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The T lymphocyte response initiates with the recognition of MHC/peptides on antigen
presenting cells by the T cell receptor (TCR). After the TCR engagement, the proximal sig-
naling pathways are activated for downstream cellular events. Among these pathways,
the calcium-signaling flux is activated through the depletion of endoplasmic reticulum (ER)
calcium stores and plays pivotal roles in T cell proliferation, cell survival, and apoptosis. In
studying the roles of macroautophagy (hereafter referred to as autophagy) in T cell func-
tion, we found that a pathway for intracellular degradation, autophagy, regulates calcium
signaling by developmentally maintaining the homeostasis of the ER. Using mouse genetic
models with specific deletion of autophagy-related genes inT lymphocytes, we found that
the calcium influx is defective and the calcium efflux is increased in autophagy-deficient
T cells. The abnormal calcium flux is related to the expansion of the ER and higher cal-
cium stores in the ER. Because of this, treatment with the ER sarco/ER Ca2+-ATPase
pump inhibitor, thapsigargin, rescues the calcium influx defect in autophagy-deficient T
cells. Therefore, autophagy regulates calcium mobilization in T lymphocytes through ER
homeostasis.
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INTRODUCTION
The highly conserved intracellular pathway, autophagy, degrades
long-lived proteins, or damaged/extra organelles for quality con-
trol purposes to protects cells from death, or to provide energy
during stress conditions (1). Using mouse genetic models, in which
specific autophagy-related genes (Atgs) are deleted and autophagic
pathways are blocked, our lab and other groups have found that
autophagy-related molecules are expressed in T lymphocytes and
T cell receptor TCR stimulation activates autophagy processing
pathway (2–4). Autophagy developmentally regulates the home-
ostasis of endoplasmic reticulum (ER) and mitochondria (5, 6).
ER is expanded when the autophagy pathway is impaired in T
lymphocytes (7).

A physiological function of ER in T lymphocytes is the initi-
ation of calcium flux after TCR engagement. The current model
for calcium flux downstream of TCR activation is store-operated
Ca2+ entry (SOCE) and this is mediated by the opening of Ca2+

release-activated Ca2+ (CRAC) channels on the T cell surface,
which is in turn initiated by the depletion of ER calcium stores
(8). Molecular mechanistic studies indicate that the ER-resident
molecule, stromal interaction molecule 1 (STIM1), senses the cal-
cium concentration of ER stores, redistributes itself and binds a
pore subunit of CRAC, ORAI1, to begin the calcium influx into
T cells (9–11). Calcium flux and signaling in T lymphocytes are
tuned at different levels. We found that the calcium mobilization in
T lymphocytes is also regulated by autophagy. Autophagy regulates
the volume of the ER in both CD4+ and CD8+ T lymphocytes.
Expanded ER leads to increased calcium stores when autophagy
is impaired. Depletion of calcium stores is incomplete after TCR

stimulation and the redistribution of STIM1 is severely reduced.
Finally, calcium influx is much lower in autophagy-deficient T
lymphocytes (7). Here we review how autophagy regulates the
calcium mobilization in T lymphocytes.

THE CALCIUM-SIGNALING PATHWAY IN T LYMPHOCYTES
After the initial TCR-MHC/peptide contact, activation of the
Src-family tyrosine kinase, Lck, leads to the phosphorylation of
tyrosine residues in the immunoreceptor tyrosine-based activa-
tion motifs (ITAMs) in CD3 chains of the TCR/CD3 complex.
Following the phosphorylation of ITAMs, the Syk family kinase
ZAP70 is recruited to the TCR/CD3 complex, phosphorylated,
and activated by the tyrosine kinase, Lck. Next, ZAP70 phos-
phorylates and activates the linker for activation of T cells (LAT)
and SLP-76. Then phosphatidylinositol-3-kinases (PI3K) are acti-
vated and phosphatidylinositol (3,4,5) triphosphate (PIP3) is pro-
duced. Following this, the inducible T cell kinase (Itk) is recruited
and interacts with LAT and SLP-76 (12). This sequential cas-
cade spreads, activating several different signaling pathways in the
proximal signaling transduction in T lymphocytes. Among these
pathways, calcium-signaling starts with the activation of phospho-
lipase Cγ1 (PLCγ1) by Itk. PLCγ1 hydrolyzes phosphatidylinositol
4,5-bisphosphate (PIP2) to produce the secondary messengers
inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). DAG
activates PKC-θ and MAPK/Erk pathways. IP3 binds to the IP3
receptor on the ER membrane to release calcium stores from the
ER lumen (marked with open arrow head in Figure 1) in order
to initiate calcium mobilization and activate further downstream
signals in T lymphocytes (13).
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FIGURE 1 | Autophagy regulates calcium mobilization through the
control of endoplasmic reticulum (ER) homeostasis. Autophagy is
activated when there are damaged, senescent, or extra organelles in order to
maintain normal ER contents. In T lymphocytes, inositol 1,4,5-trisphosphate
(IP3) is produced after TCR engagement. IP3 binds with the IP3 receptor
(IP3R) expressed on ER to initiate the depletion of calcium stores from the ER
lumen (marked with an open arrow head). The calcium sensor and ER-resident
molecule stromal interaction molecule 1 (STIM1) oligomerizes, and
redistributes toward the ER plasma membrane junction after the depletion of
calcium stores. Then STIM1 interacts with the pore subunit of Ca2+

