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Abstract. 	We aimed to determine the effectiveness of estrus detection based on continuous measurements of the ventral tail 
base surface temperature (ST) with supervised machine learning in cattle. ST data were obtained through 51 estrus cycles on 
11 female cattle (six Holsteins and five Japanese Blacks) using the tail-attached sensor. Three estrus detection models were 
constructed with the training data (n = 17) using machine learning techniques (random forest, artificial neural network, and 
support vector machine) based on 13 features extracted from sensing data (indicative of estrus-associated ST changes). Estrus 
detection abilities of the three models on test data (n = 34) were not statistically different among models in terms of sensitivity 
and precision (range 50.0% to 58.8% and 60.6% to 73.1%, respectively). The relatively poor performance of the models might 
indicate the difficulty of separating estrus-associated ST changes from estrus-independent fluctuations in ST.
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In cattle, body core (typically vaginal) temperature decreases transiently a few days before estrus followed by a sharp increase 
at estrus [1, 2]. The proestrus decrease in temperature is suggested to 
reflect corpus luteum regression [3] and the estrual rise in temperature 
is closely associated with the preovulatory luteinizing hormone surge 
[4]. Several approaches to detect the temperature changes during 
estrus have been studied using wearable sensors applied to different 
body parts; such as the rumen [5], vagina [2, 6], and ear canal [7]. 
Monitoring the body surface temperature (ST) at the ventral tail 
base was offered as a less invasive and easy-to-apply (the fitting 
of the sensor device requires only a few minutes without strict 
hygiene management and restriction of body movement) approach for 
monitoring body temperature [8, 9], and estrus could be detected as 
high as sensitivity (true-positive/[true-positive + false-negative]) of 
78% and precision (true-positive/[true-positive + false-positive]) of 
70% by setting appropriate cut-offs [8]. Supervised machine learning 
techniques have been proposed as alternatives to simple thresholding 
methods and seem to be good candidates for handling wearable 
sensing data for estrus detection [2, 10]. In the use of a vaginal 
sensor, we previously developed an efficient estrus detection model 
(both sensitivity and precision were 94%) showing the superiority 
to combine two parameters (vaginal temperature and conductivity) 
[2]. However, these algorithms have never been applied to ST data 
for bovine estrus detection. In the present study, we attempted to 
develop estrus detection models with a single parameter ST by 

using appropriate features, hyperparameters, and machine learning 
algorithms used for modeling.
First, to confirm the feasibility of detecting estrus-associated ST 

changes by the tail-attached sensor, we measured ST throughout 17 
estrous cycles. The standing estrous periods of these cycles were 
confirmed by testing with herd-mates. To exclude the influence of 
the circadian rhythm of ST, the actual raw ST values were calculated 
as residual ST (rST = hourly maximum ST value − mean ST value 
for the same hour on the previous 3 days) and analyzed. The mean 
rST started to increase from approximately 12 h before the onset 
of estrus and the values during −1 to +15 h from the onset of estrus 
were higher than that of the control period (−192 h to −121 h) (P 
< 0.05; Fig. 1). Similar to the previous study [8], rST showed the 
highest value at 6 h after the beginning of estrus. However, the 
transient decrease a few days before estrus observed in the previous 
study was absent. This discordant result might be explained by the 
different sensors used as described below and/or by individual cow 
difference in ST changes, because it was reported that 10% to 16% 
of the cycling cows did not show the proestrus decrease in body 
temperature [6, 11]. Nevertheless, substantial rST changes around 
estrus were detected successfully by the present tail-attached sensor.
Because a given numerical value for rST seemed not to be neces-

sarily indicative of estrus without monitoring its sequential changes, 
we next extracted the features listed in Table 1 to follow up the 
changes in rST around estrus, and to build the estrus detection models 
through machine learning techniques. As examples of features, the 
differences between the current smoothened rST and the minimum 
and maximum values during the last 12 h of smoothened rST should 
both be positive values during 12 h before the onset of estrus, since 
rST showed a continuously increasing trend during this period. Using 
these features, binary classification models— namely, classification 
into “in estrus” or “not in estrus” for a particular time point— were 
developed based on the 17 estrous period-labeled datasets (“training 
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datasets”). Following development of the models, 34 unlabeled 
datasets (“test datasets”) were applied to the models, and these 
were used in attempts to detect the day of estrus. We tested the three 
widely used supervised machine learning algorithms with wearable 
sensing data: random forest (RF), artificial neural network (ANN), 
and support vector machine (SVM) [12], because of the lack of a 
priori distinctions between these algorithms [13].
Table 2 shows the performance of the three estrus detection models. 

