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OBJECTIVE—Blocking T-cell signaling is an effective means to
prevent autoimmunity and allograft rejection in many animal
models, yet the clinical translation of many of these approaches
has not resulted in the success witnessed in experimental
systems. Improved understanding of these approaches may as-
sist in developing safe and effective means to treat disorders such
as autoimmune diabetes.

RESEARCH DESIGN AND METHODS—We studied the effect
of anti-CD154 and CTLA4-Ig on diabetes development, and the
requirements to induce tolerance in nod.scid mice after transfer
of transgenic �-cell reactive BDC2.5.NOD T-cells.

RESULTS—Nod.scid recipients of diabetogenic BDC2.5.NOD cells
were protected indefinitely from diabetes by a short course of
combined costimulation blockade, despite the continued diabeto-
genic potential of their T-cells. The presence of pathogenic T-cells in
the absence of disease indicates peripheral immune tolerance.
T-cell maturation occurred in protected recipients, yet costimula-
tion blockade temporarily blunted early T-cell proliferation in
draining pancreatic nodes. Tolerance required preexisting regula-
tory T-cells (Tregs), and protected recipients had greater numbers
of Tregs than diabetic recipients. Diabetes protection was success-
ful in the presence of homeostatic expansion and high T-cell
precursor frequency, both obstacles to tolerance induction in other
models of antigen-specific immunity.

CONCLUSIONS—Immunotherapies that selectively suppress
effector T-cells while permitting the development of natural
regulatory mechanisms may have a unique role in establishing
targeted long-standing immune protection and peripheral toler-
ance. Understanding the mechanism of these approaches may
assist in the design and use of therapies for human conditions,
such as type 1 diabetes. Diabetes 57:2672–2683, 2008

R
eagents that bind T-cell surface molecules and
interfere with T-cell activation and effector func-
tion hold the promise of being safe and effective
therapies for organ transplantation and autoim-

munity. Disruption of CD154, CD28, and LFA-1 pathways,
either by biological agent or by genetic means, can prolong
allograft survival and prevent autoimmune disease in

murine models and at times (re)establish immune toler-
ance (1–7). Type 1 diabetes is caused by the activation of
peripheral �-cell autoreactive T-cells that have escaped
central tolerance (8). In the NOD mouse model of type 1
diabetes, treating juvenile NOD mice with anti-CD154,
CTLA4-Ig, or anti-B7.2 to interrupt the CD154:CD40 and
CD28:B7 costimulatory pathways provides long-term dis-
ease protection (9,10). Although this is purported to result
from preventing auto-aggressive T-cell activation, the full
immunological mechanisms of how disease is prevented
and protection is maintained are unclear (9–11). Studies
involving CD154 knockout NOD mice (which are pro-
tected from diabetes) and B7–1/B7–2-deficient and CD28-
deficient mice (which have exacerbated spontaneous
diabetes due the lack of Tregs) provide evidence for the
importance of T-cell regulatory-to-effector (Treg:Teff) bal-
ance in the development of autoimmune diabetes and the
maintenance of self-tolerance (13–17).

The translation of agents that target T-cells for use in
human conditions has been trying. In part, this is due to
unforeseen side effects in preclinical and clinical testing,
including thromboembolic events with some anti-CD154
antibodies and lethal cytokine storm with superagonist
anti-CD28 antibodies (18,19). Yet many other biological
agents that interfere with T-cell signaling, such as anti-
CD3, anti-CD25, CTLA-4/LEA29Y, and anti-LFA-1, have
impressive safety profiles in clinical trials in autoimmunity
and/or transplantation (10–22).

One of our goals was to better understand how thera-
peutic strategies induce long-term immune protection of
and immune tolerance to allo- and autoimmune targets.
We studied the effect of costimulation blockade on diabe-
tes development after the adoptive transfer BDC2.5.NOD
CD4� T-cells. BDC2.5 T-cells recognize a yet-unidentified
�-cell antigen presented by IAg7, a unique class II molecule
found in NOD and derivative-strain mice (23–25). Although
BDC2.5.NOD (NOD.BDC) mice harbor a monoclonal pop-
ulation of �-cell–reactive T-cells and possess a substantial
peri-insulitis, they rarely become diabetic because of in-
ducible costimulatory molecule (ICOS)-, transforming
growth factor-�(TGF-�)–, and programmed death (PD)-1
Treg–dependent mechanisms (26–28). Yet adoptively
transferring their T-cells to major histocompatibility com-
plex (MHC)–matched lymphopenic recipients results in
rapid �-cell destruction and diabetes (24,29).

