degradative 

autolysosome (AVd) numbers compared with APAP treatment alone (Figs. 5A and B). 

Consistent with our previous findings in cultured non-hepatocytes, CPZ alone increased the 

levels of phosphorylated 4EBP1, a substrate protein of mammalian target of rapamycin 

(mTOR), suggesting CPZ-increased autophagy is mTOR-independent.35 APAP treatment 

decreased levels of 4EBP1 phosphorylation, which was not significantly affected by the 

cotreatment with CPZ (Figs. 4A and B). To further determine the role of autophagy in the 

protection of APAP-induced liver injury by CPZ, we treated the mice with the autophagy 

inhibitor CQ with APAP followed by CPZ treatment (Fig. 6A). As can be seen in Fig. 6B, 

post-treatment of CPZ markedly decreased the serum levels of ALT induced by APAP. Co-

treated in mice with CQ significantly increased serum ALT levels compared with APAP + 

CPZ group, suggesting that the protective effects of CPZ against APAP-induced liver injury 

is partially via autophagy induction. Indeed, the hepatic levels of LC3-II were higher in the 

APAP + CPZ + CQ group than either in APAP alone or in APAP + CPZ group, suggesting 

that CPZ enhances hepatic autophagic flux in APAP-treated mice (Figs. 6C and D). 

Together, these results suggest that APAP and CPZ co-treatment increases numbers of AVd 

and autophagic flux and protects against APAP-induced liver injury in mice.

3.4. Depletion of GSH by BSO abolishes the protective effects of CPZ against APAP-
induced liver injury

To determine whether the levels of hepatic GSH would affect the protective effects of CPZ 

against APAP-induced liver injury, we co-treated mice with BSO 1 h post APAP 

administration but 1 h prior to CPZ injection (Fig. 7A). We found BSO alone significantly 

lowered the hepatic GSH levels compared with control group (Fig. 7B). BSO together with 

APAP and CPZ also further decreased hepatic GSH levels compared with APAP + CPZ or 

APAP alone group. Interestingly, the decreased ALT levels in APAP + CPZ group were 

almost completely reversed by BSO (Fig. 7C). These results indicate that the protective 

effects of CPZ against APAP-induced liver injury can be abolished by further depletion of 

hepatic GSH levels.

3.5. CPZ co-treatment inhibits JNK activation

It has been suggested that increased JNK phosphorylation can amplify mitochondrial 

production of ROS and peroxynitrite and increase mitochondria membrane permeability 
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transition resulting in APAP-induced cell death.39 We found that APAP treatment increased 

levels of phosphorylated total JNK to almost 15-fold of control mice, which was markedly 

decreased by co-treatment with CPZ in mouse livers (Figs. 8A and B). These results suggest 

that CPZ co-treatment in part reduces APAP-induced JNK activation in mouse livers.

4. Discussion

CPZ is a dopamine receptor antagonist and a calcium channel blocker.40–43 Previously, a 

few papers studied the protective effects of CPZ against APAP-induced liver injury in mice. 

Saville et al.44 treated fed and fasted mice with CPZ (6 mg/kg) 1 h prior to APAP treatment 

and observed complete protection up to 24 h. They found that CPZ pre-treatment inhibited 

APAP-induced elevation in phosphorylase α activity, suggesting a possible inhibition of 

cytosolic calcium level. A study with similar conditions found that CPZ pre-treatment (6 

mg/kg CPZ, 1 h pre-treatment) inhibited APAP-induced decrease in mitochondrial calcium 

sequestration, suggesting a restoration of mitochondrial calcium homeostasis.45 Another 

study confirmed that CPZ pre-treatment (25 mg/kg CPZ, 1 h or 2 h pre-treatment) decreased 

nuclear calcium level and nuclear DNA fragmentation.46 Later the same group showed CPZ 

post-treatment (25 mg/kg CPZ, 1 h post-treatment) also led to protection up to 24 h, and it 

inhibited APAP-induced lipid peroxidation and DNA fragmentation.47 Our study 

administered CPZ at a low concentration (6 mg/kg) and added a later time point (2 h post-

treatment) when a substantial fraction of the APAP dose was already metabolized, 

suggesting a greater potential for translation into clinical application, considering most 

APAP overdose patients will only receive treatment many hours after APAP consumption. 

