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Abstract

There is currently no FDA approved therapeutic agent for ARS mitigation post radiation

exposure. Here we report that the small molecule YH250, which specifically antagonizes

p300/catenin interaction, stimulates hematopoiesis in lethally or sublethally irradiated mice.

A single administration of YH250 24 hours post irradiation can significantly stimulate HSC

proliferation, improve survival and accelerate peripheral blood count recovery. Our studies

suggest that promotion of the expansion of the remaining HSC population via stimulation of

symmetric non-differentiative proliferation is at least part of the mechanism of action.

Introduction

Mass casualties due to accidental radiation exposure represent a serious threat to society.

Radioprotective agents are partially successful given prior to radiation exposure however, post

exposure they have limited utility. This motivated us to search for agents that could alleviate

radiation damage post-exposure. Due to logistical considerations, it is preferable to achieve

significant radiation mitigation up to 24 h after exposure. Acute radiation syndrome (ARS)

after total body exposure to radiation describes an array of symptoms. Fatal injuries, primarily

of a hematopoietic nature occur at doses of less than 8Gy [1]. Universal lethality occurs at

doses of more than 10Gy due to damage to the gastrointestinal (GI) tract [2]. Current medical

countermeasures have limited efficacy and no FDA approved treatment to alleviate ARS or to

effectively treat/protect first responders from ARS currently exists.
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Expansion of the remaining stem cell population with subsequent utilization of the stem

cell pool to regenerate damaged tissues is imperative for successful repair and regeneration

after acute radiation injury. Damage to the hematopoietic system, can in principle be alleviated

via bone marrow transplantation and supportive care [1], however, this is not possible in the

case of the GI tract [2].

Notch, Hedgehog, JAK ⁄ Stat, BMP, Hippo, FGF ⁄ MAPK, and Wnt signaling cooperate to

balance self-renewal versus differentiation of adult stem cells [3, 4]. Hematopoietic stem cells

(HSCs) are a rare population of somatic stem cells with the ability to regenerate the entire

mature blood system in a hierarchical way. The bone marrow niche provides a microenviron-

ment where different cell types and molecules regulate/maintain HSC dormancy or induce the

activation of HSC s in both normal and malignant hematopoiesis. In HSCs as well as in other

somatic stem cell populations, particularly in intestinal stem cells (ISCs), Wnt signaling plays a

critical role [5]. Yet, significant controversy exists regarding whether Wnt signaling is impor-

tant for proliferation and maintenance of potency (pluripotency or multipotency) or differen-

tiation of stem/progenitor cells [3–8]. We have, for more than a decade, investigated and

validated a model of differential coactivator usage that highlights the distinct roles of the coac-

tivators CBP and p300 in Wnt/β-catenin mediated transcription in stem cells. Utilization of

the coactivator Kat3A (CBP) or Kat3B (p300) by β-catenin is the first critical decision guiding

the stem cell to either proliferate/maintain potency or initiate a differentiative transcriptional

program, respectively [9–11]. Our lab has developed specific small molecules that selectively

block either the CBP/catenin (e.g. ICG-001) or the p300/catenin interaction (e.g. YH250).

CBP/catenin antagonists induce asymmetric differentiation of stem cells [11], whereas p300/

catenin antagonists) increase symmetric expansion and maintain potency in stem/progenitor

cells in vitro [12]. We therefore investigated the therapeutic concept that the p300/catenin

antagonist YH250 could remediate radiation damage via symmetric expansion of the remain-

ing viable stem cell pool.

Results

P300/catenin antagonist YH250 accelerates hematopoietic recovery in

sub- lethally irradiated mice

We first decided to investigate whether YH250 administration could enhance hematopoietic

recovery after sublethal irradiation via expansion of the hematopoietic stem/progenitor popu-

lation (HSPC). In the event, 24h post 7Gy sub-lethal irradiation, mice were administered

YH250 (s.c. 2mg/Kg) or vehicle control and 6h later BrdU was given. The YH250 treated

group had a greater percentage of BrdU+ cells in the Lin- but not in the Lin+ population than

control treated mice (S1A Fig). YH250 treatment also increased the percentage of bone mar-

row cells in S phase, suggesting an increase in cycling activated cells (S1B Fig). The LSK

CD150+CD48- population represents a “Long Term Repopulating” hematopoietic stem cell

(LTR-HSC) population, however the number of these cells is quite limited [13, 14]. Four days

after YH250 administration to mice, FACS analysis demonstrated a significant increase in the

Lin-CD150+CD48- population compared with vehicle control, although the overall percentage

of Lin- cells was not affected (Fig 1A). Taken together, these results suggest that YH250 treat-

ment can stimulate HSPC proliferation and expansion of the HSPC stem cell pool. However,

the Lin- CD150+CD48- is still quite heterogeneous, representing a mixed population of HSCs

and progenitor cells, therefore functional assays were required to confirm the effect of YH250

on HSPCs.