release-activated Ca2+ (CRAC) channels, ORAI1, to open CRAC channels.
Extracellular calcium fluxes through CRAC channels into the cytoplasm of T
cells (visualized as Ca2+ inside of the cells). When autophagy is ablated, as
shown in the cartoon figure of autophagy-deficient T cells, the contents of the
ER are expanded. Calcium stores are increased since the ER is expanded and
more sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase (SERCA) are
expressed. The depletion of calcium stores is incomplete and less STIM1
redistributes to the ER plasma junction. Therefore, less CRAC is opened. The
end result is that calcium influx is defective compared to that of wild type T
cells. IM, isolation membrane.

The molecular mechanism of the opening of CRAC channels
is mediated by the interaction between the ER-resident protein
stromal interaction molecule (STIM) 1/2 (14) with CRAC chan-
nel components, ORAI protein (ORAI1 and its homologs ORAI2
and ORAI3) (10). ORAI1, ORAI2, and ORAI3 are widely tran-
scribed in different tissues and ORAI1 is the dominant component

of the CRAC channel in T lymphocytes (15, 16). Both STIM1
and STIM2 are expressed in T lymphocytes. However, STIM1 is
the predominant regulator for SOCE in T cells, while the STIM2
plays a relatively less important role during SOCE (16, 17). STIM
senses the concentration of ER calcium stores through an N-
terminal EF-hand and a sterile α motif domain (EF-SAM) (18),
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forms oligomers, and redistributes itself toward a plasma mem-
brane junction after calcium depletion from ER stores. Then the
C-terminus of STIM1 interacts with the CRAC channel compo-
nents ORAI1 to open the CRAC channels on the T cell surface (19).
Consequent extracellular calcium influxes into T cells further acti-
vate downstream molecules of TCR signal transduction pathways.
The influx of calcium activates the serine/threonine phosphatase
calcineurin, which in turn phosphorylates nuclear factor of acti-
vated T cells (NFAT). NFAT translocates to nucleus to turn on the
transcription of target genes, such as the cytokines IL-2, IL-17A,
IL-22, IL-21, and the transcription factor Foxp3 depending on the
situation (20–22). This signal transduction in T lymphocytes is
finely regulated by different mechanisms.

AUTOPHAGY IN T LYMPHOCYTES
Autophagy is a highly conserved cellular homeostasis and degra-
dation pathway present in all eukaryotic species (23, 24). Accord-
ing to specific characteristics, three different types of autophagy
have been described, termed microautophagy, macroautophagy,
and chaperone-mediated autophagy (25). Most research focuses
on macroautophagy. Macroautophagy degrades long-lived pro-
teins, provides energy during stress conditions, maintains organel-
lar homeostasis, and eliminates various invading intracellular
pathogens (26). Panoply of cellular stress conditions, such as
growth factor withdrawal, nutrient depletion, or T cell activa-
tion can activate the autophagy pathway. Autophagy starts with
an overtly crescent membrane structure, called an isolation mem-
brane (IM) in mammalian cells and a phagophore in yeast cells.
These membranes are originally derived from Golgi membranes
(27), plasma membrane (28), mitochondria (29), or ER (30).

