
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Instantaneous detection of acute myocardial 
infarction and ischaemia from a single carotid 
pressure waveform in rats
Rashid Alavi  1, Wangde Dai2,3, Ray V. Matthews2,4, Robert A. Kloner2,3,*, 
and Niema M. Pahlevan  1,2,3,*
1Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave. Room 400, Los Angeles, CA 90089, USA; 2Division of Cardiovascular 
Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA; 3Cardiovascular Research Institute, Huntington Medical Research 
Institutes, 686 S Fair Oaks Ave., Pasadena, CA 91105, USA ; and 4Cardiac and Vascular Institute, University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA

Received 13 April 2023; revised 17 August 2023; accepted 25 September 2023; online publish-ahead-of-print 3 October 2023

Handling Editor: Daniel F.J. Ketelhuth

Aims Myocardial infarction (MI) is one of the leading causes of death worldwide. It is well accepted that early diagnosis followed by 
early reperfusion therapy significantly increases the MI survival. Diagnosis of acute MI is traditionally based on the presence of 
chest pain and electrocardiogram (ECG) criteria. However, around 50% of the MIs are without chest pain, and ECG is nei
ther completely specific nor definitive. Therefore, there is an unmet need for methods that allow detection of acute MI or 
ischaemia without using ECG. Our hypothesis is that a hybrid physics-based machine learning (ML) method can detect the 
occurrence of acute MI or ischaemia from a single carotid pressure waveform.

Methods 
and results

We used a standard occlusion/reperfusion rat model. Physics-based ML classifiers were developed using intrinsic frequency 
parameters extracted from carotid pressure waveforms. ML models were trained, validated, and generalized using data from 
32 rats. The final ML models were tested on an external stratified blind dataset from additional 13 rats. When tested on blind 
data, the best ML model showed specificity = 0.92 and sensitivity = 0.92 for detecting acute MI. The best model’s specificity 
and sensitivity for ischaemia detection were 0.85 and 0.92, respectively.

Conclusion We demonstrated that a hybrid physics-based ML approach can detect the occurrence of acute MI and ischaemia from ca
rotid pressure waveform in rats. Since carotid pressure waveforms can be measured non-invasively, this proof-of-concept 
pre-clinical study can potentially be expanded in future studies for non-invasive detection of MI or myocardial ischaemia.
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Introduction
Myocardial infarction (MI), necrosis of heart muscle secondary to pro
longed lack of oxygen supply (myocardial ischaemia), is one of the lead
ing causes of death worldwide. Each year, an estimated 8.5 million cases 
of acute MI happen worldwide,1 with high mortality rates of up to 10% 
after a month and 25% after a year.2 Potential MI patients are usually 
rushed to the hospital after experiencing severe chest pain, in order 
to receive reperfusion therapy (stenting or more rarely thrombolytic 
therapy). There is also a direct relationship between mortality and 
the extent of MI, and duration of coronary occlusion,3 so early diagno
sis, reperfusion, and therapy4 lead to increased survival. The time an 
acute MI patient spends at home contemplating symptoms is also im
portant to be minimized especially considering that almost 50% of all 
MIs happen without chest pain (silent MI)1 or with pain not typical of 
MI or that the MI manifests as other symptoms rather than classical 
chest pain. The electrocardiogram (ECG) is generally considered to 
be the principal non-invasive test for the diagnosis of acute MI,5 but it 
is neither specific nor definitive6 when used alone and requires expert 
interpretation. The ECG can be non-specific for the first 4–8 h in MI 
patients7; however, 50% of the patients succumb from MI within the 
first 45–60 min after the symptoms onset,7,8 showing the significance 
of early diagnostics. In addition, it has been shown that 43% of 281 
MI patients (confirmed by autopsy) had non-diagnostic ECGs.9

Therefore, there is an unmet need for instantaneous, inexpensive, 
and non-invasive methods for detection of MI and ischaemia that do 
not use ECG.

A sudden decrease in left ventricle (LV) contractile performance and 
an increase in LV filling pressure are among the first haemodynamic ab
normalities that occur within seconds of coronary artery occlusion.10,11

These are followed by various regulatory responses that affect vascular 
function and LV-arterial coupling.12 Our general hypothesis recently 
was that a system approach such as intrinsic frequency (IF) method 
combined with machine learning (ML) algorithms can detect signatures 
of pathophysiology associated with different cardiovascular diseases 
(e.g. in this study, acute MI or myocardial ischaemia) from carotid pres
sure waveforms. The IF method13–15 is an integrative systems approach 
that considers the LV and arterial network as a coupled dynamical sys
tem (LV + arterial tree) during systole which becomes decoupled dur
ing diastole (upon closure of the aortic valve). Several clinical studies 

