
Published online 8 March 2021 Nucleic Acids Research, 2021, Vol. 49, No. 10 e56
https://doi.org/10.1093/nar/gkab102

Multiplex indexing approach for the detection of
DNase I hypersensitive sites in single cells
Weiwu Gao1,2,3,†, Wai Lim Ku 1,†, Lixia Pan1,†, Jonathan Perrie1,†, Tingting Zhao4,
Gangqing Hu1, Yuzhang Wu2, Jun Zhu1, Bing Ni2,3,* and Keji Zhao 1,*

1Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH,
Bethesda, MD, USA, 2Institute of Immunology of PLA, Third Military Medical University, Chongqing 400038, PR
China, 3Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University,
Chongqing 400038, PR China and 4Chongqing International Institute for Immunology, Chongqing 401338, PR China

Received January 14, 2020; Revised January 27, 2021; Editorial Decision January 29, 2021; Accepted March 02, 2021

ABSTRACT

Single cell chromatin accessibility assays reveal
epigenomic variability at cis-regulatory elements
among individual cells. We previously developed a
single-cell DNase-seq assay (scDNase-seq) to pro-
file accessible chromatin in a limited number of sin-
gle cells. Here, we report a novel indexing strategy
to resolve single-cell DNase hypersensitivity pro-
files based on bulk cell analysis. This new tech-
nique, termed indexing single-cell DNase sequenc-
ing (iscDNase-seq), employs the activities of termi-
nal DNA transferase (TdT) and T4 DNA ligase to add
unique cell barcodes to DNase-digested chromatin
ends. By a three-layer indexing strategy, it allows pro-
filing genome-wide DHSs for >15 000 single-cells in
a single experiment. Application of iscDNase-seq to
human white blood cells accurately revealed specific
cell types and inferred regulatory transcription fac-
tors (TF) specific to each cell type. We found that
iscDNase-seq detected DHSs with specific proper-
ties related to gene expression and conservation
missed by scATAC-seq for the same cell type. Also,
we found that the cell-to-cell variation in accessibility
computed using iscDNase-seq data is significantly
correlated with the cell-to-cell variation in gene ex-
pression. Importantly, this correlation is significantly
higher than that between scATAC-seq and scRNA-
seq, suggesting that iscDNase-seq data can better
predict the cellular heterogeneity in gene expression
compared to scATAC-seq. Thus, iscDNase-seq is an
attractive alternative method for single-cell epige-
nomics studies.

INTRODUCTION

Cellular heterogeneity in gene expression, has been exten-
sively studied through single-cell sequencing methods. For
example, single-cell RNA sequencing (scRNA-seq) has re-
vealed significant heterogeneity in primary glioblastomas
(1). Also, increased levels of heterogeneity in these tumors
are inversely correlated with survival, indicating that intra-
tumor heterogeneity should be an essential clinical factor.
Successful identification of regulators of this heterogeneity
is critical to the development of new therapeutic drugs.

DNase I hypersensitivity of chromatin informs the chro-
matin states of cis-regulatory elements that govern the ex-
pression of target genes including master regulators (2–5).
Cellular heterogeneity in gene expression has been linked
to variation in chromatin accessibility (6), nucleosome or-
ganization (2) and long distance enhancer-promoter inter-
actions (7); thus, measuring chromatin states at the single-
cell level is of the utmost importance for understand-
ing the molecular mechanisms of gene expression hetero-
geneity. Several single cell techniques were developed to
measure chromatin accessibility, including scATAC-seq (3–
5,8–10) by Tn5 chromatin tagmentation, scDNase-seq (6)
by DNase I digestion for chromatin fragmentation, and
scMNase-seq (2) by MNase detection of chromatin accessi-
bility and nucleosome positions. The standard throughput
of many of these methods is in the thousands of cells, and
of these methods scATAC-seq has the highest cell through-
puts; however, it is also known that DNA tagmentation bias
exists in the use of Tn5 (11), which may affect the accuracy
of the regulator prediction and cell-to-cell variation in ac-
cessibility, limiting its potential applications.

DNase I enzymes have different properties compared
to Tn5 (12). However, due to a lack of development in
combinational indexing strategies for scDNase-seq, its cell
throughput is very low and thus its application in single-cell
studies is limited. To address this limitation, we designed a
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novel indexing strategy, which avoids the use of expensive
equipment for automation or microfluidics, to enable the
analysis of >15 000 cells in a single experiment. This new
strategy, termed indexing scDNase-seq (iscDNase-seq), in-
volves barcoding the DNA ends with a combination of TdT
terminal transferase and T4 DNA ligase. We applied it to as-
say single-cell DHSs from human white blood cells (WBC).
Computational analysis of the assay results recovered ex-
pected cell types from the WBCs and inferred their under-
lying regulatory mechanisms in accessibility variation. By
comparing our iscDNase-seq data with publicly available
dscATAC-seq data (3–5,8–10) for B cells, T cells, NK cells
and monocytes, we found that iscDNase-seq detects DHSs
missed by scATAC-seq that have high sequence conserva-
tion and are associated with significant gene expression. Im-
portantly, iscDNase-seq data can better predict the cellu-
lar heterogeneity in gene expression compared to scATAC-
seq data. Thus, iscDNase-seq is an attractive alternative
method for measuring single-cell chromatin accessibility.

