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Abstract. 	We	aimed	to	determine	the	effectiveness	of	estrus	detection	based	on	continuous	measurements	of	the	ventral	tail	
base	surface	temperature	(ST)	with	supervised	machine	learning	in	cattle.	ST	data	were	obtained	through	51	estrus	cycles	on	
11	female	cattle	(six	Holsteins	and	five	Japanese	Blacks)	using	the	tail-attached	sensor.	Three	estrus	detection	models	were	
constructed	with	the	training	data	(n	=	17)	using	machine	learning	techniques	(random	forest,	artificial	neural	network,	and	
support	vector	machine)	based	on	13	features	extracted	from	sensing	data	(indicative	of	estrus-associated	ST	changes).	Estrus	
detection	abilities	of	the	three	models	on	test	data	(n	=	34)	were	not	statistically	different	among	models	in	terms	of	sensitivity	
and	precision	(range	50.0%	to	58.8%	and	60.6%	to	73.1%,	respectively).	The	relatively	poor	performance	of	the	models	might	
indicate	the	difficulty	of	separating	estrus-associated	ST	changes	from	estrus-independent	fluctuations	in	ST.
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In	cattle,	body	core	(typically	vaginal)	temperature	decreases	transiently	a	few	days	before	estrus	followed	by	a	sharp	increase	
at	estrus	[1,	2].	The	proestrus	decrease	in	temperature	is	suggested	to	
reflect	corpus	luteum	regression	[3]	and	the	estrual	rise	in	temperature	
is	closely	associated	with	the	preovulatory	luteinizing	hormone	surge	
[4].	Several	approaches	to	detect	the	temperature	changes	during	
estrus	have	been	studied	using	wearable	sensors	applied	to	different	
body	parts;	such	as	the	rumen	[5],	vagina	[2,	6],	and	ear	canal	[7].	
Monitoring	the	body	surface	temperature	(ST)	at	the	ventral	tail	
base	was	offered	as	a	less	invasive	and	easy-to-apply	(the	fitting	
of	the	sensor	device	requires	only	a	few	minutes	without	strict	
hygiene	management	and	restriction	of	body	movement)	approach	for	
monitoring	body	temperature	[8,	9],	and	estrus	could	be	detected	as	
high	as	sensitivity	(true-positive/[true-positive	+	false-negative])	of	
78%	and	precision	(true-positive/[true-positive	+	false-positive])	of	
70%	by	setting	appropriate	cut-offs	[8].	Supervised	machine	learning	
techniques	have	been	proposed	as	alternatives	to	simple	thresholding	
methods	and	seem	to	be	good	candidates	for	handling	wearable	
sensing	data	for	estrus	detection	[2,	10].	In	the	use	of	a	vaginal	
sensor,	we	previously	developed	an	efficient	estrus	detection	model	
(both	sensitivity	and	precision	were	94%)	showing	the	superiority	
to	combine	two	parameters	(vaginal	temperature	and	conductivity)	
[2].	However,	these	algorithms	have	never	been	applied	to	ST	data	
for	bovine	estrus	detection.	In	the	present	study,	we	attempted	to	
develop	estrus	detection	models	with	a	single	parameter	ST	by	

using	appropriate	features,	hyperparameters,	and	machine	learning	
algorithms	used	for	modeling.
First,	to	confirm	the	feasibility	of	detecting	estrus-associated	ST	

changes	by	the	tail-attached	sensor,	we	measured	ST	throughout	17	
estrous	cycles.	The	standing	estrous	periods	of	these	cycles	were	
confirmed	by	testing	with	herd-mates.	To	exclude	the	influence	of	
the	circadian	rhythm	of	ST,	the	actual	raw	ST	values	were	calculated	
as	residual	ST	(rST	=	hourly	maximum	ST	value	−	mean	ST	value	
for	the	same	hour	on	the	previous	3	days)	and	analyzed.	The	mean	
rST	started	to	increase	from	approximately	12	h	before	the	onset	
of	estrus	and	the	values	during	−1	to	+15	h	from	the	onset	of	estrus	
were	higher	than	that	of	the	control	period	(−192	h	to	−121	h)	(P	
<	0.05;	Fig.	1).	Similar	to	the	previous	study	[8],	rST	showed	the	
highest	value	at	6	h	after	the	beginning	of	estrus.	However,	the	
transient	decrease	a	few	days	before	estrus	observed	in	the	previous	
study	was	absent.	This	discordant	result	might	be	explained	by	the	
different	sensors	used	as	described	below	and/or	by	individual	cow	
difference	in	ST	changes,	because	it	was	reported	that	10%	to	16%	
of	the	cycling	cows	did	not	show	the	proestrus	decrease	in	body	
temperature	[6,	11].	Nevertheless,	substantial	rST	changes	around	
estrus	were	detected	successfully	by	the	present	tail-attached	sensor.
Because	a	given	numerical	value	for	rST	seemed	not	to	be	neces-

