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Identification of selection signals 
by large-scale whole-genome 
resequencing of cashmere goats
Xiaokai Li1, Rui Su1,2,3,4,5, Wenting Wan6, Wenguang Zhang1, Huaizhi Jiang7, Xian Qiao1, 
Yixing Fan1, Yanjun Zhang1,2,3,4, Ruijun Wang1,2,3,4, Zhihong Liu1,2,3,4, Zhiying Wang1,2,3,4,  
Bin Liu8, Yuehui Ma9, Hongping Zhang10, Qianjun Zhao9, Tao Zhong10, Ran Di9, Yu Jiang   11, 
Wei Chen12,14, Wen Wang5, Yang Dong12,13,14 & Jinquan Li1,2,3,4

Inner Mongolia and Liaoning cashmere goats are two outstanding Chinese multipurpose breeds that 
adapt well to the semi-arid temperate grassland. These two breeds are characterized by their soft 
cashmere fibers, thus making them great models to identify genomic regions that are associated with 
cashmere fiber traits. Whole-genome sequencing of 70 cashmere goats produced more than 5.52 million 
single-nucleotide polymorphisms and 710,600 short insertions and deletions. Further analysis of these 
genetic variants showed some population-specific molecular markers for the two cashmere goat breeds 
that are otherwise phenotypically similar. By analyzing FST and θπ outlier values, we identified 135 
genomic regions that were associated with cashmere fiber traits within the cashmere goat populations. 
These selected genomic regions contained genes, which are potential involved in the production of 
cashmere fiber, such as FGF5, SGK3, IGFBP7, OXTR, and ROCK1. Gene ontology enrichment analysis 
of identified short insertions and deletions also showed enrichment in keratinocyte differentiation and 
epidermal cell differentiation. These findings demonstrate that this genomic resource will facilitate the 
breeding of cashmere goat and other Capra species in future.

Cashmere goat grows an outer coat of coarse hairs from its primary hair follicles and an inner coat of fine wool 
from its secondary hair follicles. This special fine wool fiber is known as cashmere wool or cashmere1,2. It is finer 
and softer than sheep’s wool, and contributes high economic values to the textile industry and impoverished 
remote areas3,4. China is a major cashmere producer in the world, and has rich native cashmere goat genetic 
resources. In 2012, China supplied about 70% (18 thousand tons) of cashmere wool to the world market5. The 
Inner Mongolia (three subtypes: Alashan, Aerbasi, and Erlangshan6) and Liaoning cashmere goats are two native 
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breeds characterized by the thin cashmere fiber diameter and high yield of cashmere wool (Fig. 1a)7. For this 
reason, great research interest has been dedicated to finding new goat breed that produces finer and higher yield 
of cashmere wool8–13.

Over the past decade, the next-generation sequencing technology has markedly facilitated the genetic studies 
of complex traits in domestic animal14–16. This technology has been used to reveal natural and artificial selection 
footprint in many species, such as pig17,18, sheep19, dog20,21, and so on. With whole-genome resequencing of differ-
ent sheep breeds, researchers have provided a comprehensive insight into the genetic basis of adaptive variation of 
sheep in different environment. For example, genes OAR22_18929579-A, IFNGR2, MAPK4, NOX4, SLC2A4 and 
PDK1 showed an apparent geographic pattern and significant correlations with climatic variation19,22. Based on 
the draft goat genome assembly CHIR_1.0 and CHIR_2.023, several preliminary studies have attempted to explore 
the economic and adaptive traits in different goat breeds using the whole-genome resequencing strategy24–26. 
Using parallel sequencing of pooled DNA from eight goat breeds, Wang et al. identified several genomic regions 
under strong selection that were associated with body size (e.g. TBX15, DGCR8, CDC25A, and RDH16), cash-
mere fiber (e.g. LHX2, FGF9, and WNT2), and coat color (e.g. ASIP, KITLG, and HTT)10. Guan et al. identified 
some candidate genes (e.g. FGF5) for improving fiber traits using the whole genome sequence of six cashmere 
goats and six non-cashmere goats26. Despite these useful findings, the sample sizes of these studies were invari-
ably small to elucidate the genetic basis of cashmere fiber trait. Furthermore, these studies did not include Inner 
Mongolia and Liaoning cashmere goats in their samples, which may miss important genetic information with 
regard to cashmere goat traits.