MATERIALS AND METHODS

Experimental methods

iscDNase-seq method. Reagents and oligo sequences are
listed in the Supplementary Materials S2 and S3. In the
iscDNase-seq protocol (Supplementary Figure S1), cells
were first crosslinked by two-step fixation and subjected
to lysis and DNA digestion with DNase I on bulk cells.
After removal of DNase I by several washes, bulk nuclei
were aliquoted into 96 wells and barcode P7 adaptors were
ligated to the chromatin DNA by the TdT&T4 ligation
method. The samples were then pooled, diluted, and re-
distributed to 96 wells of a second plate with 30 nuclei
to each well using a flow cytometry sorter. After reverse-
crosslinking of DNA overnight at 65◦C, a second barcode
(well index) primer complementary to the P7 adapter, was
introduced to the DNA template directly by one-cycle of
polymerase chain reaction (PCR1). Then, all PCR1 prod-
ucts were pooled, ligated to P5 adaptor and re-amplified by
PCR2 primers that introduced the third barcode (i5 index).
Finally, all of PCR2 products were pooled and sequenced,
with the expectation that most sequence reads bearing the
same combination of barcodes will be derived from a sin-
gle cell (estimated collision rate of ∼13% for experiments
described here)

oligo sequence. Barcode P7 adaptor top (/5phos/AC
ACTGACGACATGGTTCTACANNNNNNNNAG
ATCGGAAGAGCACACGTCTGAACTCCAGTC
AC/3SpC3/).

Barcode P7 adaptor bottom
(TGTAGAACCATGTCGTCAGTGTCCCCCC

CC/3ddC/)
Well index primer (TACGGTAGCAGAGACTTGGT

CTNNNNNNGTGACTGGAGTTCAGACGTGTGCT
CTTCCG)

I5 index primer (AATGATACGGCGACCACCGAGA
TCTACACNNNNNNNNACACTCTTTCCCTACAC
GACGCT)

P7-cs2 primer (CAAGCAGAAGACGGCATACGAG
ATTACGGTAGCAGAGACTTGGTC*T)

P5 adaptor top (/5phos/GATCGGAAGAGCGTCG
TGTAGGGAAAGAGTG)

P5 adaptor bottom (TCTTTCCCTACACGACGCTC
TTCCGATCT)

Isolation of PBMC. Human healthy donor bloods were
collected and defibrinated or heparinized in a EDTA
sodium-treated tubes or bags for anticoagulant of blood by
the NIH blood bank. The peripheral blood mononuclear
cells (PBMC) were purified by the density centrifugation us-
ing Lymphocyte Separation Medium (Corning, catalog no.
45000-726).

Two-step crosslinking of cells. The isolated 50M of PBMC
suspended in 50 ml PBS/MgCl2 were first fixed by adding
400 �l freshly prepared 0.25 M Disuccinimidyl glutarate
(DSG, ThermoFisher Scientific, catalog no. 20593) and in-
cubating at room temperature for 45 min with rotation (13).
After three washes with PBS, the cells were suspended in
culture medium DMEM supplemented with 10% FBS and
further fixed by adding 1:15 volume of 16% (w/v) methanol-
free formaldehyde solution (Thermo Fisher Scientific) and
incubating at room temperature for 10 min (14). The re-
action was terminated by adding a 1:10 volume of 1.25 M
glycine and incubating at room temperature for 5 min. The
fixed cells were collected by centrifugation at 1320 rpm for
7 min and washed with PBS. The fixed cells were stored in
aliquots (1 × 106 cells per tube) at −80◦C until use.

DNase I digestion. The two-step fixed cells (1 × 106) were
suspended in 0.5 ml of RSB buffer (10 mM Tris–HCl pH
7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Triton X-100) and
incubated for 10 min on ice. 50 units of DNase I were added
to the cells, followed by incubation in 37◦C water bath for
5 min to digest the chromatin (Pilot DNase I titration is
needed (15)). The reaction was quenched by adding 10 �l
0.5 M EDTA to a final concentration of 10 mM. The cells
were centrifuged at 1320 rpm for 5 min at 4◦C. The super-
natants were carefully removed by pipetting without dis-
turbing the cell pellets. The pellets were washed three times
using 1ml 1 × T4 ligase buffer (final 0.1% NP40) to remove
the DNase I completely.

TdT&T4 ligation. The DNase I-digested cells were resus-
pended in nuclei resuspension buffer (328 �l H2O; 132 �l 10
mM dGTP; 66 �l 10 × T4 ligase buffer; 5.3 �l 10% NP40)
and equally distributed to 96 wells of a 96-well plate. To add
several Gs at the 3′ end of DNA and allow adaptor ligation,
2.5 �l of 10 �M barcode P7 adaptor were added into each
well, followed by adding 5 �l of the enzyme dilution buffer
(66 �l 10 × T4 ligase buffer; 330 �l H2O; 40 �l TdT en-
zyme; 13 �l T4 PNK; 78.75 �l T4 ligase) with gentle mix-
ing (pipette up and down 5–7 times). TdT&T4 ligation is
performed on the PCR machine for 30 min at 37◦C with lid
heating.