In a manner remarkably homologous to the yeast system, two
kinase complexes are essential for the induction of autophagy
in mammalian cells. One is the class III PI3K complex and the
other is UNC-51-like kinase (ULK) complex. The PI3K com-
plex is composed of the class III PI3K catalytic subunit Vps34,
the class III PI3-kinase regulatory subunit p150 (the homolog
of Vps15 in yeast), Beclin 1 (the homolog of Vps30/Atg6 in
yeast), and Barkor [Beclin 1-associated autophagy-related key
regulator, also named KIAA0831 (31), or the Atg14-like mole-
cule (Atg14L) (32), the homolog of Atg14 in yeast] (33). Several
Beclin 1 interacted molecules, such as UV-irradiation-resistance-
associated gene (UVRAG) (34), vacuole membrane protein 1
(VMP1) (35), activating molecule in Beclin 1-regulated autophagy
1 (Ambra1) (36), Bif-1 (37), and Rubicon (38) are also present
in the PI3K complex and regulate autophagy. Vps34 phosphory-
lates phosphatidylinositol (PI) to produce phosphatidylinositol-
3-phosphate (PI3P). The energy sensor, AMP-activated protein
kinase (AMPK), phosphorylates T163/S165 of Vps34 to reduce
the production of PI3P and therefore inhibits the induction of
autophagy. While under conditions of nutrient stress, AMPK
phosphorylates S91/S94 of Beclin 1 to activate the autophagic
processing pathway. Atg14L distinguishes between nutrient rich
or starvation conditions through the inhibition of the phospho-
rylation of Vps34 induced by AMPK, but promotes the phospho-
rylation of Beclin 1 caused by AMPK under starvation conditions
(39). In T lymphocytes, Vps34 controls the trafficking, recycling,
and signaling capacity of the IL-7 receptor (IL-7R), which provides

a major survival signal for naïve T cells (40). In another model,
Vps34-deficient T cells showed impaired autophagy and abnormal
homeostasis of mitochondria (41). The ULK complex includes the
mammalian Atg13, FIP200 (Atg17 in yeast) (42), Atg101 (43, 44),
and one ULK1 or one ULK2. ULK is the homologous molecule
of the serine/threonine kinase Atg1 in yeast. mTOR phospho-
rylates Atg13, ULK1, and ULK2, and inhibits ULK1 and ULK2
kinase activity to inhibit autophagy induction. Atg13 mediates the
interactions between ULK1/2 and FIP200, and is essential for the
phosphorylation of FIP200 by ULK (45). Atg101 is required for
the stability and phosphorylation of ULK and Atg13 (43, 44).

During the elongation phase, the IM is further expanded and
directed by autophagy-related molecules to form a characteris-
tic double membrane structure, termed an autophagosome, to
enwrap cytosolic materials. The enveloped components of the
autophagosome can be long-lived proteins, organelles, or even
invading pathogens (46). Two protein/lipid conjugation systems
mediated by Atg molecules regulate autophagosome formation
outward from the IM structures. One is the Atg12-conjugation
system and the other is the microtubule-associated protein 1
light chain 3 (LC3, Atg8 in the yeast system)-conjugation system.
Atg7, an ubiquitin E1-like molecule, is involved in both conjuga-
tion systems. Atg10 and Atg3 are ubiquitin E2-like molecules and
participate in either the Atg12 or LC3-conjugation system, respec-
tively. Atg12, Atg5, and Atg16L form a large complex (47), the
culmination of the Atg12-conjugation system, which further func-
tions as an ubiquitin E3-like molecule to enhance the formation
of the lipid form of phosphatidylethanolamine (PE)-LC3 (LC3-II)
in the LC3-conjugation system. The lipid form of LC3 (LC3-II) is
widely used as a marker for the detection of autophagy induction
(48). Finally, at the maturation stage, the autophagosomes fuse
with preexisting lysosomes to become mature autolysosomes and
lysosomal enzymes degrade the enclosed materials. Macromolec-
ular transporters in the autolysosome then allow for the recycling
of degraded materials back to the cytoplasm (49, 50).

The discovery of autophagy related to the adaptive immune
system was first reported in the late 1960s. Abnormal granules
were observed in human lymphocytes from sarcoidosis patients
treated with chloroquine and these granules in the cytosol of lym-
phocytes were hypothesized as autophagy-related structures (51).
In 1984, Seglen first identified that there was autophagosome for-
mation in human primary lymphocytes as well as in leukemic cells
(52). In 2004, Gerland reported that several Atgs were expressed in
long-term (>14 weeks) cultured human CD8+ T cells. Autophagy
was induced in these senescent cells and related to cell death (53).
In 2006, Espert found that HIV-1 envelope glycoproteins induced
autophagy and accumulation of Beclin 1 in HIV-uninfected CD4+