sarily	indicative	of	estrus	without	monitoring	its	sequential	changes,	
we	next	extracted	the	features	listed	in	Table	1	to	follow	up	the	
changes	in	rST	around	estrus,	and	to	build	the	estrus	detection	models	
through	machine	learning	techniques.	As	examples	of	features,	the	
differences	between	the	current	smoothened	rST	and	the	minimum	
and	maximum	values	during	the	last	12	h	of	smoothened	rST	should	
both	be	positive	values	during	12	h	before	the	onset	of	estrus,	since	
rST	showed	a	continuously	increasing	trend	during	this	period.	Using	
these	features,	binary	classification	models—	namely,	classification	
into	“in	estrus”	or	“not	in	estrus”	for	a	particular	time	point—	were	
developed	based	on	the	17	estrous	period-labeled	datasets	(“training	
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datasets”).	Following	development	of	the	models,	34	unlabeled	
datasets	(“test	datasets”)	were	applied	to	the	models,	and	these	
were	used	in	attempts	to	detect	the	day	of	estrus.	We	tested	the	three	
widely	used	supervised	machine	learning	algorithms	with	wearable	
sensing	data:	random	forest	(RF),	artificial	neural	network	(ANN),	
and	support	vector	machine	(SVM)	[12],	because	of	the	lack	of	a 
priori	distinctions	between	these	algorithms	[13].
Table	2	shows	the	performance	of	the	three	estrus	detection	models.	

The	ranges	of	sensitivity	and	precision	of	the	models	(50.0	to	58.8%	
and	60.6	to	73.1%,	respectively)	were	not	statistically	different	among	
models	and	these	rates	were	similar	to	or	lower	than	those	of	the	
previous	study	using	a	simple	thresholding	method	on	rST	(78	and	
70%,	respectively)	[8].	The	lack	of	the	proestrus	decrease	in	rST	
observed	in	the	previous	study	[8]	was	at	least	partially	responsible	
for	the	relatively	low	estrus	detection	abilities	of	the	present	estrus	
detection	models,	because	this	depression,	thought	to	be	related	to	
corpus	luteum	regression	[3],	should	be	useful	in	confirming	that	a	
subsequent	rST	increase	is	a	true	positive	[8].
Figure	2	shows	the	representative	cases	of	animals	correctly	

detected	and	falsely	undetected	in	estrus.	Several	false	positives	in	
the	present	study	occurred	associated	with	sudden	rST	elevations	

such	as	caused	by	fever	(Fig.	2B).	Supervised	machine	learning	
is	the	search	for	algorithms	that	reason	from	externally	supplied	
instances	(training	data)	to	produce	general	hypotheses	(models),	
which	then	make	predictions	about	unknown	instances	(test	data)	
[14].	Therefore,	the	relatively	poor	performance	of	our	models	might	
indicate	the	difficulty	of	separating	estrus-associated	rST	changes	
from	estrus-independent	fluctuations	in	rST;	in	other	words,	estrus	
detection	based	only	on	ST	data	might	be	difficult	by	the	present	
method.	Further	studies	may	be	needed	for	improving	estrus	detection	
models	by	minimizing	the	influence	of	estrus-independent	fluctuations	
in	rST	and/or	adding	much	more	training	data	that	covers	more	
possible	situations	in	terms	of	season,	cattle	breed,	rearing	condition,	
etc.	Otherwise,	by	adding	other	parameters	that	could	be	used	to	
detect	estrus,	such	as	activity,	and	recumbent	time	and	bouts	[10].	
Because,	theoretically,	having	more	features	should	result	in	more	
discriminative	power,	when	the	features	highly	correlated	with	the	
target	class	(i.e.,	estrus)	and	uncorrelated	with	each	other	[15].

Fig. 1.	 Residual	 tail	 surface	 temperature	 (rST)	 changes	 around	 estrus.	
Inverted-triangles	 indicate	 the	periods	with	differences	between	
rST	at	the	indicated	time	point	and	the	mean	rST	during	the	control	
period	(from	192	to	121	h	before	the	beginning	of	estrus).	Data	
were	standardized	to	the	onset	of	standing	estrus	(0	h).	Because	
of	variation	in	the	length	of	estrous	cycles,	the	number	of	animals	
included	in	each	time	point	varied	between	6	and	17.	Values	are	
presented	as	the	mean	(bold	line)	±	standard	error	(vertical	bar).