Pool and split. After TdT&T4 ligation, nuclei were pooled
and re-suspended in 1ml PBS containing 0.1% NP40 and
3 �M DAPI (Invitrogen) for nuclei staining. After 5 min
incubation at room temperature, the nuclei were counted
under the DAPI fluorescent microscope and 30 nuclei
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were distributed, using a flow cytometry sorter, into each
well of a 96-well plate containing 3 �l reverse-crosslink
buffer (50 mM Tris–HCl, pH 8.0, 25 ng/ml Proteinase K,
0.1% NP40) mixed with 10 �l PBS containing 0.1% NP40.
Up to six plates of cells were collected. The plates were
sealed completely and incubated at 65◦C overnight on PCR
machine with lid heating. After reverse-crosslinking, add
2.5 �l of 2 �M well index primer and 15 �l of 2 × Phusion®

master mix (New England BioLabs, catalog no. M0531S)
into each well for PCR1 amplification without DNA pu-
rification. The PCR1 was done under the following con-
dition: 98◦C, 3 min; followed by 12 cycles of 65◦C, 30 s
and 72◦C, 30 s; one cycle of 72◦C, 5 min. After PCR1, for
each 96-well plate, all of the products were pooled and in-
cubated with 96 �l of Exonuclease I (ThermoFisher Scien-
tific, catalog no. EN0582) at 37◦C for 30 min to degrade
the excessive of well index primers. DNA was then purified
by the MinElute® Reaction Cleanup Kit (Qiagen, catalog
no. 28206).

Library preparation and sequencing. A-tailing and P5
adaptor ligation were performed as described previously
(16). After P5 adaptor ligation, library DNA is purified
by the MinElute® Reaction Cleanup Kit. PCR2 was per-
formed by adding 15 �l DNA; 0.4 �l of 10 �M i5 primer;
0.4 �l of 10 �M p7-cs2 primer; 15.8 �l 2× Phusion Master
Mix with the following condition: 98◦C, 3 min; 57◦C, 3 min;
72◦C, 1 min; followed by 15 cycles of 98◦C, 10 s; 65◦C, 15 s
and 72◦C, 30 s; one cycle of 72◦C, 5 min. The 220–600 bp
fragments were isolated using the 2% E-Gel® EX Agarose
Gels (Invitrogen, cat #G401002) and purified using the QI-
Aquick Gel Extraction kit (Qiagen). The concentration of
the purified DNA was measured using Qubit dsDNA HS
kit (Thermo Fisher Scientific). The paired-end 50–6–8–50
sequencing was performed using the Illumina MiSeq and
HiSeq 3000.

Data analysis

Demultiplexing and data analysis of iscDNase-seq libraries.
The scripts for de-multiplexing and genome-wide mapping
are available at https://github.com/wailimku/iscDNase-seq.
git. Thirty single cells were sorted into each of the 480
wells by FACS and sent to sequencing after the library’s
preparation steps. All sequencing data was paired-end. The
R2 reads contained the information of cell barcodes (Sup-
plementary Material S2). For each well, R1 reads were
mapped to the human reference genome (UCSC hg18) us-
ing Bowtie2 (17). Using the cell barcode information from
R2 reads, we separated the mapped R1 reads into 96 sets
corresponding to the 96 cell barcodes. Reads with map-
ping quality <10 were removed and duplicated reads were
removed. For each well, in order to determine the sets of
mapped reads among the 96 sets were from single cells, we
ranked the 96 sets of mapped reads based on the total num-
ber of mapped reads in the sets. A set of reads were consid-
ered to be from single cells if they satisfied:

(1) They were one of the top 25 ranked sets.
(2) The total number of mapped reads in the set was

>1,000.

The single cell statistics were in Supplementary Material
S3. For further filtering the single cells, the merged peaks
identified by bulk-cell DNase-seq data were downloaded
from ENCODE. Totally, bulk cell DNase-seq libraries were
downloaded from ENCODE (Supplementary Table S1).
For each of the bulk-cell DNase-seq library, peaks were
called using MACS2 (18), and peaks from all libraries were
merged if they overlapped by at least 1 bp. Finally, 218 595
were identified for the bulk-cell DNase-seq data for human
WBC. The width of peaks was fixed to be 1,000bp. A further
filtering step was applied to the selected single cells by re-
quiring that reads in single cell need to be >4000 and FRiP
(fraction of reads in peaks defined by the bulk-cell DNase-
seq data) of single cell need to be >0.15.

Examining the quality of iscDNase-seq data. All reads
from single cells were pooled together and visualized via
the WashU genome browser (19) together with the bulk-
cell DNase-seq data. Peaks from the pooled single cells were
identified using MACS (18) and their widths were fixed to be
500 bp. The overlap between peaks from the pooled single
cells and the bulk-cell data were computed using the func-
tion ‘FindOverlap’ in the R package called GenomicRanges
(20). The read density of pooled single cell and pooled bulk-
cell data from the 18 bulk-cell libraries were calculated over
the bulk-cell peaks. In particular, peaks with read density
equal to 0 from either pooled single cell or bulk cells were re-
moved in the calculation. The correlation between the read
densities of pooled single cell and bulk cell was quantified
by the Pearson Correlation.

Clustering analysis for the iscDNase-seq data.