T cells through CXCR4 to cause cell death (54). Our lab and other
groups have thoroughly analyzed the autophagic processing path-
ways in mouse T lymphocytes using mouse genetic models (2, 3,
55). Many Atgs, such as Atg5, Beclin 1 and LC3, are expressed in
thymocytes, most highly during double negative (DN) thymocyte
development, but also expressed in mature CD4+ and CD8+ T cell
sub-populations. Both CD4+ and CD8+ lymphocytes continue
expressing autophagy genes after TCR stimulation and activation.
The expression of autophagy machinery was further confirmed
by the observation of characteristic double membrane structures

www.frontiersin.org July 2013 | Volume 4 | Article 179 | 3

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


Jia et al. Autophagy in T cell calcium mobilization

of autophagosomes in T lymphocytes by electron microscopy
(EM). Compared to freshly isolated T lymphocytes, the formation
of LC3-II was moderately promoted by starvation, but strongly
induced by anti-CD3 antibody-mediated TCR stimulation. The
detection of LC3-II indicates that autophagic flux occurs in T lym-
phocytes after T cells are activated by TCR stimulation (3). By using
mouse genetic models in which Atg5 (3, 6), Atg7 (5, 55), Atg3 (56),
Vps34 (41), or Beclin 1 (57), were specifically deleted in T lympho-
cytes, it is apparent that autophagy developmentally regulates the
homeostasis of organelles such as mitochondria or ER in T lym-
phocytes (5–7). Through the use of BAC Beclin 1-GFP transgenic
mice, Arsov reported that the expression of Beclin 1 was develop-
mentally regulated in both T and B lymphocytes. Beclin 1-GFP
is highly expressed in DN thymocytes, down-regulated in double
positive (DP) thymocytes and re-expressed in mature thymocytes
(4). On top of this, recombination activating gene 1 (Rag1)−/−

chimeric mice reconstituted with Beclin 1−/− embryonic stem
cells (ESCs) indicated that Beclin 1 is involved in the develop-
ment of early progenitors of thymocytes (58). The functions of
autophagy in T lymphocytes have been reviewed in detail (59, 60).
Autophagy is essential for the survival of mature T lymphocytes (3,
56). More specifically, autophagy regulates calcium mobilization
in T lymphocytes (7).

AUTOPHAGY DEVELOPMENTALLY REGULATES THE
HOMEOSTASIS OF ER IN T CELLS
One of the basic physiological functions of autophagy is to remove
damaged, senescent, or extra organelles before they become cyto-
toxic. Contrary to the non-selective bulk degradation of cytosol
materials, autophagy selectively reduces organelles to maintain
homeostatic volumes. Selective autophagy for the degradation
of ER and mitochondria are termed as ER-phagy (or reticu-
lophagy) (61, 62) and mitophagy (63), respectively. ER-phagy can
be induced by starvation or the unfolded protein response (UPR).
ER-phagy eliminates the expanded ER volume when the UPR is
not needed (62). Our data suggests that autophagy maintains the
volumes of organelles in certain levels at different stages during
T cell development. Analysis of mouse genetic models demon-
strates that the deficiency of Atg5, Atg7, Atg3, or Vps34 blocks the
autophagy machinery in T lymphocytes. Both the mitochondr-
ial contents and ER volumes are abnormal in autophagy-deficient
thymocytes and mature CD4+ and CD8+ T cells (5–7, 41, 56).

During thymocyte development, the contents of ER are
dynamic. The thymocytes at DN stage have highest level of the
ER volumes and ER content decreases at the DP and single posi-
tive (SP) stages. Mature T cells have relatively lower ER contents.
Autophagy-deficient thymocytes have similar ER contents in the
DN, DP, and SP thymocytes compared to that of wild type thymo-
cytes. However, the ER contents expand in both mature CD4+ and
CD8+ autophagy-deficient T cells. Therefore, autophagy main-
tains ER membrane and content at relative lower levels in mature
T cell populations (7). In an inducible-deletion system, the level
of ER or mitochondria membranes start increasing at day 10 and
significantly increase by day 21 after Atg3 is inducibly deleted and
autophagy processing pathway is blocked. Therefore, autophagy
regulates the homeostasis of the ER in a temporal manner (56).

Autophagy provides protective roles for cell survival during
ER stress (64). Autophagy-deficient T cells constitutively express

ER-stress markers, such as disulfide isomerase (PDI), and ER
chaperones, such as glucose-regulated protein 78 (Grp78), and
Grp94 (7). This suggests that the ER-stress response is activated
in autophagy-deficient T cells and ER-stress caused by abnormal
homeostasis of ER is one of the reasons why autophagy-deficient
T cells show increased susceptibility to apoptosis.