The ranges of sensitivity and precision of the models (50.0 to 58.8% 
and 60.6 to 73.1%, respectively) were not statistically different among 
models and these rates were similar to or lower than those of the 
previous study using a simple thresholding method on rST (78 and 
70%, respectively) [8]. The lack of the proestrus decrease in rST 
observed in the previous study [8] was at least partially responsible 
for the relatively low estrus detection abilities of the present estrus 
detection models, because this depression, thought to be related to 
corpus luteum regression [3], should be useful in confirming that a 
subsequent rST increase is a true positive [8].
Figure 2 shows the representative cases of animals correctly 

detected and falsely undetected in estrus. Several false positives in 
the present study occurred associated with sudden rST elevations 

such as caused by fever (Fig. 2B). Supervised machine learning 
is the search for algorithms that reason from externally supplied 
instances (training data) to produce general hypotheses (models), 
which then make predictions about unknown instances (test data) 
[14]. Therefore, the relatively poor performance of our models might 
indicate the difficulty of separating estrus-associated rST changes 
from estrus-independent fluctuations in rST; in other words, estrus 
detection based only on ST data might be difficult by the present 
method. Further studies may be needed for improving estrus detection 
models by minimizing the influence of estrus-independent fluctuations 
in rST and/or adding much more training data that covers more 
possible situations in terms of season, cattle breed, rearing condition, 
etc. Otherwise, by adding other parameters that could be used to 
detect estrus, such as activity, and recumbent time and bouts [10]. 
Because, theoretically, having more features should result in more 
discriminative power, when the features highly correlated with the 
target class (i.e., estrus) and uncorrelated with each other [15].

Fig. 1.	 Residual tail surface temperature (rST) changes around estrus. 
Inverted-triangles indicate the periods with differences between 
rST at the indicated time point and the mean rST during the control 
period (from 192 to 121 h before the beginning of estrus). Data 
were standardized to the onset of standing estrus (0 h). Because 
of variation in the length of estrous cycles, the number of animals 
included in each time point varied between 6 and 17. Values are 
presented as the mean (bold line) ± standard error (vertical bar).

Table 1.	 Description of the features used for building estrus detection 
models

Feature
Current smoothened residual-tail surface temperature (rST) *

Minimum value during the last 12 h of smoothened rST (12 h min.)
Minimum value during the last 24 h of smoothened rST (24 h min.)
Minimum value during the last 48 h of smoothened rST (48 h min.)
Maximum value during the last 12 h of smoothened rST (12 h max.)
Maximum value during the last 24 h of smoothened rST (24 h max.)
Maximum value during the last 48 h of smoothened rST (48 h max.)
Difference between the current smoothened rST and 12 h min.
Difference between the current smoothened rST and 24 h min.
Difference between the current smoothened rST and 48 h min.
Difference between the current smoothened rST and 12 h max.
Difference between the current smoothened rST and 24 h max.
Difference between the current smoothened rST and 48 h max.

* Residual tail surface temperature (rST) was calculated as actual  
ST − mean ST for the same hour on the previous 3 days.

Table 2.	 Performance of the estrus detection models developed by three machine learning algorithms (random forest, 
RF; artificial neural network, ANN; and support vector machine, SVM) on 34 estrous cycles

Machine learning algorithm True positive False positive False negative Sensitivity (%) Precision (%)
RF 20 13 14 58.8 60.6
ANN 19 7 15 55.9 73.1
SVM 17 9 17 50.0 65.4

Sensitivity and precision were calculated as true-positive/(true-positive + false-negative) and true-positive/(true-positive 
+ false-positive), respectively. Sensitivities and precisions of the three estrus detection models were not statistically 
different (Fisher’s exact test and generalized score statistic, respectively).



ESTRUS DETECTION FROM SKIN TEMPERATURE 69

Methods

Animals
This study was conducted at the National Institute of Animal 

Health, National Agriculture and Food Research Organization in 
Japan from March 2017 to November 2018. A total of 51 estrous 
cycles of 11 mature non-pregnant and non-lactating female cattle (six 
Holsteins and five Japanese Blacks; 15–109 months old, 370–630 
kg body weight) were used. The cattle were housed in tie-stalls or 
individual pens with access to an outdoor paddock during daytime, and 
were fed twice daily with hay and concentrate to meet the Japanese 
Feeding Standard recommendations, with ad libitum access to water. 
All procedures were approved by the Institutional Care and Use 
Committee for Laboratory Animals (Protocol #16-067 and 17-038).

ST sensing
ST was measured using a tail-attached sensor as described previ-

ously [8] with modifications in the position of the thermistor and the 
housing size (Fig. 3). We used sensors with a thermistor positioned 
inside the housing (20.0 × 26.0 × 10.0 mm, weighing 5.5 g), rather 
than those with a thermistor positioned outside the housing (25.0 × 
25.0 × 9.6 mm, weighing 7.7 g) described by Miura et al. [8]. The 
temperature resolution of the present sensor was 0.05°C. The sensor 
was attached to the cattle on around Day 10 of the estrous cycle (Day 
0 = the day of ovulation) until around Day 10 of the subsequent 
estrous cycle and ST was measured at 30-sec or 10-min interval. 