Herein, we show that diabetes resulting from adoptively
transferred BDC.NOD T-cells can be prevented by a brief
course of anti-CD154 and CTLA4-Ig. This therapy is suc-
cessful in the presence of high T-cell precursor frequency
and antigen-specific and homeostatic T-cell activation,
known barriers to costimulation blockade-mediated toler-
ance. Long-term protected recipients harbor T-cells
capable of causing diabetes, and immune tolerance is
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dependent on preexisting Tregs. Understanding how non-
deletional peripheral tolerance can be generated by ther-
apeutic means is likely an important step in developing
safe and effective approaches to prevent and treat autoim-
mune conditions such as type 1 diabetes.

RESEARCH DESIGN AND METHODS

BDC2.5.NOD (BDC.NOD), nod.scid, and NOD mice from The Jackson Labo-
ratories (Bar Harbor, ME) were bred and housed in sterile conditions at
Emory University. BDC.NOD mice were defined via blood phenotype contain-
ing B220� cells and CD3� cells that were uniformly v�4�. Studies were
conducted in accordance with the Emory University Institutional Animal Care
and Use Committee guidelines.

Fluorochrome-conjugated monoclonal antibodies to CD3, CD4, v�4, CD8,
B220, CD62L, CD25, CD44, interferon-� (IFN-�), tumor necrosis factor-�
(TNF-�), interleukin (IL)-2, IL-4, and IL-10 for flow cytometry were from BD
Biosciences/Pharmingen. For immunohistochemistry, CD4, v�4, and B220
monoclonal antibodies were obtained from BD Biosciences/Pharmingen, and
anti-insulin was from Dako. Anti-FoxP3 staining kits were from eBiosciences.
In vivo treatment antibodies, anti-CD154(MR1), CTLA4-Ig, anti-PD1(J43),
anti-ICOS(17G9), anti-CD25(PCC-61.5.3), and anti-TGF-�(1D11.16.8) were
from BioExpress (West Lebanon, NH).
Lymphocyte preparation and adoptive transfer. Lymphocytes were ob-
tained from indicated mice after euthanasia. Pan-lymph nodes and spleens
were harvested, made into cell suspensions, and washed (RPMI�5% FCS). For
CD25 depletion, lymphocytes incubated with anti-CD25–coated magnetic
beads (Miltenyi Biotec) were column collected (VarioMacs; Miltenyi-Biotec).
For fluorescent-labeling, cells were incubated with 5 �mol/l carboxyfluores-
cein succinimidyl ester (CFSE) (Invitrogen) at 37°C �10 min, quenched with
cold RPMI�10% FCS, and washed. Of the indicated cells, 2.5 � 106 in 500 �l
RPMI were injected via lateral tail vein of mice indicated.
Administration of costimulation blockade, other antibodies, and cyclophos-

phamide. Recipients received 500 �g anti-CD154 and/or CTLA4-Ig intraperitoneally
every other day for five doses. Other antibody treatments were intraperitoneally
administered: anti-PD-1, 500 �l once and then 250 �g every other day for five doses;
anti-TGF�, 1 mg once and then 500 �g every 5 days for five doses; anti-ICOS, 500 �g
on days 1 and 3; anti-CD25, 1 mg once. Cyclophosphamide (Mead Johnson) was
intraperitoneally administered once at 200 mg/kg.

Assessment of diabetes and insulin treatment. Tail vein blood was
analyzed using a Bayer Ascensia Elite Glucometer. Diabetes was defined as
two consecutive readings of �250 mg/dl. When needed, one to two insulin
pellets (LinBit, Linshin, Canada) were introduced subcutaneously to maintain
diabetic mice.
Immunohistochemistry. Pancreata were frozen in OCT compound in liquid
nitrogen. Cut sections (5 �m) were incubated with the indicated antibody
using the LSAB�System HRP-Immunohistochemistry kit (Dako Cytomation)
and visualized with light microscopy.
Flow cytometry. Lymphocytes (5 � 105) were incubated with fluorochrome-
conjugated antibodies for 20 min, washed, and analyzed using a FACSCalibur
(BD Biosciences) and FlowJo (Tree Star). For FoxP3 analysis, cells were first
surface stained and then processed per the manufacturer’s instructions.
Intracellular cytokine staining. Lymphocytes were incubated in RPMI plus
10% FCS at 37°C in the absence or presence of 10 �g/ml BDC2.5 peptide
(RTRPLWVRME [28]; Emory University Microchemical facility). After 5 h,
brefeldin A (GolgiPlug, BD/Bioscience) was added for 1 h. Cells were then
stained for surface molecules, washed, fixed, permeabilized (BD Cytofix/
Cytoperm kit; BD Biosciences), and incubated with anti-cytokine–conjugated
antibodies for 30 min at 4°C.
Statistics. Where indicated, unpaired Student’s t test was used. Significance
was determined if the P value was �0.05.