have recently demonstrated that the IF method reveals clinically rele
vant information about LV function, vascular dynamics, and 
LV-arterial coupling. In a blind clinical study of a heterogeneous adult 
cohort (n = 72), Pahlevan et al.15 demonstrated that LV ejection frac
tion (LVEF) can be evaluated by applying the IF method on carotid wa
veforms measured by a smartphone (an iPhone).15 In their study, the 
LVEF derived from IF-iPhone had a strong correlation (r = 0.94) with 
LVEF measured by cardiac magnetic resonance (CMR) imaging in heart 
failure (HF) patients. In a cohort of childhood cancer survivors (n =  
191), it was demonstrated that LVEF derived from carotid pressure wa
veforms measured by a portable hand-held device is more accurate 
than a two-dimensional echocardiogram when compared with the 
gold standard CMR.16 In a recent study, Cooper et al. used the longitu
dinally followed large cohort of the Framingham Heart Study (FHS)14

and demonstrated that IFs of carotid pressure waveforms are asso
ciated with higher risks for incidents of HF and composite cardiovascu
lar disease (CVD) events, independent from other cardiovascular risk 
factors.17 Using the Framingham (FHS) data, it was also shown that aor
tic stiffness (as measured by carotid-femoral pulse wave velocity) can be 
computed using a hybrid IF-ML methodology applied on a single non- 
invasively measured carotid pressure waveform (without the need 
for ECG or femoral tonometry).17 In a recent invasive clinical study, 
Mogadam et al.18 demonstrated the efficacy and robustness of the IF 
method for instantaneous assessment of LV-arterial coupling after 
transcatheter aortic valve replacement. These clinical studies point to 
(i) the importance of the IF method for non-invasive evaluation of LV 
arterial function and (ii) the suitability of IF method for ML algorithms.

Our goal in this study is to provide the proof-of-concept that the hy
brid IF-ML approach (a physics-based ML approach) can be expanded 
for detection of acute MI or myocardial ischaemia (brief ischaemia with
out infarction) from a single carotid waveform in rats. We adopted dif
ferent ML classifiers, e.g. random forest (RF) or support vector (SV) 
classifiers to ensure our approach is independent of ML algorithm. 
To ensure that our developed models were not simply distinguishing 
the baseline from any abnormal event, we tested the MI detection mod
els using ischaemia data (which represents a different abnormal event). 
This test was performed to confirm that our models did not just detect 
post-occlusion abnormalities. This was further evidenced by the fact 
that the MI detection models’ predictions were not sensitive to the 
myocardial ischaemia data points. Our IF-ML method uses carotid 
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pressure waveforms that can be measured non-invasively, and scalabil
ity of IF parameters between other mammals (rat and rabbit) and hu
man has been shown.13 Therefore, this proof-of-concept preclinical 
study offers potential for future research into the non-invasive detec
tion of MI or myocardial ischaemia.

Methods
Standard rat model for acute myocardial 
infarction and ischaemia
In this study, we use a standard acute MI/ischaemia rat model {n = 45; 
Sprague–Dawley female rats; ∼200 g body weight; age of 7 ± 1 weeks 
[mean ± standard deviation (SD)]}. Surgeries were performed on fully 
anaesthetized rats to impose myocardial ischaemia and infarction. Full an
aesthesia was achieved using intra-peritoneal ketamine and xylazine based 
on animal’s weight (intra-peritoneal ketamine 75 mg/kg body weight and xy
lazine 5 mg/kg). A neck incision was performed to isolate the carotid artery 
and jugular vein for catheter placement. Then, catheterization was con
ducted through the right carotid artery to reach the target locations in 
the arterial system and LV. Left thoracotomy was then performed to ex
pose the heart (the chest cavity was opened through an incision in the 
4th left intercostal). To expose the anterior surface of the LV, the pericar
dium was gently removed. The proximal left coronary artery was subse
quently isolated followed by mechanical occlusion of the coronary artery 
for 30 min to ensure the infarction.19,20 After the 30 min coronary occlu
sion, coronary artery reperfusion was performed for 3 h. More details 
about the techniques and steps of the surgery are provided in 
Supplementary material online, Supplement A.

The presence of MI was confirmed after the surgery through histopath
ology followed by measuring the size of infarction (i.e. mass percentage of 
necrosis over total LV). To achieve that, the four heart slices were incu
bated in 1% triphenyl tetrazolium chloride (TTC), a chemical that stains 
viable cells brick red, while dead or necrotic cells appear white to yellow. 
The range of infarct sizes in our study was calculated as 33.5 ± 11.6% (i.e. 
mean ± SD). More details regarding the measurement of MI size are pro
vided in Supplementary material online, Supplement A.

It is worth mentioning that we have waited for at least 30 min after the 
start of the anaesthesia to resume the procedure. One main reason is to 
make sure that the temporary effects of anaesthesia on haemodynamics 
are finished, and therefore, the following haemodynamic changes are due 
to the cardiovascular events. The employed procedures in this study 
were approved by the Institutional Animal Care and Use Committees at 
Huntington Medical Research Institutes. All the surgical steps were con
ducted according to the guidelines for the care and use of laboratory ani
mals (NIH publication No. 85-23, National Academy Press, Washington, 
DC, revised 2011).