Table 1.	 Description	of	the	features	used	for	building	estrus	detection	
models

Feature
Current	smoothened	residual-tail	surface	temperature	(rST)	*

Minimum	value	during	the	last	12	h	of	smoothened	rST	(12	h	min.)
Minimum	value	during	the	last	24	h	of	smoothened	rST	(24	h	min.)
Minimum	value	during	the	last	48	h	of	smoothened	rST	(48	h	min.)
Maximum	value	during	the	last	12	h	of	smoothened	rST	(12	h	max.)
Maximum	value	during	the	last	24	h	of	smoothened	rST	(24	h	max.)
Maximum	value	during	the	last	48	h	of	smoothened	rST	(48	h	max.)
Difference	between	the	current	smoothened	rST	and	12	h	min.
Difference	between	the	current	smoothened	rST	and	24	h	min.
Difference	between	the	current	smoothened	rST	and	48	h	min.
Difference	between	the	current	smoothened	rST	and	12	h	max.
Difference	between	the	current	smoothened	rST	and	24	h	max.
Difference	between	the	current	smoothened	rST	and	48	h	max.

*	 Residual	 tail	 surface	 temperature	 (rST)	was	 calculated	 as	 actual	 
ST	−	mean	ST	for	the	same	hour	on	the	previous	3	days.

Table 2.	 Performance	of	the	estrus	detection	models	developed	by	three	machine	learning	algorithms	(random	forest,	
RF;	artificial	neural	network,	ANN;	and	support	vector	machine,	SVM)	on	34	estrous	cycles

Machine	learning	algorithm True	positive False	positive False	negative Sensitivity	(%) Precision	(%)
RF 20 13 14 58.8 60.6
ANN 19 7 15 55.9 73.1
SVM 17 9 17 50.0 65.4

Sensitivity	and	precision	were	calculated	as	true-positive/(true-positive	+	false-negative)	and	true-positive/(true-positive	
+	 false-positive),	 respectively.	Sensitivities	 and	precisions	 of	 the	 three	 estrus	 detection	models	were	 not	 statistically	
different	(Fisher’s	exact	test	and	generalized	score	statistic,	respectively).
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Methods

Animals
This	study	was	conducted	at	the	National	Institute	of	Animal	

Health,	National	Agriculture	and	Food	Research	Organization	in	
Japan	from	March	2017	to	November	2018.	A	total	of	51	estrous	
cycles	of	11	mature	non-pregnant	and	non-lactating	female	cattle	(six	
Holsteins	and	five	Japanese	Blacks;	15–109	months	old,	370–630	
kg	body	weight)	were	used.	The	cattle	were	housed	in	tie-stalls	or	
individual	pens	with	access	to	an	outdoor	paddock	during	daytime,	and	
were	fed	twice	daily	with	hay	and	concentrate	to	meet	the	Japanese	
Feeding	Standard	recommendations,	with	ad libitum	access	to	water.	
All	procedures	were	approved	by	the	Institutional	Care	and	Use	
Committee	for	Laboratory	Animals	(Protocol	#16-067	and	17-038).

ST sensing
ST	was	measured	using	a	tail-attached	sensor	as	described	previ-

ously	[8]	with	modifications	in	the	position	of	the	thermistor	and	the	
housing	size	(Fig.	3).	We	used	sensors	with	a	thermistor	positioned	
inside	the	housing	(20.0	×	26.0	×	10.0	mm,	weighing	5.5	g),	rather	
than	those	with	a	thermistor	positioned	outside	the	housing	(25.0	×	
25.0	×	9.6	mm,	weighing	7.7	g)	described	by	Miura	et al.	[8].	The	
temperature	resolution	of	the	present	sensor	was	0.05°C.	The	sensor	
was	attached	to	the	cattle	on	around	Day	10	of	the	estrous	cycle	(Day	
0	=	the	day	of	ovulation)	until	around	Day	10	of	the	subsequent	
estrous	cycle	and	ST	was	measured	at	30-sec	or	10-min	interval.	

The	sensor	wirelessly	transmitted	the	ST	data	with	a	sensor	ID	to	
the	receiver	connected	to	a	personal	computer	where	it	was	stored.

Confirmation of ovulation and estrus
In	all	51	estrous	cycles,	the	day	of	ovulation	was	confirmed	by	

daily	trans-rectal	ultrasonography.	Of	17	estrous	cycles,	the	duration	
of	estrus	was	confirmed	based	on	standing-to-be-mounted	behavior;	
namely,	tested	cattle	were	led	out	of	the	cattleshed	to	a	paddock	and	
tried	to	be	mounted	by	hard	mates	at	3-h	interval.	The	onset	and	
end	of	estrus	were	defined	as	the	time	when	a	standing	response	
was	first	observed	and	ceased,	respectively.	Of	the	remaining	34	
estrous	cycles,	the	day	of	estrus	was	determined	by	at	least	once	
daily	observations	of	estrus-associated	external	signs	(e.g.,	standing	
estrus,	clear	mucus	discharge,	or	redness	and	edema	of	genitalia)	
with	the	results	of	the	daily	trans-rectal	ultrasonography	(one	or	two	
large	follicles	with	a	regressed	corpus	luteum).