RESULTS

Combined therapy with anti-CD154 and CTLA4-Ig
prevents adoptive transfer of diabetes by BDC.NOD
T-cells. To dissect how costimulatory blockers prevent
autoimmune diabetes, we studied the effect of anti-CD154
and CTLA4-Ig on diabetes induced in nod.scid recipients
of BDC.NOD lymphocytes. Within 2 weeks, �95% of such
recipients developed hyperglycemia. When recipients
were also treated with five doses of MR1 anti-CD154 and
CTLA4-Ig starting the same day as cell transfer, diabetes
was prevented in �90% of recipients (Fig. 1). In mice
treated with either anti-CD154 or CTL4-Ig, protection was
not as complete or long lasting. A delay of treatment to day
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FIG. 1. Costimulation blockade prevents diabetes after adoptive transfer of BDC.NOD cells to nod.scid mice. A: The phenotype of cells from
BDC.NOD donors, demonstrating the presence of T- and B-cells, with uniform population of v� 4� transgenic T-cells. nod.scid (N/S) mice, which
lack T- or B-cells, and NOD mice are shown for comparison. B: After adoptive transfer of 2.5 � 106 cells from nondiabetic BDC.NOD mice, nod.scid
recipients become diabetic usually within 2 weeks. Therapy with five doses of 200 �g MR1 and CTLA4-Ig beginning the day of adoptive transfer
(day 0) protects most recipients from diabetes; whereas protection was not as complete or lasting with the individual reagents, and there was
no impact of this therapy on diabetes if combined treatment was delayed to day �3 after adoptive transfer.
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FIG. 2. Islet of recipients of diabetogenic cells and costimulation blockade lack inflammation. nod.scid mice were adoptively transferred without
or with costimulation blockade as above. Recipients were killed at days 3, 7, 10, and 14 after adoptive transfer. Pancreata from killed mice were
frozen in OCT compound in liquid nitrogen, cut, and examined using immunohistochemistry for insulin (A), CD4 (B), v� 4 (C), and B220 (D).
Recipients of cells only show progressive islet destruction after insulitis within 2 weeks after adoptive transfer. Recipients of BDC2.5 cells and
costimulation blockade remain free from peri-islet inflammation and retain islets. For comparison, stained sections of pancreata from
nondiabetic NOD, BDC.NOD, and nod.scid mice are shown. Shown are representative experiments of at least three independent experiments.
(Please see http://dx.doi.org/10.2337/db07-1712 for a high-quality digital representation of this figure.)

CD28/CD154 BLOCKADE AND AUTOIMMUNE DIABETES

2674 DIABETES, VOL. 57, OCTOBER 2008



�3 after adoptive transfer failed to impact diabetes inci-
dences or tempo (Fig. 1).
CD154/CD28 blockade prevents peri- and intra-islet
inflammation and destructive insulitis in recipients
of BDC.NOD cells. Autoimmune diabetes is the result of
a stepwise breakdown of self-tolerance to insulin-produc-

ing �-cells (30). In NOD and BDC.NOD mice, �-cell auto-
reactive T-cells can circulate without pathogenic effects
because of endogenous peripheral self-tolerance mech-
anisms (checkpoint 1). Naïve autoreactive T-cells can
become partially activated and accumulate in a nonde-
structive manner around the islets of Langerhans (peri-
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FIG. 2. Continued.
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insulitis). During this phase, �-cell–destructive T-cells and
disease are held “in check” by local regulatory (Treg)
mechanisms (checkpoint 2). To investigate where co-
stimulation blockade arrests diabetes development in our

model, we evaluated pancreata of BDC.NOD cell recipi-
ents (Fig. 2). Within 3 days after transfer, recipients of
BDC.NOD cells alone demonstrated T-cells and B-cells in
and around islets. Infiltrate increased through day 7, and