In the hematopoietic system, the LTR-HSC or pluripotent HSC sits atop the hematopoietic

hierarchy. LTR-HSCs subsequently generate “Short Term Repopulating” hematopoietic stem
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cells (STR-HSC), and then progenitor cells [15–17]. After radiation induced myeloid-ablation,

there is a significant loss of progenitor cells. To demonstrate enhanced hematopoietic recovery

we evaluated whether YH250 treatment provided for the earlier detection of cells with more

mature functionality. Bone marrow cells were recovered at different time points from YH250

or vehicle treated 7Gy irradiated mice to test for HSPC functionality in competitive repopula-

tion assays (Fig 1B) and CFC assays (Fig 1D), which can be used to detect LTR-HSC/STR-HSC

or progenitor cell activity, respectively. In the competitive BMT repopulation study, bone mar-

row cells from YH250 treated animals, recovered at day 7 or day 14 post irradiation, gave sig-

nificantly higher engraftment compared with controls (Fig 1C-1 to 1C-4). It is also worth

noting that cells recovered from YH250 treated animals at day 14 post irradiation gave signifi-

cantly higher engraftment at an earlier stage (day 50 post BMT), compared with cells recovered

from day 7 post irradiation. However, there was no significant difference in long term

Fig 1. YH250 stimulate hematopoiesis recovery from 7Gy radiation. (A) Bone marrow cells from either YH250 or DMSO treated 7Gy irradiated

animals were recovered and FACS analyzed, there are more Lin-CD48-CD150+ cells in YH250 treated animals. (B) At different time post radiation, bone

marrow cells were recovered for competitive repopulation or (D) CFC assays. (C) Bone marrow cells recovered at day 14 post radiation from YH250

treated animals give significantly better long-term engraftment in competitive repopulation and (E) more colonies in CFC assay.

https://doi.org/10.1371/journal.pone.0177245.g001
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engraftment (day 120 post BMT) between the cells recovered at day 7 and day 14(Fig 1C-4).

Since engraftment capability at day 50 and 120 post BMT represent the effects of the STR-HSC

and LTR-HSC respectively, this result suggests that YH250 stimulated LTR-HSC expansion

occurred within the first 6 days after administration. The expanded LTR-HSC population pro-

liferates and matures into STR-HSC by day 14, thereby providing enhanced short term

engraftment. There apparently is no further LTR-HSC expansion from day 6 to day 13 post

YH250 administration. This can explain why cells recovered from day 14 show dramatically

increased engraftment at day 50, yet similar engraftment at day 120 compared with cells recov-

ered at day 7 (Fig 1C-4). CFC assay also demonstrated increased colony formation from cells

recovered at day 14 post irradiation in the YH250 group (Fig 1E). This suggests that more pro-

genitor cells were produced in the YH250 treated animals by day 14. Overall, this suggests that

YH250 initially stimulates HSPC expansion thereby accelerating hematopoietic recovery in

sub-lethally irradiated mice.

We next evaluated whether YH250 could accelerate blood count recovery (Fig 2A). Admin-

istration of a single dose of YH250, 24h post irradiation, accelerated multi-lineage hematopoi-

etic recovery (Fig 2C). At the nadir point, YH250 treated mice demonstrated significantly

higher blood counts, including WBC, lymphocytes, monocytes, neutrophils, and platelets

(Fig 2D). Additionally, mice that received YH250 demonstrated significantly less loss of body

weight (Fig 2B). Taken together, these results demonstrate the ability of YH250 to mitigate

sub-lethal irradiation induced myelosuppression by initially stimulating LTR-HSC expansion

in vivo.

P300/catenin antagonist YH250 rescues mice from lethal dose radiation

Next, we tested whether YH250 can rescue mice from lethal dose radiation. Mice received 9Gy

(LD100) or 8.5Gy (LD70) whole body radiation. 24h later, vehicle control or YH250 (2mg/Kg)

was administered subcutaneously. All mice in the control group died within 30 days post 9Gy

irradiation. However, YH250 administration 24 h post irradiation rescued 50% of the mice

(Kaplan-Meier analysis p = 0.0002) (Fig 3A). After 8.5Gy irradiation, 100% of the mice in the

YH250 group survived, whereas only 30% of the vehicle control mice survived (p = 0.0016)

(Fig 3B). We also observed significantly less loss of body weight after irradiation in the YH250

treated mice at both 9Gy and 8.5Gy (Fig 3C and 3D).