Invasive haemodynamic measurements
General tracings and haemodynamics including carotid pressure, volume, 
ECG signal (29 gauge needle electrodes, 3 leads), and temperature were 
continuously measured, monitored, and recorded throughout the surgical 
operations (starting from after full anaesthesia to 3 h after reperfusion). 
Pressure waveforms were measured at the carotid artery using a 2F 
high-fidelity piezo-tipped micro-manometer (model SPR-869, Millar 
Mikro-Cath Pressure Catheter). Catheter calibration was conducted be
fore each surgery. Body temperature was measured and monitored using 
a rectal thermocouple probe. The LabChart-Pro (ADInstruments, Ltd) is 
used as the platform software for our data measurements via PowerLab 
4/35 data acquisition system (ADInstruments, Ltd).

Intrinsic frequency method
The IF method13–15,21,22 is a systems approach considering the LV and ar
terial network as a coupled dynamical system (LV + arterial tree) during sys
tole which becomes decoupled during diastole (after closure of the aortic 
valve). The IF frequencies are defined as operating frequencies based on 

the sparse time-frequency representation.23 The mathematical formulation 
of the IF method is given by:

Minimize: ∥p(t) − x(0, T0)[a1 cos (ω1t) + b1 sin (ω1t)]

− x(T0, T)[a2 cos (ω2t) + b2 sin (ω2t)] − c∥2
2 (1)

Equation (1) can also be rewritten as:

Minimize: ∥p(t) − x(0, T0)[Rs sin (ω1t + φ1)]

− x(T0, T)[Rd sin (ω2t + φ2)] − c∥2
2 (2)

Where p(t) refers to the arterial waveform (e.g. carotid, femoral, or aortic) 
and χ(a, b) refers to an indicator function defined by χ(α, β) = 1 if α ≤ t ≤ β 
and χ(α, β) = 0 otherwise. Here, ω1 and ω2 are the first and the second IFs, 
respectively (or systolic and diastolic IFs, respectively). T0 denotes the time 
of LV-arterial decoupling when the aortic valve closure happens (the dicrot
ic notch time), and T refers to the cardiac cycle duration. The envelopes (Rs 
and Rd) and the initial intrinsic phases (φ1and φ2) of Equation (2) are defined 

in terms of a1, b1, a2, and b2 as Rs =
��������

a2
1 + b2

1

􏽱

, Rd =
��������

a2
2 + b2

2

􏽱

, φ1 = 
tan−1 (a1/b1), and φ2 = tan−1 (a2/b2) The parameters Rs and Rd are the 
envelopes of the systolic and diastolic IFs, respectively. φ1 and φ2 refer 
to the initial phase shifts (also called intrinsic phases) of the IF components 
associated with ω1 and ω2, respectively. Relative height of decoupling at the 
dicrotic notch (RHDN) is defined as the ratio of the height of the decoup
ling (relative to Pmin) with respect to the total signal variation (Pmax–Pmin). 
Mathematical formulation of the IF method, its accuracy, its computational 
procedure, as well as its scalability among different mammalian species 
(rat, rabbit, human) and measurement modalities (piezoelectric tonome
try, optical tonometry, smartphone camera) can be found in previous 
studies.13–15,21,24

From physiological point of view, the systolic IF parameters such as ω1, φ1, 
and Rs are mainly defined by the contractile performance of LV and the dy
namics of the coupled LV-arterial system.15,21 On the other hand, the 
diastolic IF parameters such as ω2, φ2, and Rd are dominated by the 
vascular function and arterial dynamics.17,21,25–28 Since Rs and Rd values 
require calibration, we considered the non-dimensional ratio Rs/Rd that is 
defined as the envelope ratio (ER).21 Hence, ER depends on both LV and 
vascular function, and it does not require pressure calibration. Figure 1A
shows a reconstruction of an arterial pulse waveform (here carotid wave
form) using the IF method, and Figure 1B presents the physical representation 
of ω1, ω2, φ1, φ2, Rs , and Rd during the systolic and diastolic phases.

Physics-based feature selection for machine 
learning
The selection of input parameters for ML algorithm is one of the most im
portant steps for a successful training and development of hybrid 
physics-informed ML models especially when limited data are available. 
ω1, ω2, φ1, ER, and RHDN are selected based on their physiological 
relevancy as mentioned above.15,21 Since these IF parameters do not 
need pressure calibration,15 they are used for non-calibrated IF-ML model 
development. Systolic pressure of the carotid waveform (Pmax) and carotid 
diastolic pressure ( Pmin) are added for calibrated IF-ML models. Other 
pressure metrics such as pulse pressure or mean pressure could have 
been used, but any of these can be approximated from Pmin and Pmax (no 
additional benefit from ML perspective). We considered all possible 
input set variations of (ω1, ω2, φ1, ER, and RHDN) for uncalibrated IF-ML 
model development and all possible variations of (ω1, ω2, φ1, ER, RHDN, 
Pmin, Pmax) for calibrated IF-ML models. The best input sets were selected 
based on the training and generalization performance of our ML.