FIG. 3. Mice protected from diabetes after
adoptive transfer and costimulation block-
ade retain transgenic T-cells that acquire
mature memory cell markers. nod.scid mice
were adoptively transferred with BDC2.5
cells and rendered diabetic and protected
from diabetes using CD28/CD154 blockade
as above. After 6 weeks, mice were killed,
and pancreata and lymphoid organs were
harvested. Pancreata were evaluated by in-
sulin immunohistochemistry (A) in recipi-
ents for CD3� and v� 4� cells via flow
cytometry (B). T-cells from long-term dia-
betic and protected mice, BDC.NOD donors,
and NOD mice were evaluated for CD62L
(C) and CD44 (D). Shown are results of two
separate experiments.
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by day 14 there was nearly complete islet obliteration,
concurrent with clinical disease. In sharp contrast, pan-
creata of recipients treated with costimulation blockade

possessed only sparse inflammation in the days, weeks,
and months after BDC.NOD cell transfer. This suggests
that interrupting the CD154 and CD28 pathways prevents

FIG. 4. Proinflammatory cytokine expression in donor, diabetic, and
tolerant adoptive transfer recipients. Lymphocytes were isolated from
Nod.scid mice rendered diabetic, protected from diabetes with costimula-
tion blockade (both 6 weeks after adoptive transfer), BDC.NOD mice, and
NOD mice. After a 6 h in vitro incubation with 10 �g/ml BDC2.5 stimula-
tory peptide (RTRPLWVRME; 1040-63; 28), cells were stained for surface
molecules fixed; permeabilized; stained for IL-2, TNF-�, and IFN-�; and
then evaluated by flow cytometry. During analysis, cells were gated on
CD3�CD4�, which in adoptive transfer recipients usually is composed of
>90–95% v� 4� cells. A representative sample of flow plots from three to
four separate experiments is shown (A). Results are displayed in graphical
form (B), where the P value of * vs. ** and * vs. *** is <0.05, and the P

value of ** vs. *** is NS.

M.R. RIGBY AND ASSOCIATES

DIABETES, VOL. 57, OCTOBER 2008 2677



the anti–�-cell inflammatory response early in the patho-
genic process, at a time equivalent to Checkpoint 1, before
the trafficking of lymphocytes to islets.
Transgenic T-cells are present in mice protected
from diabetes by costimulation blockade and express
an antigen-experienced phenotype. To ascertain the
fate of transferred cells in diabetic and protected nod.scid
mice, T-cells in recipients were isolated and evaluated.
Both diabetic mice and protected recipients harbor CD4�

T-cells that are exclusively v�4� (Fig. 3A). In protected
recipients, BDC2.5 T-cells are found in the spleen and
draining and nondraining nodes at the time when pancre-
ata are devoid of inflammation. The presence of this
transgenic T-cell population in the presence of target
antigen without pathogenesis is consistent with a state of
peripheral immune tolerance and additionally suggests
against deletion or “central” tolerance as the primary
toleragenic mechanism (31,32).

Furthermore, analysis of cell surface markers suggests
T-cells in both diabetic and tolerant recipients go through
similar maturational changes. T-cells from donor BDC-
.NOD mice contain a preponderance of CD62L�, CD44�

(naïve) CD4� T-cells, whereas T-cells from both diabetic
and tolerant recipients express high levels of CD44 and
low levels of CD62L (Fig. 3B). These similar surface
marker changes suggest that transferred cells have similar
immunological “experiences” and encounters regardless
of disease state or anatomic location, and therefore sug-
gest against immune ignorance in this model of �-cell
protection (33).
Cytokine expression from T-cells from protected and
diabetic recipients. T-cell functional and maturational
status can often be inferred by the types of cytokines
expressed and the tempo of production (34). T-cells in
nondiabetic recipients of BDC.NOD cells are not patho-
genic to the host, whereas cells in diabetic recipients are.
One explanation could be that T-cells from protected mice
have acquired a “less” proinflammatory profile than cells
from protected mice. To investigate this, cytokine produc-
tion after antigen encounter was evaluated. After in vitro
antigen-specific stimulation, there is greater expression of

IFN-�, TNF-�, and IL-2 from either tolerant or diabetic
mice compared with nascent BDC.NOD mice (Fig. 4A).
There was also a nonsignificant trend for greater expres-
sion of these proinflammatory cytokines in cells from
diabetic compared with tolerant mice. (Fig. 4B). Few cells
(i.e., 	5%) from either tolerant or diabetic mice expressed
significant IL-4 or IL-10 (data not shown). This suggests
that T-cells from all recipients, whether diabetic or pro-
tected, have transitioned from functionally naïve to ma-
ture memory T-cells with a highly proinflammatory profile.
Therefore �-cell protection does not appear to be due to
an overwhelming shift from Th1-type T-cells to T-cells that
express abundant regulatory cytokines (i.e., Th2 or regu-
latory cells).
Suppression of diabetogenic Teff in protected mice.