Here, we report the whole-genome resequencing of 70 cashmere goats from the Inner Mongolia and Liaoning 
regions. Analyses of the genetic variants identified population-specific molecular markers and candidate genomic 
regions under selective sweep that were related to cashmere traits. This genetic resource will not only help with future 
genome-wide association studies, but also increase the knowledge regarding the genetic architecture of quantitative traits.

Figure 1.  Summary of cashmere goats. (a) Geographic map indicating the distribution of the cashmere goats 
sampled in this study (Photographs were taken by Rui Su and Xiaokai Li). Each red dot represents the location of 
sampling. The map was generated using the ‘ggmap’ package in R (version 3.4.1) (https://cran.r-project.org/)60,61 
and trimmed by Adobe Photoshop CS6 (http://www.adobe.com/). (b) Venn diagram of SNVs shows the overlap 
and population-specific identified SNVs among four cashmere goat populations. (c) Distribution of InDels. 
The length of each bar represents the number of InDels. (d) Venn diagram of InDels show the common and 
population-specific genetic variants among four cashmere goat populations.

https://cran.r-project.org/
http://www.adobe.com/
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Results and Discussion
Whole-genome sequencing and genetic variant mapping.  A total of 611.67 Gb paired-end DNA 
sequence data were obtained from 70 female cashmere goats on an Hiseq-2000 platform (Illumina, San Diego, 
CA, USA). About 534.66 Gb high-quality paired-end reads could be mapped to the latest goat reference genome 
assembly with a 2.61-fold average coverage (Supplementary Table 1). These data yielded 5,523,823 single-nu-
cleotide polymorphisms (SNPs) and 710,600 short insertions and deletions (Indels) (MAF > 0.5; Fig. 1b and d; 
Supplementary Table 2). Compare to the dbSNP database (https://ftp.ncbi.nih.gov/snp/organisms/goat_9925/
VCF/), about 4,819,577 (87.25) SNPs and 643,205 (90.52%) Indels were novel. The average transition-to-trans-
version (Ti/Tv) ratio was 2.36 for all cashmere goat samples, which indicated relatively low potential random 
sequencing errors. This number is comparable to previously reported Ti/Tv ratios for Moroccan goat (2.44) and 
Dazu black goat (2.33)25,27, indicating high accuracy for the identified variants in this study (Supplementary 
Table 3). The density of SNPs along each chromosome (except X chromosomes) was proportional to the chro-
mosome length (Supplementary Table 2). This result is consistent with the observation that lower proportion of 
mutant variants could be found on sex chromosomes in goat28,29. Besides, the distribution of site depth of SNP 
was ranged from 23-fold to 7535-fold, with an average depth of 152.70-fold (Supplementary Fig. 1).

We examined the nucleotide diversity and ratio of heterozygous versus homozygous single nucleotide varia-
tions (SNVs) among Inner Mongolia and Liaoning cashmere goat. The higher average ratio of heterozygous ver-
sus homozygous SNVs was observed in Erlangshan population (Supplementary Table 3). The overall distributions 
of Inner Mongolia and Liaoning cashmere goat in terms of nucleotide diversity were similar, of which Alashan 
population showed lower nucleotide diversity (total average nucleotide diversity = 5.31 × 10−4) than other popu-
lations (Supplementary Table 3 and Supplementary Fig. 2).