Combination of CBP/catenin and p300/catenin antagonists in radiation

mitigation

In principle, to optimize radiation remediation therapy, it should be advantageous to first (a)

symmetrically expand the remaining viable stem cell pool (either HSC or ISC), using a method

to enhance symmetric non-differentiative proliferation, i.e. by blocking the p300/catenin inter-

action thereby enhancing CBP/catenin signaling and (b) subsequently induce the differentia-

tion of the stem cell pool via asymmetric divisions to enhance tissue repair and regeneration as

rapidly as possible using a CBP/catenin antagonist. We therefore decide to test sequential

administration of the p300/catenin antagonist YH250, followed by subsequent administration

of the CBP/catenin antagonist ICG-001. An additional potential therapeutic benefit utilizing a

CBP/catenin antagonist would be protection against fibrosis, which is a common chronic com-

plication associated with radiation damage. CBP/catenin antagonists have previously demon-

strated efficacy in multiple pre-clinical models of fibrosis in lung, kidney, liver etc. [18–21]. In

this experiment, mice were treated with either vehicle, YH250 (single 2mg/Kg s.c. injection at

24 h post irradiation), ICG-001 (single 50mg/Kg s.c injection at 24 h post irradiation) or the

combination of YH250/ICG-001, with YH250 (2mg/Kg) given 24h post irradiation followed
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by ICG-001(50mg/Kg) injection for 5 consecutive days starting at 48h post-irradiation. After

irradiation and the corresponding treatments, no special care was provided. The life-span after

irradiation was observed on a daily basis and recorded. The survival curves are shown in

Fig 3E. Mice that received either YH250 or a combination of YH250 and ICG-001 showed sig-

nificantly extended life-spans (p = 0.0067 and 0.0033 for the YH 250 and YH250/ICG-001

groups versus the control group respectively).

Potential mechanism of action of YH250

To begin to investigate the biological mechanism of action that provides the p300/catenin

antagonist YH250 with the capacity to enhance hematopoietic recovery after irradiation, we

undertook a series of investigations. It should be noted, that while some of the effects of

YH250 are HSC intrinsic, YH250 likely has effects on the bone marrow microenvironment,

i.e. the HSC niche, which we have not investigated, yet may also contribute to its in vivo effi-

cacy. In the event, we used mouse bone marrow Sca-1+ cells, which are enriched for

Fig 2. YH250 stimulates multi-linage recovery in peripheral blood of 7Gy irradiated animals. (A) The experimental procedure to test YH250 effect

to peripheral blood recovery in 7Gy irradiated animals is depicted. (B) The body weight change of the animals is shown. (C) Peripheral blood counts were

monitored. (D) The blood counts at nadir points are presented. *: p<0.05; **: p<0.01. n = 10.

https://doi.org/10.1371/journal.pone.0177245.g002
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LTR-HSCs, STR-HSCs, progenitor cells as well as other cell types required for blood produc-

tion and the bone marrow microenvironment. 16 hours after YH250 or vehicle administra-

tion, Sca-1+ cells were isolated for co-IP analysis (Fig 4A). From 6μg of nuclear protein

fraction, β-catenin could not be detected in either the CBP or p300 immunoprecipitates. How-

ever, γ-catenin was found, bound principally to CBP and to a lesser extent p300. As shown in

Fig 4B (left panel), the CBP/catenin antagonist ICG-001, blocked the CBP/γ-catenin

Fig 3. YH250 rescues animals from lethal dose radiation. (A and B) After lethal dose radiation (either 9Gy or 8.5Gy), animal survival and

body weight (C, D) were monitored. (E) The combination effect of YH250 with ICG-001 to lethally irradiated animals. *: p<0.05; **: p<0.01.

https://doi.org/10.1371/journal.pone.0177245.g003
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interaction thereby enhancing the p300/γ-catenin interaction (lane B, green arrow). As antici-

pated, YH250 had the opposite effect, increasing the CBP/γ-catenin interaction at the expense

of the p300/γ-catenin interaction (lane C, red arrow). This confirms that YH250, as previously

reported for other cell types [12] directly disrupts the p300/catenin interaction thereby

enhancing the CBP/catenin interaction in HSPCs. We also examined the expression of β-

catenin in Sca-1+ cells. Utilizing 1μg of total protein from these cells, both β- and γ-catenin

were readily detected in the cytosolic fraction but not in the nuclear fraction (4B, right panel).

This suggests that the majority of both β- and γ-catenin is cytosolic in the Sca-1+ population

Fig 4. YH250 biochemical mechanism and its downstream gene expression regulation. (A) The procedures to isolate Sca-1+ cells (for assays

in 4B and 4C) or LSK150+41-48- cells (for assay in fig 4D) are depicted. (B) Left panel: CO-IP analysis to detect the interaction of catenin with CBP or

p300 were depicted: the green arrow shows the sample from ICG-001 treated animals, the red arrow shows the sample from YH250 treated animals.