Though there is abundant evidence showing that CPZ intervention is associated with 

decreased cytosolic calcium level, whether APAP-induced calcium efflux is a major cause of 

cell death or a secondary effect of the injury is still debatable.

Here we reported that several novel mechanisms may account for the protective effects of 

CPZ against APAP-induced liver injury. Firstly, we previously identified CPZ as a potent 

autophagy inducer via a high-throughput imaging screening in cultured cells.35 CPZ may 

protect against APAP-induced liver injury via enhanced auto-phagy by targeting APAP-

induced damaged mitochondria. Indeed, co-treatment of CPZ with APAP increased the 

degradation of LC3-II and p62 protein, supporting a possible increased autophagic flux in 

mouse livers. The increased numbers of AVd by EM studies may help to explain the 

decreased rather than increased LC3-II levels in the co-treatment of CPZ and APAP group. 

Treatment with the lysosomal inhibitor CQ in the mouse livers together with CPZ and APAP 

further confirmed that CPZ increases autophagic flux in this model. However, based on the 

partially increased serum ALT levels by CQ and previous findings, increased autophagy may 

have an impact on the pathophysiology but cannot account for the entire mechanism of 

protection by CPZ.30,31,48

Secondly, APAP overdose triggers MAPK cascade and induces JNK activation in mouse 

hepatocytes.49 Sustained JNK activation loop well correlates to APAP-induced acute injury.
12 Recently it is found that phosphorylated JNK binds to Src homology 3 domain (SH3) 

homology associated Bruton tyrosine kinase (BTK) binding protein (Sab) on the 

mitochondria outer membrane.50 The interaction between JNK and Sab dephosphorylates 
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and inactivates intramitochondrial Src in a Src homology region 2 domain-containing 

phosphatase-1 (SHP-1)-dependent, docking protein 4 (DOK4)-dependent manner, and leads 

to electron transport inhibition and further ROS release.50 Here we confirmed that APAP 

overdose at 6 h triggers JNK phosphorylation in liver. There were no reports about whether 

CPZ affects JNK activation yet. In our hands at 6 h, CPZ alone did not affect JNK 

phosphorylation, while CPZ cotreatment appeared to partially attenuate APAP-induced JNK 

phosphorylation. Interestingly, after CPZ co-treatment, the expression of phosphorylated 

JNK varied among the mice that we had assessed but all of these mice showed no signs of 

liver injury based on the serum levels of ALT and liver histology of necrosis. These results 

suggest that CPZ may work mainly downstream of JNK activation to block APAP-induced 

liver injury. It would be interesting to test whether mitochondrial Sab phosphorylation and 

intramitochondrial Src phosphorylation are affected by CPZ in the future.

Thirdly, it is well documented that increased oxidative stress plays a critical role in APAP-

induced liver injury.34,51 CPZ has no effects on APAP-induced depleted GSH levels, so the 

protective effect of CPZ against APAP-induced liver injury is likely to be GSH-independent. 

Considering the decreased GSSG/GSH ratio at late time point by CPZ and the abolishment 

of the protective effects of CPZ against APAP-induced liver injury by BSO, CPZ may also 

regulate the oxidative stress in the liver. In future it will be interesting to test the detailed 

mechanisms of how CPZ affects hepatic oxidative stress.