About 4,413,537 (79.90%) of identified SNPs were shared among all cashmere goat populations, indicating a 
high genetic similarity within cashmere goats. This is in line with the report that Inner Mongolia and Liaoning 
cashmere goats came from a recent common origin7. The number of population-specific SNPs was highest in the 
Liaoning population (19,299 or 0.35%), and was lowest in the Aerbasi population (13,214 or 0.24%) (Fig. 1b). The 
number of Indels shared among all four populations was 416,028 (58.55%). The numbers of breed-specific Indels 
ranged from 7504 (1.06%) in the Aerbasi population to 12,319 (1.73%) in the Erlangshan population (Fig. 1d). 
Compared to Liaoning cashmere goat (19299), Inner Mongolia cashmere goat (529906) have more specific SNPs 
that may be related to weaker intensive selection breeding.

Annotation of SNPs and Indels.  The proportions of SNPs in the intergenic, intronic, and exonic regions of 
the genome were 73.72%, 34.00%, and 0.52%, respectively (Table 1). Among all identified SNPs, 28,968 SNPs could 
cause changes in the coding sequences of 9,621 genes, including 10,606 non-synonymous nucleotide substitutions, 
81 stop-codon gain mutations, and 23 stop-codon loss mutations in the cashmere goat genomes (Supplementary 
Data 1). Enrichment analysis of these genes identified receptor activity related categories, such olfactory recep-
tor activity (600 genes, P = 1.01 × 10−128), G-protein coupled receptor activity (754 genes, P = 2.09 × 10−94),  
transmembrane signaling receptor activity (871 genes, P = 2.57 × 10−75), transmembrane receptor activity (889 
genes, P = 2.17 × 10−72), and signaling receptor activity (883 genes, P = 1.92 × 10−64) (Supplementary Data 2 and 
Supplementary Fig. 3). In addition, enrichment was found in the basic cellular functions, such as the binding of 
FAD, syntaxin, cytoskeletal protein, metal ion, actin and protein kinase activity.

The identified Indels were 1 bp to 25 bp in length (Fig. 1c), and the total number of deletions is a little larger 
than the total number of insertions. The frequency of Indels decreased as the sizes of the Indels increased. The 
proportions of Indels in the intergenic, intronic, and coding sequences of the genome were 63.42%, 34.29%, and 
0.09%, respectively (Supplementary Table 4). About 284 Indels (131 deletions and 153 insertions) may result in 

Category Number of InDels Percent(%)

3′UTR 26325 0.48

5′UTR 5470 0.01

UTR5;UTR3 13 0

Downstream 32477 0.59

Exonic nonsynonymous SNV 10606

0.52

stop gain 81

stop loss 23

synonymous SNV 16895

unknown 1363

Intergenic 3519939 63.72

Intronic 1877966 34.00

NcRNA_exonic 1250 0.02

NcRNA_intronic 2125 0.04

Splicing 52 0

Updtream 28293 0.51

Upstream/Dowstrean 945 0

Table 1.  Summary and annotation of SNPs in cashmere goat.

https://ftp.ncbi.nih.gov/snp/organisms/goat_9925/VCF/
https://ftp.ncbi.nih.gov/snp/organisms/goat_9925/VCF/
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frame-shift mutations in the coding sequences of 249 genes (Supplementary Data 3). GO annotation of these 
affected genes revealed enrichment in the biological process terms, such as keratinocyte differentiation (GO: 
0030216), epidermal cell differentiation (GO:0009913), and skin development (GO:0043588) (Supplementary 
Data 4 and Supplementary Fig. 4).

Population structure analysis.  The phylogenetic relationship of the 70 cashmere goats revealed genetically 
distinct clusters according to their geographic locations (Fig. 2c). This result was confirmed by the principle com-
ponent analysis (PCA) using thinned genomic SNPs. The first eigenvector distinguished Liaoning cashmere goats 
from Inner Mongolia cashmere goat, and the second eigenvector distinguished Aerbasi, Alashan and Erlangshan 
populations (Fig. 2b). The genetic ancestry analysis with STRUCTURE showed that all cashmere goat samples 
had a mixed ancestry at K = 4 (Fig. 3). Population differentiation index (Fst) showed that the Aerbasi population 
had a higher genetic distance (0.11) from the Liaoning cashmere goats, which is consistent with the results of PCA 
and STRUCTURE (Supplementary Table 5). The linkage disequilibrium (LD) decay rates were similar between 
Liaoning and Aerbasi populations. The fastest LD decay was observed in the Erlangshan population (Fig. 2a).