For each rat, features are extracted from invasively measured carotid pres
sure waveforms at three different time points: 5 min before coronary occlu
sion (baseline healthy), 5 min after occlusion (ischaemia without infarction),29

and 2 h after reperfusion of the 30 min occlusion (acute MI).19,20 At each time 
point, the beginning, the dicrotic notch, and the end of a randomly selected 
cycle are manually identified for features calculations.

Instantaneous detection of acute myocardial infarction and ischaemia                                                                                                                     3

http://academic.oup.com/ehjopen/article-lookup/doi/10.1093/ehjopen/oead099#supplementary-data
http://academic.oup.com/ehjopen/article-lookup/doi/10.1093/ehjopen/oead099#supplementary-data


Machine learning procedure and evaluation
Different classifier algorithms, i.e. RF classifier (RFC) and SV classifier (SVC) 
as well as two more ML algorithms (see Supplementary material online, 
Supplement I), were employed to ensure the independency of our method 
from any specific ML algorithm. We adopted the k-fold cross-validation 
(CV) method as well as the blind test (so-called ‘external validation’) and 
95% confidence interval analysis using bootstrap resampling in order to val
idate our ML models against any possible overfitting. All the input set varia
tions that were possible based on the physiological features (see above) 
were used for training the classifiers (the best input sets will be determined 
later based on performance of the classifiers). The model outputs were de
fined as binary classifications of waveforms by model output = 
{no ischaemia; ischaemia} or model output = {no MI; MI} for detection 
of acute ischaemia and acute MI, respectively. The hyper-parameters 
that were optimized in the training/validation process for RFCs 
included the split criterion [i.e. {gini, entropy}], maximum depth [i.e. 
{4, 5, 7, 8, 10, 12, 20}]; max-features [i.e. {sqrt, log2}], and number of 
estimators [i.e. {5, 7, 10, 15, 20, 25, 30, 40, 50}]. For the SVCs, the hyper- 
parameters included Kernel function [i.e. {linear, rbf, sigmoid}] and 
Kernel coefficient [i.e. {scale, auto}].

The design process of our ML models was evaluated by multiple para
meters such as training score, CV average score, generalization test results 
(specificity, sensitivity, and accuracy), and the area under the curve (AUC) 

defined by receiver operating characteristic (ROC). Sensitivity, specificity, 
and accuracy are defined as:

Sensitivity = (true positive)/(true positive + false negative), 

Specificity = (true negative)/(true negative + false positive), 

Accuracy = (true positive + true negative)/(all positive + all negative) 

Our accuracy threshold criteria for accepting accurate classifiers in the 
training level are described in Supplementary material online, Supplement B. 
Evaluation metrics for blind (external) test are sensitivity, specificity, and 
AUC.

More details about the procedure of our physics-based hybrid IF-ML ap
proach are presented in Supplementary material online, Supplement C,
where the flowchart diagram of the method is also presented (see 
Supplementary material online, Figure S2). All the ML models were trained 
and evaluated implementing Keras with TensorFlow Core v.2.8.0 as the 
backend.30 Further details about the RFC and SVC algorithms can be found 
in Supplementary material online, Supplement D.

Data specifications for training, 
generalization, and blind test
In this study, n = 45 rats are used, so there are n = 45 waveforms for normal 
baseline condition, n = 45 waveforms for acute myocardial ischaemia (brief 
ischaemia without infarction), and n = 45 waveforms for acute MI (the total 
number n = 135 waveforms). We applied the stratified blind test technique 
(or a so-called ‘external validation’) by putting aside 30% of the rats (i.e. 13 
rats or 39 waveforms) for the blind test prior to the parameter selection 
and ML procedure. Setting 30% as external validation would meet minimal 
sample size requirements for diagnostic accuracy analysis in a 2 × 2 confu
sion matrix with only two true cells. The blind dataset was kept blind to all 
the stages of the feature selections and model design. The remaining 70% 
(i.e. 32 rats or 96 waveforms) were employed for the design process of 
the ML classifier models. We further divided this design data into 80% for 
training and 20% for generalization test. The same ML design procedure 
and blind test rats were used for both myocardial ischaemia and acute MI 
detections. After data specifications, the distribution of infarct sizes stayed 
comparable between the ML design rats (34.7% ± 11.6%, i.e. mean ± SD) 
and the blind rats (30.3% ± 10.2%, i.e. mean ± SD).

Results
Table 1 presents statistics (mean value ± SD) of the baseline haemo
dynamics and IF parameters corresponding to all rats, the ML design 
rats (used for ML model training and generalization), and the blind 
test rats (which were kept blind to all the stages of the ML model de
velopment). The two-sample student’s t-test was applied to confirm 
the similarity in the baseline haemodynamics and IF parameters be
tween the ML design rats and the blind test rats. The results showed 
P values of P = 0.79 (heart rate), P = 0.83 (Pmin), P = 0.98 (Pmax), P =  
0.26 (ω1), P = 0.52 (ω2), P = 0.41 (ϕ1), P = 0.98 (ER), and P = 0.72 
(RHDN). Since P > 0.05 was achieved for all the parameters, no signifi
cant differences were observed.