We examined the robustness of engendered tolerance.
Protected mice that were rechallenged with freshly iso-
lated BDC.NOD cells remained normoglycemic (Fig. 5A).
We also examined whether tolerant mice continued to
harbor cells capable of �-cell destruction. Lymphocytes
from tolerant and diabetic recipients were adoptively
transferred into unmanipulated nod.scid mice. Regardless
of the donor, recipients developed diabetes with a tempo
similar to that of initial disease transfer (Fig. 5B). This
suggests that pathogenic cells are contained in tolerant
mice but under continued, active suppression. To investi-
gate the mechanism of this protection, long-term nondia-
betic recipients were treated with agents that interfere
with endogenous regulatory processes and precipitate
autoimmune diabetes in NOD and BDC.NOD mice. Pro-
tected mice remained normoglycemic after treatment with
anti-CD25, anti-PD1, anti-ICOS, and anti-TGF� but rapidly
developed diabetes after a single dose of cyclophospha-
mide (Fig. 5C).
Tregs expand in the absence and presence of co-

stimulation blockade. Our data indicate that combined
CD154/CD28-blockade arrests diabetogenesis before the
peri-insulitis stage. Tregs are involved in the induction and
maintenance of immune tolerance in many models of allo-
and autoimmunity. In NOD and BDC.NOD mice, Tregs
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FIG. 5. Mice rendered tolerant to diabetes are further protected from new diabetogenic T-cells and harbor pathogenic T-cells. A: After 6 weeks,
nod.scid recipients of BDC2.5 cells protected from diabetes with costimulation blockade were given a second adoptive transfer of BDC2.5 cells
in the absence of any further treatment. Unmanipulated nod.scid mice were also treated with BDC2.5 cells only. B: In other experiments, mice
were protected from diabetes and others were rendered diabetic and maintained on insulin for 6 weeks. Splenocytes and LN cells were isolated
from such mice and 2.5 � 106 resultant cells were adoptively transferred into new nod.scid recipients. C: Lastly, mice that were rendered tolerant
were treated with agents known to precipitate diabetes in other susceptible mouse models, including anti-CD25, anti-ICOS, anti-PD1, anti-TGF�,
or cyclophosphamide.
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contribute to natural peripheral self-tolerance by inter-
fering with the progression from peri-insulitis to de-
structive insulitis (checkpoint 2). To further elucidate
the role of Tregs in this model, BDC.NOD donors and
diabetic and tolerant recipients were evaluated for
Tregs (v�4�CD4�FoxP3�) (Fig. 6). Protected mice con-
tain a greater percentage of Tregs than diabetic recipients,
and interestingly both recipient groups have higher Treg
percentages than donor BDC.NOD mice (Fig. 6) (35).
Although Tregs (regulatory) and Teffs (nonregulatory)
expand in nod.scid mice treated with CD154/CD28 block-
ade, expanded Teffs do not cause �-cell destruction con-
current with an apparent preferential expansion of Tregs.
Tregs are required for costimulation blockade–medi-
ated tolerance. To better define the role of Tregs in
tolerance generation with costimulation blockade, we
depleted the donor cell inoculum of CD25-expressing
cells, resulting in a �10- and �3- to 4-fold reduction in
CD25� and FoxP3� T-cells, respectively (Fig. 7A). Recip-
ients of Treg-reduced cells and costimulation blockade
were not protected from diabetes, although diabetes onset
was delayed from 2 to 4 weeks (Fig. 7B). From this, we
conclude that a critical mass of preexisting Tregs appears
requisite for the long-term immune protection rendered by
CD154/CD28 blockade.
Costimulation blockade blunts early proliferation of
antigen-specific T-cells. Although recipients of Treg-
reduced cells and CD154/CD28 blockade acquire disease,
they do so more slowly than in the absence of costimula-
tion blockade, suggesting that there is a direct, but tran-
sient, suppressive effect of costimulation blockade on
Teffs. To examine whether costimulation blockade dis-
rupts the early steps in diabetogenic T-cell activation in
vivo, CFSE-labeled BDC.NOD cells were transferred into
nod.scid recipients in the absence or presence of costimu-
lation blockade. Three days later, CFSE content in