Genome-wide selective sweep signals.  In order to detect genome selection signals and SNPs related 
to cashmere fiber traits, we used 14 unpublished genomic data from non-cashmere goats (~12.50-fold average 

Figure 2.  Population genetic relationship analysis. (a) LD patterns of cashmere goats (Liaoning and three 
subtype of Inner Mongolia cashmere goats). (b) PCA using thinned SNPs as markers. Each dots are index to 
samples, and each color represent on population. Most samples cluster together based on their geographic 
distribution. (c) Phylogenetic relationship of cashmere goats. The scale bar represents p distance.
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depth) courtesy of our collaborator (Supplementary Table 6). By using both θπ cut-off ratio and high FST values, 
we identified a total of 135 genomic regions under selective sweep containing 650 candidate genes that were asso-
ciated with cashmere goat traits (Fig. 4). Gene ontology analysis of these candidate genes revealed enrichments in 
206 GO terms in the biological processes, 69 GO terms in the molecular functions, and 25 GO terms in the cel-
lular components with a 5% FDR threshold for significance (Supplementary Data 5). KEGG enrichment analysis 
of these candidate genes identified 36 pathways with a 5% FDR threshold for significance (Supplementary Data 6 
and Fig. 5). The variant location within selected genes was shown in Supplementary Data 7.

Candidates genes related to cashmere fiber traits.  Candidate genes associated with cashmere fiber 
traits were identified in several genomic regions under selective sweep, including ROCK1, FGF5, PRKCD, SGK3, 
IGFBP7, and OXTR. ROCK1 (Rho-associated protein kinase 1) plays an important role in regulation of kerati-
nocyte proliferation and terminal differentiation in human30,31. FGF5 (fibroblast growth factor 5) regulates hair 
length in many species32–35. A previous study showed that disruption of FGF5 led to more secondary hair follicles 
and longer fibers in cashmere goat. In a mouse study, overexpression of PRKCD (protein kinase C delta) had an 
inhibitory effect on hair growth. The authors also proposed that PRKCD together with PRKCA (protein kinase C 

Figure 3.  Population structure analysis of cashmere goats using STRUCTURE packages. Each sample is 
represented by a vertical bar. Enery color represents one ancestral population and the length of each colored 
seqment in each vertical bar represents the proportion contributed by ancestral populations.

Figure 4.  Identification of genomic regions with strong selective sweep signals in Cashmere goats. Distribution 
of log2(θπ ratio(θπ, cashmere goat/θπ, non-cashmere goat) and FST, which are calculated in 100 kb windows sliding in 10 kb 
steps. Data points located to the right of the vertical lines (corresponding to 5% right tails of the empirical log2 
(θπ ratio) distribution, where log2 (θπ ratio) is 1.26) and above the horizontal line (5% right tail of the empirical 
FST distribution, where FST is 0.10) were identified as selected regions for cashmere goat (blue points).
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alpha) kept hair growth in balance36. SGK3 (aliases SGK2, serum/glucocorticoid-regulated kinase 3) belongs to 
the PI3K-Akt signaling pathway, and plays an important role in the development of postnatal hair follicle37. Loss 
of SGK3 led to reduced proliferation and increased apoptosis of hair follicles in mice38–40. Mutations of SGK3 were 
also responsible for the fuzzy hair phenotype in mice41. OXTR (oxytocin receptor) is expressed in the primary 
human dermal fibroblasts and keratinocytes, and OXT decreases the proliferation of dermal fibroblasts and kerat-
inocytes in a dose-dependent manner42. IGFBP7 (insulin like growth factor binding protein 7) was found to be 
one of several keratinocyte-specific genes differentially expressed in keratinocyte43.