Machine learning-based detection models 
for acute myocardial infarction
The best optimal classifiers for acute MI detection (for both RFC and 
SVC) were chosen based on our accuracy threshold criteria (see 
Supplementary material online, Supplement B) for both uncalibrated 
and calibrated input vectors. The characteristics/accuracy summary of 
the selected models from both classifier algorithms is presented in 
Table 2. As shown in Table 2, the input vectors {ω1, φ1, ER} and 
{ω1, φ1, ER, Pmin} are the best sets that are selected by each classifier 
algorithm (RF and SVC). Here, ‘All Tests’ includes all blind test rats plus 

Figure 1 Visualization of the basics of the intrinsic frequency meth
od. (A) An intrinsic frequency-reconstructed carotid waveform (solid 
blue) overlaid on the original raw waveform in arbitrary units (dashed 
black). (B) Intrinsic frequency visualization during a full cardiac cycle. 
The parameters ω1 and ω2 are intrinsic frequencies during systole 
and diastole, respectively. dθ/dt represents the instantaneous fre
quency,21 and the parameters Rs and Rd are the envelopes of the in
trinsic frequency reconstruction corresponding to ω1 and ω2, 
respectively (in general, Rs ≠ Rd). The parameters φ1 and φ2 are the 
initial intrinsic phases corresponding to ω1 and ω2, respectively.
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rats that were used for testing during ML model development. ‘All Data’ 
includes all 45 rats used in this study (blind test rats + ML design rats). 
ROC curves of the selected models for acute MI detection are shown in 
Figure 2. Details about the optimal hyper-parameters of each classifier 
and the confusion matrices of the selected models are provided in 
Supplementary material online, Supplement E (Supplementary 
material online, Table S1) and Supplement F (see Supplementary 
material online, Figure S3), respectively.

When tested on blind (external) data, the uncalibrated model from 
the SVC algorithm outperformed the model from RF in terms of spe
cificity. However, when considering the AUC metric, the overall per
formance of the RF model was slightly superior to that of the SVC 
(Figure 2). Notably, the performance of the models generated by 
both algorithms was similar, with both selecting the same three para
meters: ω1, φ1, and ER. Addition of calibration features (Pmin or Pmax) 
led to enhanced performance in the IF-ML models (Table 2).

Machine learning-based detection models 
for acute myocardial ischaemia
The best optimal classifiers for acute myocardial ischaemia (brief ischae
mia without infarction) detection were selected based on similar accur
acy threshold criteria to MI cases (see Supplementary material online, 
Supplement B). No trained model with uncalibrated input set passed 
our threshold criteria, so the selected IF-ML models for myocardial is
chaemia detection are only for calibrated inputs including both ML 
techniques. Table 3 demonstrates the characteristics and accuracy of 
selected models from RFC and SVC. ROC curves of the selected 
models for acute ischaemia detection are shown in Figure 3. Details 
about the optimal hyper-parameters of each classifier and the confu
sion matrices of the selected ischaemia models are provided in 
Supplementary material online, Supplement E (Supplementary 
material online, Table S1) and Supplement F (see Supplementary 
material online, Figure S4), respectively.

As shown in Table 3, the input vector {ω1, φ1, Pmax} is the one picked 
by our selected optimal classifiers, so this input vector is the final sug
gestion of our physics-based feature selection for detection of acute 
myocardial ischaemia. Similar to acute MI, ω1 and φ1 were selected 
for ischaemia (coronary occlusion before infarction). This was expected 
since acute myocardial ischaemia and infarction have haemodynamic 
similarities.9,12,29 In contrast to acute MI detection, both RF and SVC 

algorithms selected systolic pressure (Pmax) instead of diastolic pressure 
(Pmin) for ischaemia detection. Using a calibrated vector consisting of 
{ω1, φ1, Pmax} as the input yielded the most accurate ML functions 
for detecting the occurrence of acute ischaemia (Table 3). Overall, 
the RFC performed slightly better for ischaemia detection. 
Particularly, the sensitivity for blind test data was higher for the 
RF-based model (sensitivity = 0.92) compared with the SVC model 
(sensitivity = 0.77). In terms of the AUC metric, the IF-ML model based 
on RF outperformed with a score of 0.95, compared with 0.82 for SVC. 
However, both classification techniques showed comparable specificity 
when tested on blind data (specificity = 0.85). Additionally, to validate 
our ML models against any possible overfitting, the 95% confidence in
tervals of all the models (whether MI or ischaemia detection) were ob
tained with multiple iterations of bootstrap resampling. The 95% 
confidence interval for AUC consistently fell within a safe range for 
all the selected models, with the widest range of ±0.07.