CALCIUM STORES ARE INCREASED IN
AUTOPHAGY-DEFICIENT T CELLS
One of the main functions of the ER in T lymphocytes is to regulate
calcium mobilization. Upon TCR engagement, the calcium flux
starts with the depletion of calcium stores in the ER lumen. The
calcium stores are dramatically increased in autophagy impaired
T lymphocytes. The higher calcium stores in ER are consistent
with the expansion of ER contents in autophagy-deficient mature
CD4+ and CD8+ T cells. The calcium stores are maintained by
the sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase (SERCA)
pumps expressed on the surface of the ER. Autophagy-deficient T
cells express twofold more SERCA pumps than wild type T cells
(7). Over the life span of the cell, more calcium is imported by the
SERCA pumps in autophagy-deficient T lymphocytes, which leads
to increased calcium stores. Higher expressed SERCA pumps also
affect the depletion of calcium stores in ER after TCR engagement
in autophagy-deficient T cells.

The abnormal and excessive calcium stores in the ER and defec-
tive depletion directly affect the oligomerization and redistribu-
tion of the calcium sensor STIM1. Although autophagy-deficient T
cells express more STIM1, the puncta intensity of STIM1 after TCR
stimulation is much lower in autophagy-deficient T cells than that
of wild type cells. The autophagy-deficient T cells express a similar
level of ORAI1 compared to that of wild type T cells and CRAC
channels remain intact in autophagy-deficient T cells (7). There-
fore, the insufficient opening of CRAC channels is caused by the
higher calcium stores, incomplete depletion, and less oligomer-
ization of STIM1 after TCR activation in autophagy-deficient T
cells.

AUTOPHAGY REGULATES THE CALCIUM MOBILIZATION
THROUGH THE CONTROL OF ER HOMEOSTASIS IN T CELLS
Mouse genetic models provide novel methods to investigate the
physiological functions of autophagy. The specific deletion of
Atg7, Atg3, or other Atgs blocks the autophagy processing path-
way. The calcium influx in autophagy-deficient T cells is defec-
tive upon receipt of TCR signaling. The reason behind the cal-
cium influx defect is due to the higher calcium stores mediated
by the expansion of ER organelles in autophagy impaired T
lymphocytes. The SERCA pump inhibitor, thapsigargin, inhibits
the SERCA pumps from taking up calcium, corrects oligomer-
ization of STIM1, and rescues the defective calcium influx in
autophagy-deficient T lymphocytes. A model of the regulation
of calcium mobilization in T lymphocytes by autophagy is sum-
marized in Figure 1. Individual cell calcium influx analysis
indicates that it takes longer for calcium influx in autophagy-
deficient T cells to reach the peak of [Ca2+]i, in addition to
less total calcium influx after stimulation. The average time for
wild type cells to reach the peak of [Ca2+]i is 56 s, while it
takes 76 s for autophagy-deficient T cell to reach a lower peak
of [Ca2+]i (7).
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Autophagy also regulates the homeostasis of mitochondria (5,
6). In contrast to the constant trimming of the ER, autophagy
decreases the contents of mitochondria from SP compartment of
thymocytes to mature CD4+ or CD8+ T cells in a developmentally
stage-specific manner. Although there is abnormal expansion of
total mitochondrial levels in autophagy-deficient T cells and mito-
chondria also contributes to the regulation of calcium flux through
taking up calcium from the cytosol, the defect of calcium influx in
autophagy-deficient T cells is not related to the abnormal expan-
sion of mitochondria. When autophagy-deficient T cells were
treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP)
before or after stimulation with thapsigargin, the calcium influx
was not different between wild type and autophagy-deficient T
cells (our unpublished data).

Although the calcium storage and influx is defective in
autophagy-deficient T cells, the IL-2 production is not decreased
and actually more IL-2 is produced in autophagy-deficient T cells.
Since the calcium influx is not totally abolished in autophagy-
deficient T cells, the observed level of calcium proves to be suffi-
cient for turning on the transcription and translation of IL-2 (7).
However, Hubbard reported that upon activation CD4+ T cells,
IL-2, and IFN-γ production were defective in Atg7-deficient T cells
(55). A recent study demonstrates that the autophagy adaptor pro-
tein, p62, is important for the ability of Bcl10 to signal to NF-κB,
but also for its degradation by autophagy, explaining the enhanced
IL-2 production by autophagy-deficient T cells (65).