Expression matrix. First, we computed a read count ma-
trix R, in which the columns correspond to cell and rows
correspond to DHSs that were identified using pooled sin-
gle cells. Ri j indicates the number reads at the DHS site i
from the j th cell. For filtering the non-information DHSs,
DHSs with total number of reads over all single cells <150
were filtered out.

A Latent Semantic Indexing (LSI) analysis. Similar to the
previous studies (4,21), we applied latent semantic index-
ing (LSI) to the read count matrix to reduce the dimen-
sions. To perform the LSI analysis, the read count matrix
was normalized by term frequency inverse document fre-
quency (TF-IDF) and then a singular-value decomposition
(SVD) was performed on the normalized count matrix. By
removing thefirst dimension component after SVD trans-
formation, the inverse SVD transformation was applied, re-
sulting in a normalized read count matrix E′ in which rows
correspond to DHSs and columns correspond to cells.

t-SNE visualization and clustering. We applied a t-SNE to
the normalized read count matrix E′. The position of single
cells was visualized in the 2D t-SNE representative space.
Single cells are labeled in two different ways. First, single
cells were labeled according to the clusters they were from.
Second, single cells were labeled according the annotation
of cell types. DBSCAN was applied to the two-dimensional
t-SNE representative space for clustering.

https://github.com/wailimku/iscDNase-seq.git
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Generating heatmap for the cluster specific reads of
iscDNase-seq data.

Identifying cluster specific peaks. The normalized read
count matrix E′ was transformed to another normalized
matrix G in which rows correspond to DHSs and columns
corresponds to clusters. In particular, Gi j = mean (E′

ik) for
all cell k belonging to cluster j . Further, the fold-change of
DHSs in each cluster was computed where fold change at
peak i for cluster k = min( Gik

Gi j
) for all j = 1, .., 4 and �= k.

For each cluster, we selected DHSs with fold-change >1.5.
Finally, the heatmap of E′ at the specific peaks were plotted.

TF motif analysis. For each cluster, AME (22) was applied
to the specific peaks for identifying significant motifs, and
the top 40 significant motifs were selected first by also re-
quiring P-value <0.01. Then of that set, only motifs exclu-
sive to one cluster were kept.

Comparing iscDNase-seq against dscATAC-seq.

Peak calling. Peaks were identified using MACS calls (pa-
rameters: –format bed –nomodel –call-summits –nolambda
–keep-dup) on each assay-cell type. Unique peak sets are
equivalent to A ∩ B’ where A is the assay of interest and B
is the other assay with both sets belonging to the same cell
type of either single cell or bulk assays. Unique intersecting
peak sets are equivalent to taking the intersection between
two unique peak sets where one belongs to single cells and
the other belongs to bulk cells. These set operations are used
to yield a refined set of peaks specific to a single cell assay
that are also found in the bulk assay with the same digestion
enzyme but not in other assays that use different enzymes.

Conservation scores. We compared unique intersecting
peak sets by constructing average conservation score pro-
files for them. For each peak in a peak set, the average phast-
Cons score was plotted at single bp resolution.

Enrichment analysis. We compared unique intersecting
peak sets by finding the expression of their peaks’ near-
est genes within 2.5 kb. Expression data was gathered
from GEO (Supplementary Table S1) and the reads per
kilobase per million mapped reads was calculated us-
ing rpkmforgenes.py24. Peaks were then annotated using
ChIPseeker (23)with the gene expression data from rpkm-
forgenes.py.

Correlation between cell-to-cell variation in gene expression
and accessibility. Coefficient of variation scores were cal-
culated for peak accessibility and gene expression, where the
gene expression data came from 10X Genomics. For anno-
tating peaks with TSS, ChIPseeker (23) was used with a 20
kb range, and genes and peaks with no mapped reads were
filtered out.

RESULTS

TdT terminal transferase and T4 DNA ligase-mediated bar-
coding strategy

The iscDNase-seq procedure is illustrated in Supplemen-
tary Figures S1 and S2. Following DNase I digestion of

cells crosslinked with formaldehyde and disuccinimidyl glu-
tarate (DSG), several dGs are added to the DNA ends by
the activity of TdT in the presence of T4 DNA ligase and
oligo-dC barcode adaptors in a 96-well plate (Supplemen-
tary Figure S1). Following base-paring with the oligo-dGs
at the DNA ends, the oligo-dC barcode adaptors are lig-
ated to the DNA ends by T4 DNA ligase. The cells are then
pooled from 96 wells and aliquoted into new 96-well plates
with 30 cells per well by flow cytometry sorting followed by
two consecutive rounds of PCR amplification and indexing
of DHS DNA (Supplementary Figure S1). The combina-
tion of three rounds of barcoding and indexing enables de-
tection of over 15 000 cells in a single experiment.