Right panel: western blot analysis of β- and γ-catenin in Sca-1+ cells. (C) qPCR analysis results were summary of 3 independent experiments. (D) Id2

gene up-regulation from YH250 treated animal LSK150+ 41-48- cells from RNA—seq analysis.

https://doi.org/10.1371/journal.pone.0177245.g004
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under normal physiological conditions (Fig 4B, right panel). To confirm the specificity of the

antibodies utilized in these experiments, we chose the human lung carcinoma cell line

NCI-H28, which expresses γ-catenin, however does not express β-catenin due to a chromo-

somal deletion, and SW480 human colorectal carcinoma cells, which express both proteins

(S2 Fig).

We next investigated Wnt/catenin downstream target gene expression after YH250 admin-

istration. Axin2 is a classical Wnt/catenin target genes and plays important regulatory roles in

Wnt signaling [22]. The inhibitor of apoptosis (IAP) family member survivin (Birc5) is another

Wnt/catenin target gene [23]. We have previously demonstrated that ICG-001, by antagoniz-

ing the CBP/catenin interaction, down-regulates survivin expression in a variety of cell types

both in vitro and in vivo [24–26]. As shown in Fig 4C, both Axin2 and survivin expression were

significantly up-regulated by YH250 treatment in the Sca-1+ population. Next, we treated mice

with either vehicle or YH250 and16h later collected the LTR-HSC (LSK CD150+CD48-CD41-)

and the progenitor (LSK CD150+CD41+CD48+) populations by FACS. RNA was isolated from

these two populations and RNA-seq was performed. We subsequently used Partek E/M to ana-

lyze the genes that were differentially regulated by treatment with YH250 in the LTR-HSC

(LSK CD150+CD48-CD41-) population. Interestingly, one of the most significantly upregu-

lated genes in the LTR-HSC but not in the progenitor population was Inhibitor of DNA Bind-

ing 2 (Id2). Its expression was up-regulated 4 fold in the YH250 treated samples (Fig 4D). Id2

is an HLH protein Wnt/catenin target gene [27], which plays pivotal roles in stem cell self-

renewal and maintenance. It has been previously reported that elevated Id2 expression corre-

lates with CD34+ HSC non-differentiative proliferation and results in CD34+ HSC expansion

[28]. Also, HSCs with higher Id2 expression show better engraftment in competitive repopula-

tion assays [29]. Other genes that were significantly upregulated in the LTR-HSC and not in

the progenitor population included CD52 (3.09 fold), a membrane protein that is found on the

surface of HSPCs [30], and the tetraspanin protein CD53 (2.79 fold), which is associated with

the CD34+CD133+ cord blood HSC population [31](S1 Table). Based upon these results, we

investigated the ability of YH250 to promote HSC non-differentiative proliferative divisions

in vitro and in vivo.

It has been previously reported that LSK34-135-150+48- cells that maintain the CD48-Tie2+

phenotype under in vitro culture conditions retain LTR-HSC capacity, whereas cells that

become CD48+ lose their LTR-HSC activity [32–33]. Mice were administered vehicle or

YH250 (2mg/Kg), 16h prior to sacrifice and subsequent FACS sorting of bone marrow cells.

Sorted LSK34-135-150+48- cells were subsequently co-cultured with whole bone marrow cells

from GFP transgenic mice for 2 days (Fig 5A). Cells were then recovered from the culture and

analyzed for CD48 and Tie2 surface expression. Compared to vehicle control treated animals,

there is a significant increase in the percentage of CD48-Tie2+ cells in YH250 treated mice

(Fig 5B).

Next, we tested if brief incubation of YH250 with bone marrow cells in an in vitro culture

system affects stem/progenitor cell activity. YH250 was incubated with bone marrow cells for

4hrs and subsequently washed out, before the cells were subjected to colony forming cell

(CFC) assay. There was no significant difference between DMSO and YH250 treated cells in

regards to the number of colonies formed (S3A Fig). However, we consistently observed that

the colony size from YH250 treated cells was larger than vehicle treated cells (S3B Fig). We

then recovered the cells from each plate for counting. YH250 treatment consistently generated

significantly higher cell numbers in the CFC assay (S3C Fig). Next, we injected YH250 treated

cells into lethally irradiated animals and performed a CFU-S12 assay. We again observed simi-

lar effects in that YH250 treatment provided larger colonies (S3E Fig) and increased spleen

weight (S3F Fig) although there was no significant difference in colony number (S3D Fig).
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Taken together, these results suggest that YH250 treatment provided greater cell expansion

and an increase in the maintenance of the LSK34-135-150+48- population via enhancing sym-

metric cell division, thereby retaining the LT-HSC phenotype.