Discussion
Principal findings
Using a standard occlusion/reperfusion rat model,31 we provided a pre- 
clinical proof-of-concept that a hybrid physics-based ML methodology, 
i.e. IF-ML, can detect the occurrence of acute MI or myocardial ischae
mia (coronary occlusion before infarction) in rats from a single carotid 
waveform without using ECG. Since our approach was independent of 
ECG and pain, it can potentially be expanded in future clinical studies to 
facilitate detection of the so-called ‘silent’ (without chest pain) or 
‘super-silent’ (without chest pain and ECG changes) MI. The results sug
gested that our IF-ML approach can accurately detect occurrence of an 
acute MI from an uncalibrated carotid waveform (best AUC = 0.94). 
Using calibrated pressure waveforms improved the performance of 
our approach (best AUC of 0.97). However, the IF-ML approach was 
able to accurately detect the occurrence of myocardial ischaemia (oc
clusion without infraction) from only calibrated carotid waveforms 
(best AUC = 0.95).

Diagnosis of myocardial infarction and 
ischaemia
Conventional methods for detection of acute MI or acute ischaemia are 
based on clinical criteria (e.g. pain) and ST segment change of ECG.5

Although ECG is an important non-invasive and inexpensive test for 
diagnosis of acute MI and ischaemia, it requires expert interpretation. 
In addition, ECG is neither specific nor definitive6 when used alone. 
Other advanced techniques/biomarkers for detection of MI or ischae
mia (e.g. myocardial perfusion testing,32 circulating BNP levels,33 cardiac 
troponin levels,34 or echocardiography35) have limitations such as inva
siveness, radiation exposure, time to receive and analyse data, or cost. 
Here, we introduced a non-invasive approach for MI and ischaemia 
diagnosis that none of the above limitations is applicable to it. 
Although we have shown the invasive validation of our IF-ML meth
odology, numerous studies have validated non-invasive measure
ments of arterial pressure waveforms against invasively measured 
waveforms.36,37

Physics-based machine learning 
approaches in medicine
ML methodologies have recently become an emerging trend in medi
cine as they provide new perspectives for prognostics, diagnosis, and 
patient management. This is particularly evident in the realm of cardio
vascular diseases, including conditions like hypertension, hypotension, 
and HF.38–40 Due to their robustness, accuracy, and universality, ML 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline haemodynamics and intrinsic 
frequency parameters for all rats, machine learning 
design rats, and blind test rats

Parameter All rats ML design 
rats

Blind test 
rats

Number, n (%) 45 (100%) 32 (70%) 13 (30%)
Heart rate (b.p.m.) 278 ± 25 277 ± 26 281 ± 25

Pmin (mmHg) 65.6 ± 10.4 65.8 ± 10.8 65.1 ± 9.6

Pmax (mmHg) 91.8 ± 11.1 91.7 ± 11.7 92.1 ± 10.0
ω1 (b.p.m.) 422.9 ± 31.7 419.4 ± 35.6 431.5 ± 17.0

ω2 (b.p.m.) 299.6 ± 75.7 293.4 ± 73.4 314.8 ± 82.1

φ1 (radian) −0.32 ± 0.12 −0.33 ± 0.13 −0.29 ± 0.08
ER 3.14 ± 0.76 3.13 ± 0.83 3.15 ± 0.54

RHDN 0.45 ± 0.17 0.45 ± 0.19 0.43 ± 0.14

Values are presented in mean value ± SD. 
ω1, first intrinsic frequency; ω2, second intrinsic frequency; φ1, first initial intrinsic 
phase; ER, envelope ratio; RHDN, relative height of decoupling at the dicrotic notch.
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Table 2 Characteristics and accuracy summary of the selected optimal classifiers for acute myocardial infarction 
detection

Model Input 
parameters

Training 
score

CV average 
score

Generalization 
accuracy

Blind test All tests All data

Spec Sens Spec Sens Spec Sens

Uncalibrated RF ω1, φ1, ER 0.96 0.70 0.86 0.85 0.85 0.86 0.84 0.91 0.91

Uncalibrated SVC ω1, φ1, ER 0.72 0.72 0.79 1.00 0.85 0.90 0.84 0.80 0.78
Calibrated RF ω1, φ1, ER, Pmin 0.92 0.76 0.93 0.92 0.92 0.95 0.90 0.91 0.93

Calibrated SVC ω1, φ1, ER, Pmin 0.80 0.78 0.93 0.92 0.85 0.95 0.85 0.89 0.80

RF, random forest; SVC, support vector classifier; CV, cross-validation; Spec, specificity; Sens, sensitivity.

Figure 2 Receiver operating characteristic curve of the trained models for acute myocardial infarction detection using all data for (A) uncalibrated 
random forest, (B) uncalibrated SVC, (C ) calibrated random forest, and (D) calibrated SVC models. Area under curve of each receiver operating char
acteristic curve is shown.
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Table 3 Characteristics and accuracy summary of the selected optimal classifiers for acute myocardial ischaemia 
detection

Model Input 
parameters

Training 
score

CV average 
score

Generalization 
accuracy

Blind test All tests All data

Spec Sens Spec Sens Spec Sens

Calibrated RF ω1, φ1, Pmax 0.94 0.50 0.71 0.85 0.92 0.80 0.85 0.87 0.91

Calibrated SVC ω1, φ1, Pmax 0.74 0.66 0.86 0.85 0.77 0.85 0.80 0.82 0.73

RF, random forest; SVC, support vector classifier; CV, cross-validation; Spec, specificity; Sens, sensitivity.
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models serve as powerful tools for early diagnosis and remote health 
monitoring.