Caution needs to be taken when the mechanisms mentioned above are weighed. On one 

hand, we performed a complete GSH depletion by BSO in the presence of CPZ and most of 

the mice had severe liver injury. These data suggest that once hepatic GSH levels are 

depleted to a certain level, the protective effects of CPZ will be lost. On the other hand, 

pharmacological inhibition of autophagy by CQ only partially reduced the protective effects 

of CPZ, and this was likely due to the incomplete inhibition of autophagy by CQ in the 

mouse livers. Depletion of cellular GSH by BSO has been shown to enhance starvation-

induced autophagy in vitro.52 Therefore, we would conclude that BSO-induced GSH 

depletion resulted in more severe injury than CQ-induced autophagy inhibition did. GSH 

replenishment (by some other reagents like NAC) together with CPZ thus may offer better 

protection against APAP-induced liver injury. It should also be noted that CPZ may activate 

other pathways that contribute to its protection against APAP-induced liver injury such as 

blocking calcium channel in addition to autophagy induction as discussed above. Since we 

did not observe GSH replenishment of CPZ, we think that CPZ-induced autophagy would be 

less likely associated with the GSH levels.

5. Conclusions

We here reported the protective effects of both co-treatment and post-treatment of CPZ 

against APAP-induced liver injury in mice. CPZ-induced protection against APAP-induced 

liver injury is associated with increased autolysosome numbers and autophagic flux as well 

as reduced JNK activation.
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Fig. 1. CPZ co-treatment protects against APAP-induced liver injury.
(A) Schematic illustration of APAP treatment and CPZ co-treatment in vivo. Mice were 

injected i.p. with APAP at 500 mg/kg and CPZ at 6 mg/kg. Serum and livers were collected 

at 0.5, 2, 6 and 24 h respectively. (B) Serum ALT at different time points (N = 3–7). (C) 
Representative images (× 20) of liver H&E staining at 6 h after treatment. Dashed line 

encloses necrotic area. (D) Representative images (× 20) of liver TUNEL staining at 6 h 

after treatment. (E) Percentage of necrotic area based on H&E staining (N = 4). Data are 

presented as the mean ± SEM. Student’s t-test, *P < 0.05 (APAP vs. APAP + CPZ). 

Abbreviations: CPZ, chlorpromazine; APAP, acetaminophen; ALT, alanine 

aminotransferase; H&E, hematoxylin and eosin; TUNEL, terminal deoxynucleotidyl 

transferase deoxyuridine triphosphate nick end labeling; i.p., intraperitoneally; SEM, 

standard error of the mean.
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Fig. 2. CPZ post-treatment protects against APAP-induced liver injury.
(A) Schematic illustration of APAP treatment and CPZ post-treatment in vivo. Mice were 

treated i.p. with APAP (500 mg/kg) and after 2 h with CPZ (6 mg/kg) or saline. Serum and 

livers were collected at 6 h after APAP treatment. (B) Serum ALT at 6 h. (C) Representative 

images ( × 20) of liver H&E staining at 6 h after treatment. Dashed line encloses necrotic 

area. (D) Representative images ( × 20) of liver TUNEL staining at 6 h after treatment. (E) 
Percentage of necrotic area based on H&E staining (N = 4). Data are presented as the mean

±SEM. Student’s t-test, *P<0.05. Abbreviations: CPZ, chlorpromazine; APAP, 

acetaminophen; ALT, alanine aminotransferase; H&E, hematoxylin and eosin; TUNEL, 

terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling; i.p., 

intraperitoneally; SEM, standard error of the mean.
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Fig. 3. CPZ does not affect APAP metabolism.
Mice were treated i.p. with APAP (500 mg/kg) and CPZ (6mg/kg) simultaneously, and livers 

were collected at 0.5, 2, 6 and 24h respectively. (A) Representative immunoblot of CYP2E1 

and APAP-ADs in liver collected at 6 h after treatment. β-actin was used as loading control. 

(B) Densitometry of (A). (C) Total GSH and GSSG were measured, and GSSG/GSH ratios 

were calculated (N = 3—4). Data are presented as the mean ± SEM. Student’s t-test, *P< 

0.05 (APAP vs. APAP + CPZ). Abbreviations: CPZ, chlorpromazine; APAP, acetaminophen; 

i.p., intraperitoneally; APAP-ADs, acetaminophen adducts; GSH, glutathione; GSSG, 

glutathione disulfide; CYP2E1, cytochrome P450 2E1; SEM, standard error of the mean.
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Fig. 4. CPZ co-treatment decreases hepatic levels of p62 and LC3-II.
Mice were treated i.p. with APAP (500 mg/kg) and CPZ (6 mg/kg) simultaneously, and 

livers were collected at 6 h. (A) Representative immunoblot of liver p62, LC3, p-4EBP1 and 

total 4EBP1. β-actin was used as loading control. (B) Densitometry of (A) (N = 3—4). 