Candidate genes related to the adaptation to a cold and dry environment.  Cashmere goat usually 
live in a cold and dry environment. The fine cashmere fibers greatly help these animals to combat heat loss. This 
adaptive feature is also accompanied by other physiologic mechanisms that help maintain mineral and energy 
homeostases23,44. For example, ADCY4 (adenylyl cyclase 4) was involved in the regulation of the oxytocin signal-
ing pathway, insulin secretion, adrenergic signaling in cardiomyocytes, rap1 signaling pathway, and cGMP-PKG 
signaling pathway. Besides, Adenylyl cyclase (AC)‐stimulated cAMP is involved in cAMP‐induced cell prolif-
eration in cultured adrenal cells and a key mediator of Na and water transport45,46. Four other genes ROCK1 
(Rho-associated protein kinase 1), ACNA1C (calcium voltage-gated channel subunit alpha1 C), OXTR (oxytocin 
receptor) were also involved in the oxytocin signaling pathway. It was reported that they were all functionally 
related to the regulation of skin development, fat metabolism, and ion homeostasis. In addition, three candi-
date genes CACNA2D1 (calcium channel, voltage-dependent, alpha2/delta subunit 1), AGT (angiotensinogen), 
and PTGER2 (prostaglandin E receptor 2) were involved in the renin secretion pathway. SLC24A4 (Sodium/
Potassium/Calcium Exchanger 4) were located in the classical HIF-1 (hypoxia-induced factors) pathway, which 
plays a central role in regulating cellular responses to hypoxia19. IGFBP7 and FGF5 have high outlier value indi-
cated under selection, then we further analyzed the allele frequency difference of each SNVs (Supplementary 
Data 8). It would be interesting to see how the genetic variations in these genes affect the phenotypes of cashmere 
goat in future studies.

Conclusion
The use of the latest high-quality reference goat genome assembly provided us more details of the genomic infor-
mation compared to CHIR_1.0 and CHIR_2.0. To avoid false positives in identifying SNPs and Indels in our study, 
a series of filtering step were applied to remove low-quality SNPs. This procedure guaranteed high quality genetic 
variants for the downstream analyses. The large number of genetic variants identified in this study gives us a chance 
to further explore the genetic diversity and genetic basis of different phenotypes in goats. The population-specific 
molecular markers can be used to distinguish phenotypically similar animals with higher accuracy.

Figure 5.  KEGG pathways enrichment analysis of candicate genes under selection within cashmere goats.
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Our study provided comprehensive insights into the phylogenetic relationship between the two major Chinese 
cashmere goat breeds. We showed that the Erlangshan cashmere goats were closest related to Liaoning cashmere 
goats. This genetic information may be useful to explore the domestication and distribution of cashmere goat 
in Northern China. Our results also provided a large collection of candidate genes that may be targeted for trait 
improvement. As part of the Hapmap goat project, these cashmere goat genetic footprints and SNPs will serve as 
a useful tool for the breeding of Capra species.

Methods
Sample collection.  The Inner Mongolia cashmere goat breed was sampled from three independent popula-
tions according to their geographical locations: Alashan league, Ordos city, and BayanNur city of Inner Mongolia 
Autonomous Region. The Liaoning cashmere goat was sampled from one independent population in Gai county 
of Liaoning province (Fig. 1 and Supplementary Table 1). All four goat populations are raised in local pastures 
and allowed to free range. With the assistance of local herdsmen, trained veterinarians randomly chose 15–19 
three-year-old female goats from each population, and collected 5 ml whole blood from the left jugular vein 
of each animal into plastic collection tubes containing 4% (w/v) sodium citrate. The blood samples were snap 
frozen in liquid nitrogen, and stored at −80 °C until delivered to Kunming Institute of Zoology on dry ice for 
further processing. All experimental procedures were approved by the Animal Care and Use Committee of the 
Inner Mongolia Agricultural University, and conducted in strict accordance with the animal welfare and ethics 
guidelines.