v�4�CD4� cells from recipients was analyzed (Fig. 8). In
recipients of cells only, the proliferative response was
most robust in draining pancreatic lymph nodes versus
nondraining nodes, consistent with antigen-specific activa-
tion (36,37). Yet there was some comparatively minimal
division in nondraining sites consistent with homeostatic
proliferation (38). In recipients of cells and costimulation
blockade, there was a distinct retardation of early prolif-
eration in draining nodes. Yet by day 10, CFSE signals in
cells in draining and nondraining compartments were fully
diluted. Therefore, in the absence of costimulation block-
ade, cells in the draining nodes have already been through
several rounds of antigen-driven proliferation, which is a
possible explanation of why CD154/CD28 blockade must
be given early (before 3 days) after adoptive transfer to
prevent diabetes (Fig. 9B and C).

DISCUSSION

We used the BDC2.5.NOD cell transfer model of diabetes
to better understand how costimulatory agents prevent
autoimmunity and establish immune tolerance. Herein, we
show that blocking CD154 and CD28 signaling can engen-
der robust peripheral tolerance in the face of high antigen-
specific T-cell precursor frequency and lymphopenia, two
factors shown to be significant obstacles to costimulation
blockade–rendered immune protection (39,40). In our
model, the donor cell inoculum contains a relatively pure
precursor frequency of �-cell–specific T-cells. Recent stud-
ies in allograft models, including work from our own
group, suggest that high antigen-specific T-cell precursor
frequency can impair the toleragenic effects of costimula-
tion blockade and can be responsible for costimulation
blockade–resistant allograft rejection (40). Current collab-
orative studies are underway to investigate the contribu-
tions of precursor frequency versus absolute numbers of
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FIG. 6. More FoxP3� T-cells are found in tolerant than diabetic or donor BDC.NOD mice. Lymphocytes were isolated from pancreatic (Panc LN)
and mesenteric and cervical nondraining LNs (ND LN) from nod.scid mice rendered diabetic, protected from diabetes with costimulation blockade
(both 6 weeks after adoptive transfer), from BDC.NOD mice, and from NOD mice. Cells were stained for surface molecules, fixed, permeabilized,
stained for intracellular FoxP3, and then analyzed by flow cytometry. FoxP3 expression gated on CD4�CD3� cells is shown and is representative
of at least four independent experiments.
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antigen-specific Teffs and Tregs in the susceptibility versus
resistance to costimulation blockade-mediated tolerance.

In this model of immune-mediated diabetes, pathogenic

FIG. 7. Tregs are required for costimulation blockade–mediated peripheral tolerance. Donor BDC2.5 cells were depleted of CD25� cells using a
negative selection antibody column. Shown are representative plots of FoxP3�CD25� expression on CD4 T-cells before (A) and after (B)
depletion. C: In the absence or presence of 5 days of combined costimulation blockade therapy, 2.5 � 106 of the CD25-depeleted cells were
adoptively transferred into nod.scid mice, and hyperglycemia was assessed.