YH250 stimulates HSC proliferation

To study the effects of YH250 on HSPC proliferation, we examined BrdU incorporation. Our

initial investigations were performed in mice under steady-state conditions. 24 or 48 h post

YH250 or vehicle administration, BrdU was administered 4h prior to sacrifice and isolation of

bone marrow cells (Fig 6A). As shown in Fig 6B, there was a significant increase in the BrdU+

Fig 5. YH250 sustains LT—HSC in vitro. (A) LSK34-135-150+ 48- cell preparation is depicted. (B) Cell surface marker changes

from DMSO or YH250 treated animals in in vitro culture. Results are summary of 3 independent experiments.

https://doi.org/10.1371/journal.pone.0177245.g005

p300/catenin antagonist remediates radiation damage

PLOS ONE | https://doi.org/10.1371/journal.pone.0177245 May 9, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0177245.g005
https://doi.org/10.1371/journal.pone.0177245


cells in both the LSK and LSK34-135-150+ populations 48 h post YH250 administration. This

suggests that YH250 stimulated LTR-HSC proliferation. We hypothesized that if YH250 stim-

ulated LTR-HSC symmetric non-differentiative proliferation, we should be able to detect the

expansion of the LTR-HSC stem cell pool via competitive repopulation assay. To test this

hypothesis, we administered YH250, 4 times at 48h intervals, while BrdU was supplied in the

drinking water. Three days after the final YH250 administration, bone marrow cells were

Fig 6. YH250 stimulates HSPC non-differentiation proliferation in vivo. (A) BrdU incorporation studies were performed as depicted with 3 mice in

each group and two independent experiments. (B) BrdU+ cells in BM subsets. (C) Experimental procedure to study repeated YH250 administration

effects on HSPC in steady status was depicted. (D) At the end of last YH250 or DMSO administration, bone marrow cells FACS analysis and (E)

competitive repopulation assay.

https://doi.org/10.1371/journal.pone.0177245.g006
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isolated for FACS analysis and competitive repopulation assay (Fig 6C). There was a significant

increase in the number of BrdU+ cells in the LTR/STR-HSC population with YH250 treatment

(Fig 6D). In contrast, there was no statistically difference in the MPP population

(BrdU+LSK34+135+) between the YH250 treated and control mice.

We then mixed YH250 or vehicle treated mouse bone marrow cells with competitor cells to

perform a competitive repopulation assay, a gold standard for examination of LTR-HSC

capacity. As depicted (Fig 6E), there was no significant difference in terms of short term

engraftment (day 40 post BMT) amongst the two groups. However, YH250 treatment

provided significantly higher long-term engraftment (day 140 and 164 post BMT) compared

with controls, without any significant lineage biasing (Fig 6E). These results suggest YH250

can stimulate LTR-HSC symmetric non-differentiative proliferation under steady-state

hematopoiesis.

Discussion

Accidental radiation exposure presents a serious threat and existing medical countermeasures

are quite limited and no FDA approved treatment is currently available to treat victims or first

responders from ARS. Expansion and utilization of the remaining stem cell pool to regenerate

damaged tissues is critical for repair and regeneration after acute radiation injury. In the cur-

rent study, we were motivated to search for stratagems to alleviate post-exposure radiation

damage. We utilized the small molecule YH250, which specifically antagonizes the p300/cate-

nin interaction that we had previously shown to maintain pluripotency in both mouse and

human cells (12). We first demonstrated that YH250 enhances hematopoietic recovery after

sublethal irradiation. Administration of a single dose of YH250, 24h post irradiation, acceler-

ated multi-lineage hematopoietic recovery and at the nadir point, YH250 significantly

increased blood counts. Additionally, mice receiving YH250 demonstrated significantly less

body weight loss. YH250 treatment 24h post irradiation also substantially increased survival

after lethal radiation.

To begin to investigate the mechanism of action that endows the p300/catenin antagonist

YH250 with the capacity to enhance hematopoietic recovery, we undertook a series of investi-

gations on the HSC intrinsic effects of YH250. In mouse bone marrow Sca-1+ cells, which

includes the LTR-HSC population, YH250 increased the CBP/γ-catenin interaction at the

expense of the p300/γ-catenin interaction. In our co-IPs most of the detectable coactivator-

bound catenin was γ- and not β-catenin (Fig 4B). Based on these results, we propose that γ-

catenin rather than β-catenin is the primary driver of Wnt/catenin signaling in mouse HSPCs.

It is been previously documented that β- and γ-catenin share similar biological functions and

although not redundant, they can compensate for each other in a variety of systems [34–36].