DNA isolation and sequencing.  Genomic DNA was extracted from the whole blood samples with the 
AXYGEN Blood and Tissue Extraction Kit (Corning, USA) according to the manufacturer’s instructions. The 
extracted DNA were subjected to electrophoresis in 2% agarose gel and stained with ethidium bromide to assess 
overall quality. The DNA concentration was determined by Quant-iT™ PicoGreen® dsDNA Reagent and Kits 
(Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. Paired-end libraries with insert 
size of 300 bp from ~2 μg of sheared genomic DNA were constructed with the procedures of NEB DNA Library 
Prep Kit for Illumina (NEB, USA). These libraries were sequenced on an Illumina Hiseq. 2000 platform (Illumina; 
CA, USA) using a PE-101 module. In addition, to characterize the genetic variant relate to cashmere fiber based 
on selection signals and GWAS, we also downloaded the genome data of 18 individuals from, including.

Data filtering and clean reads generation.  All raw data were first filtered and trimmed using 
NGSQCToolkit_v2.3.3 if any of the following criteria were met: (1) reads containing adapter and poly-N; (2) low 
quality reads with >30% bases having Phred quality ≤25; (3) the 5′ and 3′ ends 5 bp low quality base, which is 
generally considered high bias. This data filtering process resulted in a total of 534.7 Gb clean data from 70 cash-
mere goats (51 Inner Mongolia breed and 19 Liaoning breed), achieving an average 2.61-fold individual genomic 
coverage depth. At the population level, the coverage ranged from 41.02 to 50.88 fold for genetic variation detec-
tion and downstream analysis (Supplementary Table 1).

Variation discovery.  The clean reads were aligned to the recently released version of the reference goat 
genome (ARS1)23,47 using Burrows-Wheelser Aligner v0.7.10-r78948 with default settings. The reference 
genome sequence was indexed with bwa. The algorithm MEM was used to find the suffix array coordinates of 
good matches for each read49. SAMtools50 was used to convert file format from SAM to BAM and to filter the 
unmapped and non-unique reads. Picard (version 1.106, http://broadinstitute.github.io/picard/) was used to sort 
the BAM files, and remove potential PCR duplication if multiple read pairs had identical external coordinates. 
Read pairs with top mapping quality were retained. Local realignment around short insertions and deletions 
(Indels) was performed with duplication-removed reads using RealignerTargetCreator and IndelRealigner in 
the Genome Analysis Toolkit (GATK, version 3.3-0-g37228af)51. After local realignment, ‘HaplotypeCaller’ in 
GATK was used for generating a single call set in all individuals by joint calling. Single nucleotide polymorphisms 
(SNPs) and Indels were separated with the GATK tool ‘selectVariants’, and subjected to rigorous processing to 
exclude false positives. The SNP exclusion criteria52 were as follows: (1) hard filtration with parameter ‘QD < 2.0 || 
ReadPosRankSum <−8.0 || FS > 10.0 || QUAL < 1349.1’; (2)“–max-missing 0.7 ||–maf 0.05”. The Indel exclusion 
criteria were as follows: (1) hard filtration with parameter ‘QUAL < 20.0 || QD < 2.0 || ReadPosRankSum <−8.0 
|| FS > 10.0 || QUAL < 1257.74; (2) “–maxIndelSize 25 ||–maf 0.05”, only insertions and deletions shorter than 
or equal to 25 bp indels were taken into account. Except Venn diagram, only mapped autosomal SNPs and Indels 
were included in the downstream analyses.