Physics-informed (or physics-based) ML approximators, in particular, 
are very valuable to address problems of the cardiovascular system. 
Recently, hybrid physics-based ML methodologies that employ 
systems-level, reduced-order, or non-dimensionalized quantities have 
demonstrated promising results. They have been effective for assessing 
total arterial compliance or arterial pulse wave velocity, diagnosing and 
assessing the risk of coronary artery diseases, and evaluating cardiac 
contractility and aortic characteristic impedance17,19,41–43. In this study, 
we used the IF method to develop hybrid physics-based ML models. 
These models were designed to distinguish acute myocardial ischaemia 
or acute MI from normal healthy (baseline and non-occluded) condi
tions in rats using carotid pressure waveforms.

Intrinsic frequency-machine learning 
methodology for myocardial infarction/ 
ischaemia detection
Acute coronary artery occlusion causes a sudden decrease in LV con
tractility and increase in LV end-diastolic pressure.10,11,44 During the 
non-infarcted ischaemic period and infarcted period, cardiovascular 
system undergoes various regulatory responses that affect haemo
dynamics of the arterial system and LV-arterial coupling.12,31 Based 
on the haemodynamic dependency of the IF parameters 
(a physics-informed approach),14,15,18,21,25,45–48 we pre-selected ω1, 
ω2, φ1, ER, and RHDN as inputs into our ML algorithms (see 
Methods section for details). Carotid systolic pressure (Pmax) and 
diastolic pressure (Pmin) were also included to consider calibrated pres
sure waveforms. Our results showed that ω1, φ1, and ER are the main 
determinants for detection of an acute MI. ω1 strongly depends on the 
LV contractile performance,15,21 and φ1 is the intrinsic phase during 
the systole. The significance of these two parameters in acute MI is 
consistent with the haemodynamic alterations during coronary occlu
sion and acute MI.11 ER represents the ratio of the energy stored in 
the systolic part of the pressure waveform over the diastolic portion, 
so it is mainly influenced by the dynamics of the arterial network 
(e.g. pulse wave velocity, total arterial compliance, peripheral resistance, 
etc.) and LV-arterial coupling.17,21 The uncalibrated input vector of 
{ω1, φ1, ER} provided the most accurate IF-ML input vector for detec
tion of the true class of acute MI occurrence since it covers haemo
dynamics changes associated with acute MI. The best calibrated 

models for MI detection (both SVC and RF) only picked Pmin resulting 
in the input vector of {ω1, φ1, ER, Pmin}, indicating that diastolic blood 
pressure provides supplementary information to IF parameters and im
proves the accuracy of acute MI detections.

Generally, the IF-ML approach performed better for MI detection 
compared with ischaemia detection in this study. This might be partly 
due to transient physiological variations caused by our experimental 
procedure during ischaemia. It may also be due to the higher haemo
dynamic complexity (e.g. mixed zone of myocardial cells in terms of 
functionality) of myocardial ischaemia compared with MI. We also en
sured that our developed models did not just distinguish the baseline 
(healthy) from non-baseline (abnormal) events like post-occlusion 
events (see Supplementary material online, Supplement G). For ex
ample, we applied the calibrated-RF MI detection model on the ischae
mic data (a different post-occlusion event than MI), and the predictions 
showed 55.6% MI vs. 44.4% no-MI, which shows the MI model predic
tions were not sensitive to myocardial ischaemia data points as another 
post-occlusion (abnormal) event. Moreover, our MI detection models 
more reliably detected severe infarctions characterized by larger infarct 
sizes (see Supplementary material online, Supplement H and Figure S6
for the distribution of MI size over false and true positive predictions). 
As anticipated, false positive predictions were more associated with 
mild-to-moderate infarctions with smaller infarct sizes. More details 
can be found in Supplementary material online, Supplement H.

Strengths and limitations
The occlusion/reperfusion rat model used in this study is well estab
lished for recapitulating human pathophysiology and is close to clinical 
scenarios (see Lindsey et al.31) Our approach only requires pressure 
measurement without any need for ECG or flow/velocity measure
ments. The proposed hybrid approach relies on the IF method to cap
ture the haemodynamic changes/signs of occurrence of MI or 
myocardial ischaemia and does not rely on the ML technique that is 
adopted. To show it, we applied two additional methods (i.e. artificial 
neural network and standard logistic regression) with the same design 
steps, and the developed models presented similar accuracies (see 
Supplementary material online, Supplement I and Table S2) as the other 
ML methods in the study (i.e. RF and SVC). Therefore, our proposed 
methodology works well no matter what ML approach is used. 
Although the present study is an invasive in vivo validation, all the re
quired input parameters for our proposed ML models can be obtained 
non-invasively (e.g. using tonometry, Vivio, or a smartphone).15,49