FIG. 8. Anti-CD154 and CTLA4-Ig blunts early T-cell proliferation in
draining pancreatic lymph nodes. BDC2.5 cells were labeled with CFSE
and adoptive transferred into nod.scid mice. Some recipients were
otherwise untreated, whereas others were given combined costimula-
tion blockade on the day of adoptive transfer (day 0) and on day �2. On
day �3, nondraining LNs (ND LN) and draining pancreatic LN (Panc
LN) were harvested. Shown are representative flow plots of CSFE
content on CD4� v� 4� cells. The data are representative of three
independent experiments.
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FIG. 9. Costimulation blockade induced peripheral immune tolerance
by combining therapeutic and endogenous immunomodulatory mecha-
nisms. Using these data in this report, we have developed a working
model to explain our findings: After adoptive transfer of a T-cell
inoculum containing Teffs and Tregs from nondiabetic BDC.NOD mice
(A) into nod.scid mice, diabetogenic T-cells become activated and
proliferate and destroy �-cells, which results in diabetes (A). Implicit
in this model is the preferential expansion of diabetogenic Teffs over
Tregs (B). In recipients treated with CD154/CD28 blockade, the ex-
pansion of diabetogenic Teffs is blunted directly by this therapy (step
1) with concomitant expansion of protective Tregs (step 2) to protect
�-cells. The immunomodulatory effects of both steps 1 and 2 are
required for generating and maintaining long-term peripheral toler-
ance by costimulation blockade.
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T-cells likely expand by both antigen-specific and homeo-
static factors (31,38,39). Many pathways, including those
involving IL-15, IL-7, IL-21, and weak TcR:MHC signaling,
work to nonspecifically activate and expand lymphocytes
to “fill the empty space” in lymphopenic recipients (38,41).
Chemotherapy, immunosuppressive medicines, and viral
infections can result in lymphopenia, and questions have
been raised regarding the utility of costimulation blockade
in allo- and autoimmunity in these settings (38,39). Specif-
ically, both human and experimental autoimmune diabetes
have been associated with infections, T-cell lymphopenia,
and homeostatic activation (8,38,42,43). In our report, we
show that T-cells in nondraining nodes proliferated, likely
because of homeostatic factors; yet in draining pancreatic
nodes, T-cells proliferate more vigorously, suggesting that
specific antigen encounter provides more potent activating
signals to T-cells than homeostatic factors. Our finding
that costimulation blockade can prevent T-cell–mediated
destruction in a lymphopenic environment contrasts those
by Wu et al. (39), who found that cardiac allographs were
rejected in T-cell–depleted mice treated with “toleragenic”
doses of anti-CD154 and CTLA-4Ig. As a result, the authors
raised the concern of the utility of costimulation blockade
in conditions with concomitant lymphopenia. In our work,
costimulation blockade is able to temporarily dampen the
accelerated T-cell proliferation in draining nodes but ap-
pears to have little effect on underlying (homeostatic)
proliferation. In D011.10 transgenic mice, Prlic et al. (44)
showed that homeostatic expansion of T-cells occurs
independently from CD28, CD154, or 4–1BB signaling. We
also show that in a lymphopenic environment, in the
presence of CD154/CD28 blockade, immature T-cells can
proliferate and transition to “mature” T-cells (CD44� and
CD62L�) with vigorous proinflammatory cytokine recall
responses, yet do not initiate �-cell destruction. This
suggests that Teff proliferation and maturation can be
uncoupled from pathogenic activities and that such
“placid” activation of Teffs may play a role in immune
tolerance. Because our results demonstrate that costimu-
lation blockers can prevent the pathogenic activities of
Teffs in lymphopenic recipients, such agents should not be
unilaterally dismissed from consideration in treating auto-
and alloimmunity during times of spontaneous or iatro-
genic lymphocyte depletion.

Our data show that diabetes protection clearly requires
early blockade of the CD154:CD40 and CD28:B7 pathways.
These pathways are integral in the initial steps in genera-
tion of Teffs from quiescent T-cells. Diabetes tempo and
severity is not impacted with “delayed” costimulation
blockade, even if given at times when recipient pancreata
are devoid of inflammation (i.e., 3 days after transfer).
Teffs continue to traffic to islets and orchestrate �-cell
killing during delayed CD154/CD28 blockade, suggesting
that many of the “pathogenic” functions of Teffs do not
appear to require ongoing signaling through these path-
ways. This work may have clinically important transla-
tional implications. For example, if such therapeutic
agents are only efficacious in disease prevention if given
before the onset of diabetes pathogenesis, then that would
strongly support efforts for the early identification and
treatment of pre-diabetic individuals before or at the brink
of developing diabetes. This also stresses the need to
develop immunotherapies that arrest diabetogenic T-cells
after initial activation but before tissue destruction.

It is well established that Tregs are one of the primary
mechanisms to maintain natural self-tolerance in vivo, yet

the precise mechanism of how these cells provide protec-
tion is unclear (17,35,45,46). Our work suggests that Tregs
can also be vitally important for immune tolerance in-
duced via therapeutic interventions. We challenged pro-
tected recipients with agents that induce diabetes in NOD
and/or BDC2.5.NOD mice. Specifically, we used antibodies
to ICOS, PD-1, TGF-�, and CD25 to target Treg-mediated
cellular and soluble processes that maintain self-tolerance
and diabetes prevention in NOD and BDC2.5.NOD mice
(26,47,48). These therapies did not precipitate diabetes in
our protected adoptive transfer recipients. Although addi-
tional specific approaches can be used to attempt to break
tolerance to further investigate the mechanisms involved
in maintaining immune tolerance, the current studies
suggest that processes integral to maintaining natural
�-cell self-tolerance are not vital in therapeutically in-
duced tolerance. Protected recipients do develop diabetes
after cyclophosphamide, a treatment that nonspecifically
impairs Treg function and/or survival, and lymphocytes
from protected mice readily transfer disease (49). Taken
together, this shows that diabetogenic Teffs are not only
present in protected mice but under active regulation.
Because the mechanism of this induced tolerance appears
to be different from those involved with endogenous
self-tolerance, further studies to elucidate these mecha-
nisms may identify additional processes that can be ex-
ploited to therapeutically render peripheral tolerance.

