

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect

Journal of Clinical Neuroscience

journal homepage: www.elsevier.com/locate/jocn

Correspondence Reissuing the sigma receptors for SARS-CoV-2

Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey

ARTICLE INFO

Article history: Received 15 July 2020 Accepted 9 August 2020

Keywords: Sigma receptors Brain Coronavirus pandemic COVID-19 Antiviral agents SARS-CoV-2

Dear editor,

Receptor binding is one of the major determinants of tissue tropism for coronaviruses and seems an important mediator of the pathophysiology of COVID-19. With this regard, the emerging review article published in the Journal by Armocida et al. has drawn our special attention to the possible involvement of a broad range of receptors in the neurotropism and neuronal cell entry of SARS-CoV-2 [1]. Despite the effects of SARS-CoV-2 on the central nervous system (CNS) currently remained inconclusive, a foregoing line of evidence supports the hermeneutical notion that the CNS transmission of SARS-CoV-2 might be via either direct viral infiltration or angiotensin-converting enzyme-2 receptors [2,3]. Alternatively and presumably, the recent interactome study by Gordon et al. adumbrated that Sigma1 (σ 1) and Sigma2 (σ 2) receptors might play a role in the neuronal infectivity of SARS-CoV-2 [4].

Both σ 1 and σ 2 are widely expressed in the CNS structures including the spinal cord, pons, cerebellum, hippocampus, hypothalamus, midbrain, cerebral cortex and olfactory bulb. Protein architecture of σ 1 incorporates cholesterol-binding chaperones that are located in lipid-rich regions of the mitochondriaassociated endoplasmic reticulum (ER) membranes (MAMs). These ER-embedded protein microdomains have been attributed to

E-mail address: yhasanbalcioglu@gmail.com (Y.H. Balcioglu).

port in MAMs. These functions of $\sigma 1$ have also been postulated to take part in the mediation of the early stages of viral RNA replication. Previous research has suggested that pharmacological manipulation of both σ 1 and σ 2 activity might provide antiviral activity, particularly for RNA viruses including hepatitis C virus (HCV) and human immunodeficiency viruses (HIV). Functional deficiency and reduced expression of σ 1 might be associated with decreased intracellular titration of HCV-RNA [5], while a pharmacological selective σ 1 antagonist BD1047 has been shown to alter the stimulating effect of cocaine on the intracellular HIV-1 expression in microglia [6]. These findings indicate that σ receptors may also be involved in the neuronal transmission of SARS-CoV-2, which has a genome structure similar to those of HCV and HIV. Clinical observations that many patients with COVID-19 present with anosmia may empirically support our argument as SARS-CoV-2 might have an affinity to olfactor bulb which is enriched in σ receptors. Another important implication of σ receptor involvement in the SARS-CoV-2 infection may lie in the argument that numerous psychotropics likes of haloperidol, fluvoxamine, fluphenazine and chlorpromazine considerably interacts with σ receptors, which may highlight the potential clinical utility of such agents in the management of SARS-CoV-2 infection. Nevertheless, such an argument needs decent support from well-established clinical research. Although abovementioned postulations galvanize our interest in the comprehension of the pathophysiology of CNS involvement of SARS-CoV-2, we disclose that much more work is required to illuminate and guide the specific underpinnings of SARS-CoV-2's brain involvement.

maintaining Ca⁺² signals and involving in lipid storage and trans-

瘤

neuroscionad

^{*} Address: Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology, and Neurosurgery, 34147 Istanbul, Turkey.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

 Armocida D, Palmieri M, Frati A, Santoro A, Pesce A. How SARS-Cov-2 can involve the central nervous system. A systematic analysis of literature of the department of human neurosciences of Sapienza university, Italy. J Clin Neurosci 2020;79:231–6. <u>https://doi.org/10.1016/i.jocn.2020.07.007</u>.

- [2] Balcioglu YH, Yesilkaya UH, Gokcay H, Kirlioglu SS. May the central nervous system be fogged by the cytokine storm in COVID-19?: An appraisal. J Neuroimmune Pharmacol 2020:1–2. <u>https://doi.org/10.1007/s11481-020-09932-9</u>.
- [3] Yesilkaya UH, Balcioglu YH. Neuroimmune correlates of the nervous system involvement of COVID-19: A commentary. J Clin Neurosci 2020;78:449–50.
- [4] Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020;583(7816):459-68.
- [5] Friesland M, Mingorance L, Chung J, Chisari FV, Gastaminza P. Sigma-1 receptor regulates early steps of viral RNA replication at the onset of hepatitis C virus infection. J Virol 2013;87(11):6377–90. <u>https://doi.org/10.1128/jvi.03557-12</u>.
- [6] Gekker G, Hu S, Sheng WS, Rock RB, Lokensgard JR, Peterson PK. Cocaineinduced HIV-1 expression in microglia involves sigma-1 receptors and transforming growth factor-β1. Int Immunopharmacol 2006;6(6):1029–33. https://doi.org/10.1016/j.intimp.2005.12.005.