Their functions in HSC and cancer stem cells have been investigated, although most studies to

date have focused on β-catenin [3–8,37–39]. The Kat3 transcriptional coactivators CBP and

p300 play pivotal roles in stem cell self-renewal and/or differentiation and both CBP and p300

interact with β- and gamma catenin to regulate gene expression [40–42]. Based upon our

results, we caution that previous “gain or loss of function” studies with β-catenin may not

accurately reflect normal physiological conditions in HSPCs. Interestingly however, even dou-

ble deletion of β- and γ-catenin did not affect LTR-HSC activity and lymphopoiesis, thereby

pointing to an as yet identified alternative catenin-like molecule that can compensate in hema-

topoiesis under these conditions [43–44].

Sorted LTR-HSC (LSK34-135-150+48- cells) from mice administered YH250 16h prior to

sacrifice demonstrated a significant increase in the percentage of CD48-Tie2+ cells upon ex
vivo expansion. YH250 treatments although not affecting colony number, consistently
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increased colony size. Taken together, our results demonstrate that YH250 can stimulate

LTR-HSC symmetric non-differentiative proliferation enhancing hematopoiesis.

However, there are a number of limitations to our mechanistic studies that should be con-

sidered: 1) Due to limited cell numbers, we could not perform co-IP experiments with pure

LTR-HSC. Sca-1+ cells represent a mixed cell population including HSPC as well as other cell

types, i.e. mesenchymal and stromal cells; 2) the amount of protein used in these co-IP experi-

ments was significantly less than we normally use (6μg of instead of 150–200 μg for co-IP; and

1 μg total protein instead of 10 μg for immunoblots); 3) while some of the effects of YH250 are

HSC intrinsic, YH250 likely has effects on the bone marrow microenvironment as well, which

we did not investigate. However, they may make important contributions to YH250’s in vivo
efficacy since Wnt signaling also play important roles in HSC niche [45]. Nevertheless, our

result suggests γ-catenin plays important roles in HSCs, under both physiological and patho-

physiological conditions. YH250 in HSCs directly disrupts the p300/γ-catenin interaction

thereby enhancing the CBP/γ-catenin interaction, and increasing the expression of a subset of

Wnt/catenin target genes (e.g survivin/birc5, id2 and axin2)[46–47]. The differential effects of

CBP (HSC self-renewal) and p300 (hematopoietic differentiation) in hematopoiesis have been

previously reported [41, 48]. Id2 has been reported to play important roles in HSC biology,

maintaining stem cell pluripotency and self-renewal capacity. Forced expression of Id2 in

human CD34+ cells results in non-differentiative proliferation and stem cell expansion [28]. In

the present study, YH 250 demonstrated HSC expansion in both the steady state and during

myeloid suppression after irradiation, coinciding with increased Id2 expression. Survivin/

birc5 is known for its anti-apoptotic and proliferation-stimulating effects. YH250, up-regu-

lated survivin gene expression in the Sca-1+ population after irradiation, thereby presumably

enhancing hematopoietic recovery. YH250 treated mice also demonstrated less body weight

loss after radiation (Figs 2B, 3C and 3D). This phenomenon may be correlated with the

decreased nadir blood count and enhanced rapidity of hematopoietic recovery after YH250

treatment.

In order to optimize hematopoietic recovery after irradiation, in principal initial symmetric

expansion of the viable HSCs via symmetric non-differentiative proliferation, with subsequent

induced differentiation of the expanded stem cell pool via asymmetric divisions, would be

ideal. We therefore tested sequential administration of the p300/catenin antagonist YH250,

followed by subsequent administration of the CBP/catenin antagonist ICG-001. Mice that

received the combination of YH250 and ICG-001 demonstrated a somewhat enhanced life-

span extension in our studies compared to YH250 treatment alone.

Wnt/catenin signaling has been shown to be important in hematopoiesis. Previously, other

modulators of Wnt signaling, including PGE2, GSK3 inhibitors as well as others, have been

shown to increase murine long term HSC populations in vivo [49–50]. Here, we demonstrate

that the small molecule p300/catenin antagonist YH250 also increases murine long term HSCs

in vivo by promoting the CBP/catenin interaction. Further investigation combining p300/cate-

nin antagonists with other modes of hematopoietic stimulation will hopefully provide a deeper

understanding of hematopoietic regulation.

Materials and methods

Animal studies, CFC and CFU-S12 assays

All animal studies were approved by the USC institutional IACUC committee. C57BL/

CD45.1, CD45.2 or GFP transgenic mice were purchased from Jackson Laboratory. CD45.1

and CD45.2 hybrid were bred at the University of Southern California animal’s facility. Female

mice at age 8–10 weeks were used in the study. Animals were random assigned to each
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treatment group with simple randomization. Investigators were not blind in animal study.