Abbreviations: CPZ, chlorpromazine; APAP, acetaminophen; i.p., intraperitoneally; LC3, 

microtubule-associated protein 1 light chain 3; 4EBP1, eukaryotic initiation factor 4E-

binding protein 1.
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Fig. 5. CPZ increases the number of autolysosomes in APAP-treated mouse livers.
Mice were treated i.p. with APAP (500 mg/kg) and CPZ (6 mg/kg) simultaneously, and liver 

sections were fixed for EM analysis. (A) Representative EM images. Results are presented 

as the mean ± SEM. AVi (white arrow), initiative autophagic vesicle; AVii (red arrow), 

intermediate autophagic vesicle; AVd (black arrow), degradative autophagic vesicle, also 

referred to autolysosome. Scale bar: 500 nm. (B) Quantification of autophagic vesicles in 

EM images. At least 15 cells were counted in each group. One-way ANOVA, *P < 0.05 (vs. 

saline control), #P < 0.05 (vs. APAP). Abbreviations: CPZ, chlorpromazine; APAP, 

acetaminophen; i.p., intraperitoneally; EM, electron microscopy; AVd, degradative 

autolysosome; M, mitochondria; N, nucleus; SEM, standard error of the mean; ANOVA, 

analysis of variance.
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Fig. 6. CQ co-treatment partially ameliorates the protective effects of CPZ against APAP-
induced liver injury.
(A) Mice were treated i.p. with APAP (500 mg/kg) and CQ (60 mg/kg) and 2 h later these 

mice were further treated with CPZ (6 mg/kg, i.p.) for another 4 h. (B) Serum ALT levels 

were analyzed. (C) Representative immunoblot of LC3. β-Actin was used as loading control. 

(D) Densitometry of (C) (N = 3). Results are presented as the mean ± SEM. Student’s t-test, 

*P< 0.05 (vs. saline control), #P< 0.05 (vs. APAP). Abbreviations: CPZ, chlorpromazine; 

APAP, acetaminophen; i.p., intraperitoneally; CQ chloroquine; ALT, alanine 

aminotransferase; LC3, microtubule-associated protein 1 light chain 3; SEM, standard error 

of the mean.
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Fig. 7. BSO co-treatment abolishes the protective effects of CPZ against APAP-induced liver 
injury.
(A) Mice were treated i.p. with APAP (500 mg/kg), and 1 h and 2 h later these mice were 

further treated with BSO (2 mmol/kg) and CPZ (6 mg/kg) respectively, and livers were 

collected 6 h after treatment. (B) Total hepatic GSH and (C) serum ALT levels were 

measured. Results are presented as the mean ± SEM (N = 3—4). Student’s t-test, *P< 0.05 

(vs. saline control), #P < 0.05 (vs. APAP). Abbreviations: BSO, buthionine sulphoximine; 

CPZ, chlorpromazine; APAP, acetaminophen; i.p., intraperitoneally; GSH, glutathione; ALT, 

alanine aminotransferase; SEM, standard error of the mean.
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Fig. 8. CPZ co-treatment partially decreases JNK phosphorylation.
Mice were treated i.p. with APAP (500 mg/kg) and CPZ (6 mg/kg) simultaneously, and 

livers were collected at 6 h. (A) Representative immunoblot of total JNK and p-JNK. 

GAPDH was used as loading control. (B) Densitometry of (A) (N = 3—4). Results are 

presented as the mean ± SEM. Abbreviations: CPZ, chlorpromazine; JNK, c-Jun N-terminal 

kinase; p-JNK, phospho-C-Jun N-terminal kinase; APAP, acetaminophen; i.p., 

intraperitoneally; GAPDH, glyceraldehyde phosphate dehydrogenase; SEM, standard error 

of the mean.
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