The sensor wirelessly transmitted the ST data with a sensor ID to 
the receiver connected to a personal computer where it was stored.

Confirmation of ovulation and estrus
In all 51 estrous cycles, the day of ovulation was confirmed by 

daily trans-rectal ultrasonography. Of 17 estrous cycles, the duration 
of estrus was confirmed based on standing-to-be-mounted behavior; 
namely, tested cattle were led out of the cattleshed to a paddock and 
tried to be mounted by hard mates at 3-h interval. The onset and 
end of estrus were defined as the time when a standing response 
was first observed and ceased, respectively. Of the remaining 34 
estrous cycles, the day of estrus was determined by at least once 
daily observations of estrus-associated external signs (e.g., standing 
estrus, clear mucus discharge, or redness and edema of genitalia) 
with the results of the daily trans-rectal ultrasonography (one or two 
large follicles with a regressed corpus luteum).

Data preprocessing
In the data preprocessing phase, the maximum hourly ST was 

extracted to minimize the impacts of rapid momentary decreases of 
ST in the raw data [8]. After cleaning the data for missing values 
by forward-filling (i.e., taking the last known value and using this 
to fill), ST changes were expressed as residual ST (rST = actual 
hourly ST − mean ST for the same hour on the previous 3 days) to 
exclude any influence of the circadian rhythm [8]. The exponentially 
weighted moving average (EWMA) [16] was then applied to the 

Fig. 2.	 Representative changes in tail surface temperature (ST) and residual ST (rST) around estrus. A: A representative case of an animal correctly 
detected in estrus without false positive. B: A representative case of an animal falsely undetected in estrus with one false positive. Arrow indicates 
a transient ST increase during fever. Thick horizontal bars indicate the periods of estrus alert produced by the machine learning estrus detection 
model which was developed using the random forest algorithm. Data were standardized to the noon of the estrous day (0 h).
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rST data for smoothing by removing short-term (within a few hours) 
inconsequential fluctuations. EWMA was calculated as:
EWMA(0) = X(0)
EWMA(t) = αX(t) + (1−α) EWMA(t−1), t > 0,
where EWMA(t) is the EWMA at time “t” (t = 0, 1, 2, 3, •••), X(t) 

is the measured value at time “t,” and EWMA(t−1) is the EWMA 
at time “t−1.” The constant parameter α was set to 0.1 based on a 
previous study [2].

Development of hourly estrus detection models
To build estrus detection models, 13 features were extracted from 

the sensing data (Table 1). Only features that could be calculated 
from the current and past data were used to make estrus detection 
models applicable in actual situations. The 17 datasets corresponding 
with the standing estrous periods were used as training datasets. 
The training data during the standing estrous period were labeled as 
positive instances, and the remaining data were labeled as negative 
instances. Using the labeled training data, three estrus detection 
models were developed using RF (hyperparameters mtry = 11 and 
ntree = 500) [17], ANN (hyperparameters decay = 0.03, size = 17, 
and maxit = 1000) [18], and SVM (hyperparameters c = 5 and sigma 
= 0.6) [19]. All models were developed under the “caret” package 
[20] in R (version 3.4.0 for Windows; https://www.r-project.org) 
with 25 iterations of bootstrap resampling to minimize the effect of 
any single anomalous run on the results.

Validation of estrus detection models
Following the development of the three detection models, 34 

unlabeled datasets (test datasets) corresponding with the day of 
estrus were applied to the models and classified into “estrus” or 
“not in estrus” every hour. At least 10 consecutive hours of “estrus” 
predictions were regarded as an estrus alert to minimize excessive 
alerts. When the estrus alert was given within 24 h (0000 – 2300 
h) of the day of estrus, the alert was regarded as a true-positive 
predictor. Non-alerted estrus and alerted non-estrus were regarded as 
false-negative and false-positive predictors, respectively. Sensitivity 
and precision were calculated as (true-positive/[true-positive + 
false-negative]) and (true-positive/[true-positive + false-positive]), 
respectively.

Statistical analysis
For analyzing the changes in rST around estrus, hourly rST values 

during −120 h to +192 h from the onset of the estrus were compared 
with the mean value during the control non-estrous period (−192 h to 
−121 h) by the non-parametric Steel test. Sensitivities and precisions 
of the three estrus detection models were compared with Fisher's 
exact test and generalized score statistic, respectively. Statistical 
analyses were performed using R, and differences were considered 
significant at P < 0.05.
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the ST sensor attached the lower surface of the ventral tail base. 
D: ST senor attached on the surface of the ventral tail base. Black 
arrows in A and B indicate antenna. Bars in A and B are 2 cm.
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