After whole body irradiation, the animals were given soft food and hydrogel for nutrition and

hydration (BioServ Product # S3472, Flemington, NJ 08822, USA and Clear H2O, Cat# 70-01-

5022, Westbrook, ME, 04092, USA). Fresh soft food and hydrogel were given daily to replace

any leftover from the previous day. After receiving whole body irradiation, the irradiated ani-

mals were observed twice daily including assessment of behavior, weight and hydration. Fol-

lowing humane end points were leading to immediate euthanasia: animals that were

moribund or unable to move or failure to respond to gentle stimuli; labored breath, particu-

larly if accompanied by nasal discharge and/or cyanosis; inability to eat or drink; diarrhea and

incontinence continue beyond 72 hrs provided the animals exhibiting signs of dehydration;

weight loss above 20% of body weight; spontaneous bleeding and severe clinical distress. The

following criteria were used as signs of dehydration and as a humane end-point: skin tenting,

sunken eyes and weight loss. A staff veterinarian consulted on ambiguous cases. Animals were

euthanized using a CO2 chamber and cervical dislocation was performed on each animal after

the CO2 chamber. If we observed animals in pain, buprenorphine was given to animals twice

daily subcutaneously for 48 hrs. There was no unexpected animal death in the survival study.

All the death in the survival study occurred 10 days post radiation, at that time the blood cell

count decreased to nadir levels, suggesting that death was associated with severe bone marrow

suppression.

For in vitro HSC culture assay, sorted HSC were mixed with whole bone marrow cells from

GFP mice and cultured in QBSF-58 medium (Serum free medium for support of murine bone

marrow cells, Quality Biological, Inc. Cat# 160-109-101) supplemented with TPO and SCF

(10ng/ml for each, R & D systems, Cat#P40229 and Cat#Q78ED8, respectively). CFC and

CFU-S12 assays were performed as described previously [51]. In BrdU study, mice were given

either 1mg/mouse i.p or 0.8mg/ml in drinking water.

For irradiation study, mice were subjected to 7 or 8.5 or 9 Gy irradiation by placing in X-

rad 320i irradiator (Precision X-ray, Inc.). In competitive repopulation assays, testing bone

marrow cells were mixed with competitor cells and injected to 9Gy irradiated recipients via

tail vein. Blood were collected via submandibular vein and analyzed with Hemavet (Drew Sci-

entific) for blood count.

Immunoprecipitation and immunoblotting

Immunoprecipitation and imunoblotting were performed as described previously [26]. The

reagents were as following: anti-β-catenin (BD Bioscience, Cat# 610153), anti-γ-catenin (BD

Bioscience, Cat# 610253), anti-CBP (Santa Cruz, clone SC-369), anti-p300 (Santa Cruz, clone

SC-584), anti-activated- β-catenin (Millipore, clone 8E7), anti-lamin A/C (Santa Cruz, SC-

7293), NE-PER Nuclear extraction reagent (Pierce, Cat#78833), Protease inhibitor cocktail

(Calbiochem, Cat#539137), Protein A-agarose (Roche, Cat#11134515001), Illustra microspin

columns (GE Healthcare, Cat#27-3565-01), ECL Plus (GE Healthcare, Cat#RPN 2132), and

Blue ultra autorad film (BioExpress, Cat# F9029-8X10).

Gene expression study

Total RNA was isolated, cDNA synthesis and q-PCR were performed as previously described

[26] using the following primers: Axin 2: F 5’-GAGAGATGCATCGCAGTGTG, R 5’-AAG
GCAGCAGGTTCCACAG;survivin:F 5’-TACCGAGAACGAGCCTGATT,R 5’-CCAG
GGGAGTGCTTTCTATG;ID2: F 5’-ACTATCGTCAGCCTGCATCA, R 5’-ATTCAGA
TGCCTGCAAGGAC;GUS-B F 5’-AGAATACGTGGTCGGAGAGC, R 5’-CGACTGAAGATCC
CCTTCTT.
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Libraries were generated and sequencing was performed at the USC Epigenome Center in

the Norris Comprehensive Cancer Center. Briefly, total RNA was prepared from the sorted

cell fractions and amplified cDNA generated using SMARTer Ultra Low Input RNA for

Sequencing-v3 kit (Clontech Laboratories) according to manufacturer’s instructions. The

amplified cDNA was subsequently analyzed on the Bioanalyzer (Agilent), then sonicated to

appropriate size (300–500 bp) using a Covaris S2 sonicator. DNA fragments were made into

libraries using the KAPA DNA Library Preparation Kit (KAPA Biosystems) for Illumina

sequencing platforms, using minimal number of PCR cycles to insure complexity. Libraries

were applied to an Illumina flow cell and sequenced on Illumina HiSeq 2000 to generate 50 bp

single end reads. Total reads per sample averaged around 31 million. Image analysis and base

calling was carried out using RTA 1.13.48.0. Final file formatting, demultiplexing and fastq

generation were carried out using CASAVA v 1.8.2.