Data preprocessing
In	the	data	preprocessing	phase,	the	maximum	hourly	ST	was	

extracted	to	minimize	the	impacts	of	rapid	momentary	decreases	of	
ST	in	the	raw	data	[8].	After	cleaning	the	data	for	missing	values	
by	forward-filling	(i.e.,	taking	the	last	known	value	and	using	this	
to	fill),	ST	changes	were	expressed	as	residual	ST	(rST	=	actual	
hourly	ST	−	mean	ST	for	the	same	hour	on	the	previous	3	days)	to	
exclude	any	influence	of	the	circadian	rhythm	[8].	The	exponentially	
weighted	moving	average	(EWMA)	[16]	was	then	applied	to	the	

Fig. 2.	 Representative	changes	in	 tail	surface	temperature	(ST)	and	residual	ST	(rST)	around	estrus.	A:	A	representative	case	of	an	animal	correctly	
detected	in	estrus	without	false	positive.	B:	A	representative	case	of	an	animal	falsely	undetected	in	estrus	with	one	false	positive.	Arrow	indicates	
a	transient	ST	increase	during	fever.	Thick	horizontal	bars	indicate	the	periods	of	estrus	alert	produced	by	the	machine	learning	estrus	detection	
model	which	was	developed	using	the	random	forest	algorithm.	Data	were	standardized	to	the	noon	of	the	estrous	day	(0	h).
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rST	data	for	smoothing	by	removing	short-term	(within	a	few	hours)	
inconsequential	fluctuations.	EWMA	was	calculated	as:
EWMA(0)	=	X(0)
EWMA(t)	=	αX(t)	+	(1−α)	EWMA(t−1),	t	>	0,
where	EWMA(t)	is	the	EWMA	at	time	“t”	(t	=	0,	1,	2,	3,	•••),	X(t)	

is	the	measured	value	at	time	“t,”	and	EWMA(t−1)	is	the	EWMA	
at	time	“t−1.”	The	constant	parameter	α	was	set	to	0.1	based	on	a	
previous	study	[2].

Development of hourly estrus detection models
To	build	estrus	detection	models,	13	features	were	extracted	from	

the	sensing	data	(Table	1).	Only	features	that	could	be	calculated	
from	the	current	and	past	data	were	used	to	make	estrus	detection	
models	applicable	in	actual	situations.	The	17	datasets	corresponding	
with	the	standing	estrous	periods	were	used	as	training	datasets.	
The	training	data	during	the	standing	estrous	period	were	labeled	as	
positive	instances,	and	the	remaining	data	were	labeled	as	negative	
instances.	Using	the	labeled	training	data,	three	estrus	detection	
models	were	developed	using	RF	(hyperparameters	mtry	=	11	and	
ntree	=	500)	[17],	ANN	(hyperparameters	decay	=	0.03,	size	=	17,	
and	maxit	=	1000)	[18],	and	SVM	(hyperparameters	c	=	5	and	sigma	
=	0.6)	[19].	All	models	were	developed	under	the	“caret”	package	
[20]	in	R	(version	3.4.0	for	Windows;	https://www.r-project.org)	
with	25	iterations	of	bootstrap	resampling	to	minimize	the	effect	of	
any	single	anomalous	run	on	the	results.

Validation of estrus detection models
Following	the	development	of	the	three	detection	models,	34	

unlabeled	datasets	(test	datasets)	corresponding	with	the	day	of	
estrus	were	applied	to	the	models	and	classified	into	“estrus”	or	
“not	in	estrus”	every	hour.	At	least	10	consecutive	hours	of	“estrus”	
predictions	were	regarded	as	an	estrus	alert	to	minimize	excessive	
alerts.	When	the	estrus	alert	was	given	within	24	h	(0000	–	2300	
h)	of	the	day	of	estrus,	the	alert	was	regarded	as	a	true-positive	
predictor.	Non-alerted	estrus	and	alerted	non-estrus	were	regarded	as	
false-negative	and	false-positive	predictors,	respectively.	Sensitivity	
and	precision	were	calculated	as	(true-positive/[true-positive	+	
false-negative])	and	(true-positive/[true-positive	+	false-positive]),	
respectively.

Statistical analysis
For	analyzing	the	changes	in	rST	around	estrus,	hourly	rST	values	

during	−120	h	to	+192	h	from	the	onset	of	the	estrus	were	compared	
with	the	mean	value	during	the	control	non-estrous	period	(−192	h	to	
−121	h)	by	the	non-parametric	Steel	test.	Sensitivities	and	precisions	
of	the	three	estrus	detection	models	were	compared	with	Fisher's	
exact	test	and	generalized	score	statistic,	respectively.	Statistical	
analyses	were	performed	using	R,	and	differences	were	considered	
significant	at	P	<	0.05.
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