We first applied iscDNase-seq to WBCs purified from hu-
man blood to detect open chromatin regions at single cell
resolution. Using a cutoff to filter cells with less than 1000
reads and a fraction of reads in peaks (FRiP) smaller than
15%, we detected ∼15 000 single cells and 10 000 reads per
cell on average in a single experiment (Figure 1A). Using
a more stringent filtering criterion where a cell must have
at least 4000 reads resulted in ∼10 000 single cells and 12
000 reads on average (Supplementary Figure S3A and S3B).
The read statistics of single cells was shown in Supplemen-
tary Material S1. To test potential doublet formation by
random collision between any two cells, human WBCs and
mouse splenocytes mixed, cross-linked, subjected to DNase
I digestion and processed for library construction. From the
sequencing data, we observed a collision rate of approxi-
mately 13% (Supplementary Figure S3C), which was simi-
lar to a previous barcoding strategy for single-cell ATAC-
seq (21). The genome browser snapshots (Figure 1B) show
highly consistent profiles between the pooled single-cell and
bulk cell ENCODE DNase-seq data. The mean of Frac-
tion of reads in peaks is ∼0.16 (Figure 1C). We detected
218 595 and 132 926 DHSs from the bulk cell ENCODE
data and the pooled single cell data, respectively, in which
112 091 (84%) overlapped (Figure 1D). The read densities of
the pooled cells and the ENCODE data were highly corre-
lated (Figure 1E). Also, the pooled single cell data showed
enrichment around the transcription start site (TSS) with
the enrichment score of 6 (Figure 1F).

All of these results together suggest that the iscDNase-
seq method can effectively detect open chromatin regions
in WBC.

iscDNase-seq data accurately cluster sub-types of cells in
WBC

Human WBCs contain T cells, NK cells, monocytes, and
B cells. To benchmark cell cluster annotations, we applied
iscDNase-seq to human CD4 T cells, B cells, NK cells, and
monocytes that were purified by flow cytometry sorting. Us-
ing the same filtering strategy as the human WBCs, we ob-
tained 699 B cells, 3590 monocytes, 1421 T cells, and 1923
NK cells. To cluster the single cells from each specific cell
type, we first calculated read counts in the DHSs identi-
fied from the pooled single cell data for each of the sorted
cell types and whole WBCs. Next, we applied the Latent
Semantic Indexing method to normalize the data. Finally,
the dimensionality reduction t-SNE was directly applied to
the normalized read count matrix (Materials and Methods).
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Figure 1. iscDNase-seq detects open chromatin regions in single cells. (A) A box plot to show the number of unique reads in single cells. (B) A genome
browser snapshot showing chromatin accessibility detected by the pooled iscDNase-seq data and ENCODE bulk cell DNase-seq data for different immune
cell types. The top track referred to the pooled iscDNase-seq data for human white blood cells. The other tracks, from the top to the bottom, referred to
the ENCODE bulk cell DNase-seq data for Th1, Th2, Treg, B cells, monocytes, and NK cells, respectively. (C) A box plot to show the Fraction of reads
in Peaks (FRiP) in single cells. (D) A Venn diagram showing the overlap between the DHSs obtained from the ENCODE DNase-seq data and the pooled
single cell DNase-seq data. (E) A scatter plot showing the correlation between the read density of the bulk cell DNase-seq and pooled single cell DNase-seq
at the DHSs. The correlation was computed using Pearson Correlation. (F) A TSS plot showing the TSS enrichment score of the pooled iscDNase-seq
data.

Finally, the cluster results were visualized along with an-
notations of the known cell types and clusters (Figure 2A
and B). The clustering analysis of WBCs revealed four clus-
ters of cells (Figure 2A). The sorted B cells, T cells, NK
cells and Monocytes were clearly clustered separately (Fig-
ure 2B). Comparison between the unsupervised and anno-
tated clusters in Figure 2B suggests that clusters 1, 2, 3 and
4 belonged to B cells, Monocytes, T cells and NK cells, re-
spectively. In order to evaluate the cluster annotations, we
defined accuracy as the purity of a cluster or the largest
fraction of one of the sorted cell types in a cluster. For ex-
ample, the fraction of sorted B cells in cluster 1 is close
to 100%, while the fractions of other sorted cell types are
near zero; thus, cluster 1 cells are more likely to be anno-
tated as B cells, and its cluster accuracy is close to 100%.
We found that the cluster accuracies for clusters 1, 2, 3 and
4, which corresponded to B cells, Monocytes, T cells, and
NK cells, were all >97% (Figure 2C). Within the human
WBCs, there were about 47% monocytes, 19% T cells, 25%
NK cells and 9% B cells. Overall, the iscDNase-seq data suc-
cessfully clustered the four types of immune cells in human
WBCs, which indicates that iscDNase-seq is able to iden-
tify cell type specific DHSs that can be used in downstream
clustering.

Next, we examined whether any clusters were results of
cell doublet formation. The reads per cell were visualized in
the tSNE plots (Supplementary Figure S4A), and the results
showed that the cells with extremely high read numbers did
not aggregate in any one particular cluster, suggesting that

the formation of potential doublets did not affect the clus-
tering results. Furthermore, by examining the accessibility
of several genes encoding cell-type specific TFs in the cells
of the different clusters, we observed that cell-type specific
TF genes (PAX5 for B cells, CEBPB for monocytes, TCF7
for T cells, and MAF for NK cells) exhibited the highest ac-
cessibility in the clusters annotated to be the same cell types
that express the gene (Figure 2D).