Genomic annotation of SNPs and Indels.  All filtered SNPs and Indels were annotated and categorized 
by packages Annovar with default settings53. Venn diagrams representing SNVs were generated using the online 
method (http://bioinformatics.psb.ugent.be/webtools/Venn/). The transition-to-transversion (Ti/Tv) ratio based 
on all detected SNPs was calculated to evaluate potential sequencing errors, which is used as an indicator of 
potential sequencing errors52. The average ratios of homozygous versus heterozygous and nucleotide diversity are 
calculated for Inner Mongolia and Liaoning cashmere goat with VCFTools54.

Population structure analysis.  To explore their phylogenetic relationship, the whole-genome autosomal 
SNPs were extracted to construct the phylogenetic tree, and genotypes of sheep sequence were used to provide 
out-group information at corresponding positions. The neighbor-joining tree was constructed using the PHYLIP 
3.696 software (http://evolution.genetics.washington.edu/phylip.html) based on distance matrix methods55. iTOL 
(http://itol.embl.de) was used to illuminate and visualize the phylogenetic tree56.

For both of principal component (PCA) and population structure analysis, a thined SNPs dataset with a win-
dow of size 50 SNPs advanced by 5 SNPs at a time and an linkage-disequilibrium r2 threshold of 0.5 were filtered 

http://broadinstitute.github.io/picard/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://evolution.genetics.washington.edu/phylip.html
http://itol.embl.de
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using PLINK (Version v1.90b3.38)57 PCA was performed with the Genome-wide Complex Trait Analysis (GCTA, 
version: 1.25.3) software58, and the first three eigenvectors (two eigenvectors for PCA analysis of Liaoning and 
Inner Mongolia) were plotted. Population structure was analyzed using the ADMIXTURE (Version: 1.3)59 pro-
gram which implement a block-relaxation algorithm. To explore the convergence of individuals, we predefined 
the number of genetic clusters K from 2–6 and ran with cross-validation error (CV) procedure. Default methods 
and settings were used in Admixture analysis. Population differentiation index (Fst) was measured by pairwise 
Fst values among pariwise populations54.

Linkage disequilibrium (LD) was calculated using PLINK software57. The pairwise r2 values within and 
between different chromosomes were calculated. Regarding the LD for overall genome, the r2 value was cal-
culated for individual chromosomes using SNPs from the corresponding chromosome with parameter “–
ld-window-r2 0–ld-window 99999–ld-window-kb 1000–r2”, and then the pairwise r2 values were averaged across 
the whole genome. The LD for each group was calculated using SNP pairs only from the corresponding group.

Genome scanning for selective signals.  We performed a genetic differentiation (Fst) and polymorphism 
levels (θπ, pairwise nucleotide variation as a measure of variability) based cross approaches to investigate the 
selection signals across the whole genome. A 100 kb sliding window with 10 kb step approach was applied to 
quantify Fst and θπ, and the cross top 10% of two values was selected as selective signals.

Functional enrichment analysis (GO and KEGG).  GO and KEGG enrichment analysis was performed 
using the OmicShare tools, a free online platform for data analysis (www.omicshare.com/tools). Firstly, all can-
didate genes were mapped to GO terms in the Gene Ontology database (http://www.geneontology.org/), gene 
numbers were calculated for every term, significantly enriched GO terms in genes comparing to the genome 
background were defined by hypergeometric test. The calculated p-value was gone through FDR Correction, 
taking FDR ≤0.05 as a threshold. GO terms meeting this condition were defined as significantly enriched GO 
terms in candidate genes. Secondly, all candidate genes were mapped to KO terms in the KEGG Pathway data-
base (http://www.genome.jp/kegg/ko.html). KEGG pathway enrichment analysis identified significantly enriched 
metabolic pathways or signal transduction pathways in candidate genes comparing with the whole genome back-
ground. The calculating formula and significantly enriched standard is the same as that in GO analysis.

Availability and Requirements.  The sequencing reads of each sequencing libraries have been deposited 
under NCBI with Project ID SRP082615.
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