Not only do Treg-mediated mechanisms appear to be
critically involved in the maintenance of immune toler-
ance, but a particularly exciting finding of this report is
that Tregs also appear integral in establishing therapeuti-
cally induced immune tolerance. Recipients of Treg-de-
pleted cells and costimulation blockade develop diabetes,
albeit at a slower tempo than cell recipients that do not
receive costimulation blockade. In the absence of Tregs,
CD154/CD28 blockade likely directly, but transiently, “sup-
presses” Teff activation and pathogenicity, resulting in
delayed diabetes. It is at this junction that we hypothesize
that Tregs expand, populate, and become established to
protect �-cells. This would imply that Tregs can expand
and function in the presence of costimulation blockade.
Consistent with this premise, long-term protected recipi-
ents have higher Treg-to-Teff ratios than in diabetic recip-
ients. Knockout studies in NOD mice indicate that the Teff
and Tregs have different costimulatory requirements at
different ontological stages. CD28-knockout NOD mice
lack Tregs yet contain highly pathogenic Teffs and uni-
formly develop diabetes, indicating that CD28 signals are
more important in Treg than Teff development (13). It is
conceivable that the CD28-signaling requirements of pe-
ripheral Teffs and Tregs differ as well. On the other hand,
CD154 KO NOD mice are protected from disease, appar-
ently because of the specific need for CD154 signaling in
the pathogenic transformation of peripheral Teffs (16).
These knockout studies can serve as the foundation to
encourage further search for unique survival or activation
pathways in Teffs and Tregs and reagents that can selec-
tively target them.

Based on the recognition that the expression of autoim-
mune diabetes is determined, in part, by Treg-to-Teff
balance, we developed a working model of how nondele-
tional peripheral tolerance is induced with therapeutic
costimulation blockade and maintained by natural (Treg)
regulatory mechanisms (13,14,50) (Fig. 9). We hypothesize
a two-step process for long-term �-cell protection from
diabetogenic T-cells after costimulation blockade (Fig.

M.R. RIGBY AND ASSOCIATES

DIABETES, VOL. 57, OCTOBER 2008 2681



9B). Step 1 is the direct suppression of the early antigen-
and homeostatic-driven pathogenic transformation of cir-
culating diabetogenic T-cells by CD28/CD154 blockade.
Yet, during this time, T-cells can proliferate and “mature”
in the absence of �-cell destruction. Assuming that Tregs
are less reliant on CD28 and CD154 signaling, during
costimulation blockade, Tregs expand and mature due to
antigen- and nonantigen-specific interaction. Eventually,
the direct suppressive effect of costimulation blockade
wanes. �-Cells remain protected because of step 2, which
is the continued prevention of Teff pathogenicity by the
Tregs that have expanded and become “entrenched.” Al-
though Tregs are involved in this continued protection,
they appear to use different mechanisms than those used
to halt naturally occurring diabetes at the peri-insulits
stage (checkpoint 2). In this way, exogenous and endoge-
nous immunomodulatory mechanisms coordinate and co-
operate in the short and long term to maintain a
nonpathological Treg-to-Teff balance and preservation of
�-cells.

We believe that this work demonstrates how ap-
proaches that promote the cooperation of therapeutic and
endogenous immunomodulatory mechanisms can be used
to establish a sustained state of antigen-specific immune
protection. This approach may be of particular relevance
to clinical translation as we find immune tolerance can be
achieved in the presence of high antigen-specific T-cell
precursor frequency and lymphopenia, both situations
purported to be present near the onset of type 1 diabetes
and present in other autoimmune and alloimmunity states.
Understanding how peripheral immune tolerance can be
induced and maintained in vivo using therapeutic agents
will no doubt reveal sophisticated coordination of highly
complex immune networks and interactions. Depending
on immune state, antigenic target, and condition, different
reagents and approaches may be required to render effec-
tive, long-lasting immune protection. The study of different
models of immune dysregulation may find unique immu-
noprotective mechanisms translatable to a variety of auto-
and alloimmune conditions. We believe that T-cell–selec-
tive agents that impair effector T-cells while encouraging
the (re)establishment of natural immune regulatory mech-
anisms may provide a powerful, yet safe, approach to treat
T-cell–mediated diseases in humans, including type 1
diabetes.
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