Next, we examined whether we could identify cell type
specific regulatory regions using our iscDNase-seq data. To
do this, we detected the marker peaks that can distinguish
each cluster from the other clusters (Methods). As shown in
Figure 2E, the cluster-specific peaks have the highest nor-
malized read counts in the specifically annotated cell types.
To identify potential transcription factors that are associ-
ated with the cluster-specific peaks, we detected enriched
motifs using AME (24). For each cluster, the top 40 signifi-
cant motifs were selected first, and then of that set, only mo-
tifs exclusive to one cluster were kept (Figure 2F). We found
that the set of enriched motifs in each cluster included target
motifs for specific transcription factors known to be critical
to the cell types that the clusters belonged to. For exam-
ple, the IRF8 motif, which is specific to B cells (25), was en-
riched in cluster 1, which corresponds to B cells; the CEBPA
motif, which is specific to Monocytes (26), was enriched in
cluster 2, which corresponds to Monocytes; the TCF7 mo-
tif, which is critical to T cells (27), was enriched in cluster 3,
which corresponds to T cells; and the MGA motif, which
is specific to NK cells (28,29), was enriched in cluster 4,



e56 Nucleic Acids Research, 2021, Vol. 49, No. 10 PAGE 6 OF 10

A

D E

B C F

Figure 2. iscDNase-seq detects different sub cell types in human white blood cells and their specific regulatory regions. (A) A t-SNE visualization of cells
with annotation of cells using the cluster information. (B) A t-SNE visualization of cells using the cell type information including the human WBCs, sorted
B cells, sorted T cells, sorted NK cells, and sorted monocytes. (C) A bar plot showing the accuracy of cell clusters. (D) A t-SNE visualization of cells with
the accessibility of selected TF genes. The color level indicates the zscore of accessibility across all the cells. Four TF genes were selected including (top left)
PAX5, (top right) CEBPB, (bottom left) TCF7 and (bottom right) MAF. (E) The cluster-specific peaks show distinct enrichment in different cell types.
A heatmap showing the z-score of the normalized read count at the specific peaks for each cluster. (F) Key transcription factor motifs enriched in the
cluster-specific DHS peaks. Motif enrichment analysis was performed for each group of top specific peaks. The 80 most significant motifs were selected
for each cluster. We eliminated those motifs that existed in more the one cluster. A heatmap was shown for the –log (P-value) for these TF motifs in each
cluster.

which corresponds to NK cells. To further confirm whether
these TFs were specifically expressed in the corresponding
cell types, their gene expression levels in the bulk cell data
were examined and the four TFs were found to be specifi-
cally expressed in the corresponding cell types (Supplemen-
tary Figure 4B). These results suggest that iscDNase-seq is
an efficient method to detect regulatory regions that are as-
sociated with cell-type specific TFs.

iscDNase-seq and scATAC-seq reveal both common and dis-
tinct information in WBCs

scATAC-seq and iscDNase-seq use different enzymes (Tn5
or DNase I) to probe chromatin accessibility, and thus
iscDNase-seq may reveal information that is not recognized
by scATAC-seq. To test this idea, we downloaded the recent
single cell ATAC-seq data (dscATAC-seq) (10) for B cells,
monocytes, T cells, and NK cells (10). For both dscATAC-
seq and iscDNase data, the cell-type specific peaks were
identified using MACS with a peak width setting of 500 bp.
By comparing the cell-type specific peaks from iscDNase-
seq with those from dscATAC-seq, we found that peaks
from iscDNase-seq were highly overlapped with the peaks
from dscATAC-seq only when they were from the same cell
type (Figure 3A). This indicates that both assays are able to
identify cell-specific open chromatin regions. Global analy-
sis of the accessible sites in single cell and bulk cell assays

revealed that a non-trivial fraction of the open regions was
detected only by the DNase- or Tn5-related assays (Fig-
ure 3B, Supplementary Figure S5). For example, iscDNase-
seq and dscATAC-seq found 3,099 and 48,112 peaks dis-
tinct from the other assay in B cells, respectively (Figure
3B, right panel). Visual inspection of the accessible sites on
Genome Browser snapshots revealed distinct sites detected
by iscDNase-seq and dscATAC-seq across gene loci. For
example, iscDNase-seq and scATAC-seq detected same as
well as distinct sites across the PAX5 gene locus in B cells
(Figure 3C). While Site 2 was highly accessible in both as-
says (brown), Sites 3 and 4 were preferentially detected by
iscDNase-seq (red) and Site 1 was preferentially detected by
dscATAC-seq (blue).