RNA-seq data was analyzed with Partek Flow version 4 (Partek Inc., St. Louis, MO). Raw

sequencing reads were first trimmed from both ends with Quality Score method (bases with

quality score Phred less than 20 were trimmed from both ends, and trimmed reads shorter

than 25 nt were excluded from downstream analyses). Trimmed reads were then mapped to

the mouse genome mm10 using Tophat version 2.0.8 (Kim et al. 2013) with default parameter

settings and using Gencode M3 annotation (Mudge JM and Harrow J 2015) as guidance. Gen-

code M3 annotation was used to quantify the aligned reads to genes/transcripts using Partek

E/M method. Finally, read counts per gene/transcript in all samples were normalized using

Upper Quartile normalization (Bullard et al. 2010) and analyzed for differential expression

using Partek Gene Specific Analysis method (genes/transcripts with less than 10 reads in any

sample among a data set were excluded). The differentially expressed gene (DEG) lists were

generated for each comparison using the cutoff of FDR<0.05 and fold changes greater than 2

either direction. Subsequent functional analysis of the DEG lists were carried out using Inge-

nuity Pathway System (Qiagen, Redwood City CA).

FACS analysis and cell sorting

BD LSRFortessa or BD Aria II flow cytometer were used for sample analysis or sorting respec-

tively. Antibodies and isotype controls for immunostaining were purchased from eBioscience

(San Diego, CA, USA): FITC lineage: Gr-1 1 (Ly-6G/C) clone RB6-8C5, Cat#11-5931-82,

CD3e clone 145-2C11, Cat #11-0031-82, Ter119 clone TER-119, Cat #11-5921-82, CD11b

clone M1/70, Cat #11-0112-85, and CD 45R (B220) clone RA3-6B2, Cat #11-0112-85). Other

antibodies used were CD3(clone 145-2c11, PE-cy7 Cat #25–0031), B220 (clone RA3-6B2,

APC-cy9 Cat #47–0452) Ter119 (clone Ter-119, PE-cy7 Cat #25–5921, percp-cy5 Cat #45–

5921), CD45.1 (clone A20, percp-cy5.5, Cat #45-053-80 and PE Cat #12–0453), CD45.2 (clone

104, FITC Cat #11–0454, percp-cy5.5 catalog 45–0454, e450 Cat #48–0454); CD48 (clone

HM48.1, e450 Cat #48-0481-82), CD41 (clone eBIOMWReg30, e450 Cat #48-0411-82),

CD150 (clone mShad150, perCp-efluor 710, Cat #46-1502-82), CD117 (kit, clone 288, APC-

efluor 780 Cat 47-1171-82, PE Cat #12–1171), Sca1 (clone D7, APC Cat #17-5981-81, percp-

cy5.5 Cat #45–5981), CD34 (clone RAM34, Alexa efluor 700 Cat #56-0341-82, APC Cat #56–

0341, e450 Cat #48–0341), and CD135 (, clone A2F10, PE-Cy7 Cat #15-1351-82), CD202b

(Tie2, clone TEK4, PE Cat #12-5987-83). Lineage Depletion Kit (Cat #130-090-858) and anti-

Sca-1 microbead kit are from Miltenyi Biotec GmbH (Cambridge, MA, USA). BrdU flow kit

(Cat#559619) is from BD Bioscience.
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Chemicals and synthesis of YH250

5-Bromo-2’-deoxyruidine (BrdU, Cat # B5002) and DAPI (Cat # D9564) are from Sigma-

Aldrich (St. Louis, MO, USA). YH250 were synthesized in house as described previously [12].

Statistical analysis

Two-tailed, unpaired student’s t test or log-rank (Kaplan-Meier) test was performed using

GraphPad Prism 5. Data were expressed as mean ±SD.

Supporting information

S1 Fig. YH250 stimulates HSPC proliferation after 7Gy radiation. (A) Under 7Gy radiation,

YH250 treated animals show more BrdU incorporation in bone marrow Lin- population and

(B) more cells are into cell cycle.

(TIF)

S2 Fig. Confirm antibodies used in biochemical studies. Antibodies used in CO-IP (Fig 4)

were confirmed in cells which lack β-catenin but express γ-catenin (NCI-H28) or cells which

express both (SW480). The red arrow pointed at bands that might be catenin-like protein in

both cell lines detected with antibody to activated β-catenin. The green arrow shows the acti-

vated β-catenin.

(TIF)

S3 Fig. YH250 stimulates HSPC proliferation activity in in vitro culture. (A-C) CFC or

(D-F) CFU-S12 assay with bone marrow cells treated with either DMSO or YH250 for 4 hours

in vitro. Results shown are represents from 3 independent experiments.

(TIF)

S1 Table. RNA-seq analysis of gene differential expression in LSK150+48-41- cells from

YH250 vs DMSO treated animals.

(DOC)
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