Figure 3 Receiver operating characteristic curve of the trained models for acute myocardial ischaemia detection using all data for (A) calibrated ran
dom forest and (B) calibrated SVC models. Area under curve of each receiver operating characteristic curve is shown.
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While fully uncalibrated IF-ML models were our top priority, the pro
posed calibrated models (which use Pmin or Pmax i.e. diastolic/systolic 
pressures) still maintain the non-invasive and instantaneous advantage 
of the methodology. However, this comes at the cost of requiring cali
brated pressure waveforms. One can easily obtain the calibrated wave
form by knowing the values of systolic and diastolic blood pressures, 
which are sufficient for calibration. These values can also be measured 
non-invasively and remotely, for instance, using wearable cuff pressure 
devices. Thus, the developed calibrated IF-ML models would require 
cuff pressure measurements in conjunction with uncalibrated wave
form measurement devices, such as an iPhone camera (see Pahlevan 
et al.15). Larger sizes of rat data for our ML methodology can lead to 
more confident models; however, this study serves as a promising 
proof-of-concept.

This study has limitations that should be considered. In this 
proof-of-concept study, we chose to use only female rats to maximize 
the survival rate of animals with confirmed infarction. Typically, in the 
standard 30-min occlusion/reperfusion rat model, male rats tend to ex
perience more ventricular arrhythmias, which results in a higher mor
tality rate during the experiment compared with female rats. With 
the validation of the IF-ML methodology now established, future studies 
will also incorporate male rats. On the other hand, so far, our IF-ML 
methodology was developed and tested using only healthy rats at the 
baseline (before coronary occlusion). Using healthy rats (as the first 
step) was necessary to identify the true contributors for detection of 
acute MI or ischaemia. However, we acknowledge that future studies 
are needed to expand the methodology and confirm our IF-ML ap
proach using older rats, spontaneously hypertensive rats, and rats 
that have undergone cardio-protective agents such as remote ischae
mic pre-conditioning or hypothermia. Our current IF-ML models may 
underperform on such expanded and comprehensive databases that in
clude rats with cardiovascular complications before coronary occlu
sion. Nevertheless, our study confirms that there exists an IF-ML 
model that can detect occurrence of acute MI or ischaemia that covers 
the full spectrum. We acknowledge the need for future pre-clinical and 
clinical studies to both confirm and broaden the applicability of the pro
posed IF-ML methodology. This includes its use in patients with hyper
tension, arterial stiffening, arrhythmia, as well as those with chronic 
ischaemic heart disease who receive common CVD prevention/treat
ment pharmacological therapies (e.g. beta-blockers, diuretics). In add
ition, in eventual clinical application, it would likely be more relevant 
to apply this method before the reperfusion in Catheterization labs, 
so a pre-reperfusion point might seem more clinically applicable for 
the MI point. However, in our 30-min occlusion/reperfusion rat model, 
we considered 2 h after reperfusion (which is also an MI point) for the 
MI. This decision was based on the understanding that, in this particular 
rat model, the infarction is well-developed after 2 h of reperfusion. This 
is mainly because the infarction process continues even after reperfu
sion, typically for 2 h, due to the phenomenon of ‘Myocardial 
Reperfusion Injury’50 (a myocardial injury resulting from the restoration 
of coronary blood flow after an ischaemic episode). Therefore, in our 
study using this rat model, the MI process is well developed at 2 h post- 
reperfusion, which we selected as the MI point. Additionally, during the 
short episode of 30-min occlusion in rats, the carotid waveforms are 
not particularly stable. However, they become stable a few hours after 
reperfusion. Another factor guiding our choice of 2-h post-reperfusion 
time point is the inability to measure the infarct size and quantify the 
degree of necrosis with just a 30-min coronary occlusion. At least a 
few hours of reperfusion are required to visualize the zone of necrosis 
using the TTC technique [which stains the lactate dehydrogenase 
(LDH) containing cells], as the LDH must wash out for visualization 
and confirmation of the infarction. The pre-reperfusion time point 
will be considered the MI point in our future clinical studies, which 
will investigate the translation of the methodology from pre-clinical 
to clinical stage.

Conclusions
This study presents the invasive validation of a physics-based hybrid 
IF-ML methodology for detection of the occurrence of acute MI or 
acute myocardial ischaemia from carotid pressure waveforms. We 
used invasively measured carotid pressure waveforms from a well- 
established coronary occlusion/reperfusion rat model to develop, valid
ate, and blind-test our method. This study also provides the 
proof-of-concept that information about the occurrence of an acute 
MI or myocardial ischaemia can be extracted from carotid pressure wa
veforms. In its final form, our technique would require a small hand-held 
waveform recorder (e.g. smartphone-based devices or tonometer-type 
devices) or a wearable device, all of which could connect to a smart
phone application.
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