To examine the functional significance of unique sites de-
tected by iscDNase-seq versus dscATAC-seq, we first ana-
lyzed the gene ontology terms associated with the unique
sites. We found that the enriched GO terms for the unique
sites detected by iscDNase-seq and dscATAC-seq were very
different (Supplementary Figure S6). The GO terms as-
sociated with unique iscDNase-seq peaks include histone
modifications (B cells), myeloid cell differentiation (Mono-
cytes), chromatin organization and NF-kappaB signaling
(T cells), NF-kappaB signaling (NK cells). Many of these
GO terms are related to immune functions. However, the
GO terms associated with unique dscATAC-seq peaks in-
clude canonical WTN signaling pathway and kidney epithe-
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Figure 3. iscDNase-seq predicts functional open chromatin regions. (A) A bar plot showing the overlap between the cell type specific peaks from dscATAC-
seq and the cell type specific peaks from the iscDNase-seq. Each subplot refers to the comparison between the cell type specific peaks from dscATAC-seq
in one cell type with the cell type specific peaks from iscDNase-seq in four cell types. (B) Venn diagrams showing the overlap between peak sets from bulk
DNase-seq and bulk ATAC-seq in B cells (left) and the overlap between the peak sets from iscDNase-seq and dscATAC-seq in B cells (right). (C) A Genome
Browser track showing similarities and differences between the iscDNase-seq and dscATAC-seq datasets at the PAX5 gene locus in B cells. (D) A violin
plot showing the fraction of nucleotides (A, T, C and G) at the unique peaks from iscDNase-seq and dscATAC-seq for B cells. (E) A violin plot showing the
fraction of nucleotides (A, T, C and G) at the unique peaks from bulk cell DNase-seq and bulk cell ATAC-seq for B cells. (F) Sequence conservation scores
from B cells for the unique iscDNaseq peaks and unique dscATAC-seq peaks. The unique peaks detected by iscDNase-seq are more likely conserved peaks
than those uniquely detected by dscATAC-seq. (G) A violin plot showing the gene expression levels in B cells of genes associated with unique iscDNase-seq,
unique dscATAC-seq peaks.

lium development (B cells), embryonic organ morphogene-
sis and skeletal system morphogenesis (Monocytes), axon
guidance and neuron projection guidance (T cells and NK
cells). These terms are not associated with immune func-
tions. From these results, it appears that the unique peaks
from the iscDNase-seq datasets are more likely to be as-
sociated with cell-specific functions of the underlying cells.

Thus, the unique peaks from the iscDNase-seq date sets
may be a better predictor of cell-specific enhancers than the
unique dscATAC-seq peaks.

Next, we compared the nucleotide compositions of
unique sites detected by iscDNase-seq and dscATAC-seq.
We observed that the unique iscDNase-seq sites were more
likely to be AT-rich while the unique dscATAC-seq peaks
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were more likely to be CG-rich (Figure 3D and Supple-
mentary Figure S7). These trends were also observed in the
unique peaks from the bulk cell DNase-seq and ATAC-seq
data (Figure 3E and Supplementary Figure S7). It has been
suggested that AT-rich regions were more related to the cell
type (30). These results motivated the hypothesis that the
unique iscDNase-seq peaks are more likely to contribute
to transcriptional regulation than the unique dscATAC-seq
peaks do.

To test this hypothesis, we compared their level of se-
quence conservation as sequence conservation is often
an indicator of functional element. By retrieving the av-
erage phastCons conservation scores (31) of the unique
iscDNase-seq and dscATAC-seq sites, we observed that
the unique DNase-seq sites were more likely to have a
conserved region around the center of the sites, while the
unique dscATAC-seq peaks have a lower conserved region
away from the center of the sites (Figure 3F and Sup-
plementary Figure S8). Next, we identified the genes that
are located near either a unique iscDNase-seq peak or a
unique dscATAC-seq peak (Materials and Methods) and
compared the expression levels of the two gene groups.
The analysis revealed that the genes located near unique
iscDNase-seq sites showed significantly higher expression
levels than those located near unique dscATAC-seq sites
(Figure 3G and Supplementary Figure S9). These results
suggest that the unique iscDNase-seq peaks may be more
likely to contribute to transcriptional regulation than the
unique dscATAC-seq peaks do.

iscDNase-seq provide better prediction of cellular hetero-
geneity in gene expression compared to scATAC-seq

One major goal of performing single-cell experiments is to
examine the cellular heterogeneity. Elucidating the relation-
ship between cell-to-cell variation in different omics layers
is critical for identifying the origins of cellular heterogene-
ity and understanding how different omics layers interact.
Previous studies reported that cell-to-cell variation in ac-
cessibility is positively correlated with that in gene expres-
sion. However, it is not clear whether the degree of differ-
ence in detecting accessibility could affect this correlation.
To address this question, we computed the correlation be-
tween iscDNase-seq or dscATAC-seq with scRNA-seq as
described in Figure 4A and B.

The strategy of calculating the correlation between
iscDNase-seq or dscATAC-seq with scRNA-seq is de-
scribed below (Figure 4A and B). DHSs were annotated
to a gene if the distance between them is shorter than a
threshold (e.g. 10 kb). Therefore, while computing the cell-
to-cell variation in gene expression, the corresponding cell-
to-cell variation in accessibility can also be computed. Note
that the cell-to-cell variation is characterized by the coeffi-
cient of variation. Also, genes are aggregated into different
groups based on the ranked CV in accessibility. Each group
of genes are assigned with the average cell-to-cell variation
in both gene expression and accessibility. Finally, the corre-
lation between cell-to-cell variation in gene expression and
accessibility over the groups of genes (Figure 4A) is com-
puted.