The regulation of the ER by autophagy is not completely
surprising. The ER is one of the purported sites of membrane
donor activity for autophagy (66). Additionally, ER stress and
the UPR are potent inducers of autophagy (67, 68). The knock-
down of inositol trisphosphate receptor (IP3R) expressed on ER
membranes or treatment with an IP3R antagonist can induce
autophagy (69). Therefore, when autophagy is genetically inhib-
ited for long periods of time, autophagosomes are not formed from
the ER-mitochondrial membrane junctions. Since the ER mem-
branes are not trimmed to provide substrates for the elongation
of autophagic membranes, they accumulate and express ER-stress
markers (7). This process is especially important in cells that make
large amounts of secreted proteins, such as plasma cells (70, 71),
but also in cells with very little cytoplasmic volume, such as naïve
T cells (7). Thus, autophagy is a pro-survival stress response.

AUTOPHAGY-RELATED CALCIUM HOMEOSTASIS IS
INVOLVED IN THE PATHOGENESIS OF DISEASES
A mutation in the gene encoding α-synuclein has been shown
to be related to the familial forms of Parkinson disease. Cellular
α-synuclein maintains the morphology of mitochondria and regu-
lates pools of Ca2+ transferred from ER stores to the mitochondria.
Homeostatic levels of α-synuclein control the uptake of calcium by
mitochondria. Autophagic flux is enhanced when calcium uptake

in mitochondria is reduced, due to the inability of mitochon-
dria to buffer Ca2+ concentrations (72). Another report indi-
cates that increased intra-axonal calcium levels are followed by
the activation of autophagy-mediated axonal degeneration, which
often accompanies traumatic nerve injury or neurodegenerative
diseases (73). Autophagy induced by calcium signaling is also
involved in cell survival during hypoxia-induced stress. In a mouse
liver ischemia-reperfusion injury model, the Ca2+/calmodulin-
dependent protein kinase IV (CaMKIV) is activated and induces
autophagy to protect hepatocytes from oxidative-stress-induced
cell death (74).

In cancer cells, autophagy is often associated with enhanced cell
survival. In breast cancer cells, nutrient and growth factor with-
drawal decreases ATP and activates Ca2+/calmodulin-dependent
protein kinase III, the eukaryotic elongation factor-2 kinase (eEF-
2 kinase). Finally, autophagy provides protective roles for can-
cer cells. Knockdown of eEF-2 kinase inhibits autophagy and
imparts sensitivity of breast cancer cells to treatments based on
the inhibition of growth factors (75). However, the plant indole,
diindolylmethane, found in cruciferous vegetables, has antineo-
plastic activity through the regulation of autophagy to attenuate
the growth of cancer cells. Diindolylmethane induces ER stress in
ovarian cancer cells and increases cytosolic calcium, which acti-
vates AMPK. The activation of AMPK promotes autophagy and
inhibits ovarian cancer cell growth (76). Thus autophagy helps
cells adapt to ever changing cellular conditions related to stress,
metabolism, but acts as a brake on uncontrolled proliferation.

CONCLUSION
Autophagy regulates the homeostasis of ER in a temporal manner.
Abnormal expansion of ER increases the calcium stores in the ER
lumen. The excessive calcium stores cause the incomplete deple-
tion of resident ER calcium stores and directly affect the oligomer-
ization and redistribution of STIM1 upon TCR activation. Finally,
CRAC channels cannot be opened completely and eventually the
calcium influx is much lower after T cells are activated. This sug-
gests that autophagy is a novel pathway to regulate the calcium
mobilization in T lymphocytes. When published data are taken
into consideration, it is apparent that increased cytosolic calcium
could inhibit mTOR to induce autophagy in human tumor cell
lines and this pathway is mediated by Ca2+/calmodulin-dependent
kinase kinase-β (CaMKK-β) and AMPK. Ectopic expression of
Bcl-2 in ER decreased the calcium stored in the ER and inhib-
ited the autophagy induced by increased cytosolic calcium (77).
The inhibition of the calcium-signaling impacts autophagy. In T
cell lines, it has been demonstrated that glucocorticoids promote
autophagy through the downregulation of Fyn and inhibition of
IP3-mediated calcium signaling (78). It seems that the autophagic
pathway and calcium mobilization are reciprocal and delicately
intertwined.
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