It is possible that either of the assays detects the more
precise accessibility of the open chromatin regions at differ-
ent distances away from TSSs. Therefore, genome regions
that are 20 kb downstream and upstream of TSSs are di-
vided into bins with equal bin size of 1,000 bp. For each as-
say, we computed multiple correlation coefficients between
the variation in accessibility and gene expression, using dif-
ferent annotations of DHSs to TSS based on the consider-
ation of different bins. In each calculation, only bins that
have the same distance away from TSSs were considered.
Finally, we obtained a set of correlation coefficients which
refer to bins that are located away from TSSs with differ-
ent distances (Figure 4B). DHSs that are further away from
TSSs is expected to have lower impact to the gene expres-
sion of the TSSs. Indeed, we observed that the correlation
between cell-to-cell variation in accessibility and gene ex-
pression decrease, for both iscDNase-seq and dscATAC-
seq, when the distance between the considered DHSs and
TSSs increases (Figure 4C). However, the correlation be-
tween iscDNase-seq and scRNA-seq is significantly higher
than that between dscATAC-seq and scRNA-seq through
all distances (Figure 4C). Furthermore, the variation in ac-
cessibility of iscDNase-seq peaks annotated to TSS is sig-
nificantly better correlated with variation in gene expression
than the variation measured by dscATAC-seq peaks (Figure
4D–G).

DISCUSSION

We previously demonstrated scDNase-seq is a sensitive
method for detecting genome-wide DHSs in very small
number of cells or single-cells (6). Furthermore, cell-to-cell
variation in chromatin accessibility calculated using single-
cell DHS data generated by scDNase-seq was highly corre-
lated with that of gene expression based on scRNA-seq data
(6). In this study, we designed a new strategy, iscDNase-seq,
to dramatically improve the throughput of single-cells that
can be analyzed in one experiment. iscDNase-seq is capa-
ble of analyzing tens of thousands of single-cells in one ex-
periment, 100-fold improvement compared with the current
scDNase-seq method, without the need of expensive and so-
phisticated equipment and accessible to most molecular bi-
ology laboratories.

Although both ATAC-seq and DNase-seq provide in-
formation on chromatin accessibility, recent studies found
that DNase-seq and ATAC-seq can detect different chro-
matin open regions and DNase-seq is more likely to de-
tect enhancer regions compared to ATAC-seq (3,11,12),
suggesting that iscDNase-seq and single cell ATAC-seq as-
says may detect different properties of chromatin. Although
our results from comparing the iscDNase-seq data and sin-
gle cell ATAC-seq data indicated that the data generated
using iscDNase-seq protocol has higher background and
lower enrichment compared to current dscATAC-seq pro-
tocol, the DHS regions uniquely detected by iscDNase-
seq showed higher sequence conservation scores than
those uniquely detected by scATAC-seq. Furthermore, we
demonstrate that the genes located near DHSs uniquely de-
tected by iscDNase-seq exhibited higher expression levels
than the genes located near DHSs uniquely detected by
single cell ATAC-seq assays. These results indicated that
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Figure 4. The cell-to-cell variation in DHS detected by iscDNase-seq is highly correlated with variation in gene expression. (A) A schematic diagram
showing the calculation for the correlation between cell-to-cell variation in gene expression and accessibility. First, Genes are annotated to the nearest
DHSs located within the selected genomic regions enclosed by the red brackets. Second, we computed the density table and gene expression table for
dscATAC-seq/iscDNase-seq and scRNA-seq, respectively. Also, for each gene and DHSs, we computed the coefficient of variation. Third, more than one
DHS may be annotated to a gene. If it was the case, an average coefficient of variation (CV) was taken over DHSs which were annotated to the same gene.
Forth, 20 genes were grouped in a group based on their CV in accessibility. Fifth, we computed the averaged CV for each group of genes and each assay.
Spearman correlation was computed between CV obtained from scRNA-seq and iscDNase-seq/dscATAC-seq over the groups of genes. (B) By varying
the selection of the genomic regions enclosed by the red brackets, multiple correlation coefficients are obtained. In particular, the DHS regions closest to
the TSSs were first selected. Then the DHS regions with increasing distance from the TSSs were selected. (C) The correlation between cell-to-cell variation
in gene expression and accessibility for T cells were plotted as a function of distance, in which distance refers to the distance between the selected genomics
regions and the closest TSSs. Correlation for both dscATAC-seq (red) and iscDNase-seq (blue) were computed. (D) A violin plot for correlation between
cell-to-cell variation in gene expression and accessibility for B cells for both dscATAC-seq and iscDNase-seq were plotted. (E) A violin plot for correlation
between cell-to-cell variation in gene expression and accessibility for monocytes for both dscATAC-seq and iscDNase-seq were plotted. (F) A violin plot
for correlation between cell-to-cell variation in gene expression and accessibility for T cells for both dscATAC-seq and iscDNase-seq were plotted. (G) A
violin plot for correlation between cell-to-cell variation in gene expression and accessibility for NK cells for both dscATAC-seq and iscDNase-seq were
plotted.

iscDNase-seq is more likely to detect functional elements
required for cell-specific gene expression than the single cell
ATAC-seq assays do. Consistent with this, we found that
the correlation between the cell-to-cell variations in gene ex-
pression and DHSs detected by iscDNase-seq is also signifi-
cantly higher than that between the cell-to-cell variations in
gene expression and DHSs detected by single cell ATAC-seq
assays. All these results together suggest that iscDNase-seq
is an attractive alternative single cell method for single-cell
epigenomics studies.

DATA AVAILABILITY

The iscDNase-seq data are available from GSE156017.
The code can be downloaded from https://github.com/
wailimku/iscDNase-seq.git.

SUPPLEMENTARY DATA
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