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Abstract

With the development of biotechnology, high-throughput studies on protein-protein, pro-

tein-gene, and gene-gene interactions become possible and attract remarkable attention.

To explore the interactions in dynamic gene regulatory networks, we propose a single-

index ordinary differential equation (ODE) model and develop a variable selection proce-

dure. We employ the smoothly clipped absolute deviation penalty (SCAD) penalized

function for variable selection. We analyze a yeast cell cycle gene expression data set to

illustrate the usefulness of the single-index ODE model. In real data analysis, we group

genes into functional modules using the smoothing spline clustering approach. We esti-

mate state functions and their first derivatives for functional modules using penalized

spline-based nonparametric mixed-effects models and the spline method. We substitute

the estimates into the single-index ODE models, and then use the penalized profile least-

squares procedure to identify network structures among the models. The results indicate

that our model fits the data better than linear ODE models and our variable selection pro-

cedure identifies the interactions that may be missed by linear ODE models but confirmed

in biological studies. In addition, Monte Carlo simulation studies are used to evaluate and

compare the methods.

Introduction

Gene regulatory networks (GRN) are complex and dynamic systems in nature. They are com-

posed of genes that interact with each other and with other substances inside cells, such as

RNAs and proteins. Over the past few decades, a variety of methods have been proposed to

model GRN. Commonly used models include information theory models, Boolean networks,

ordinary differential equation (ODE) models, and Bayesian networks [1]. Information theory

models [2–4] construct network architecture on correlation coefficients. Such models are sim-

ple and have a low computation cost, but cannot take into account the dynamic processes and

situations when multiple genes participate in regulations. Boolean networks [5–7] are discrete

dynamic networks and easy to understand, but have limitations because their networks’ nodes
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are binary states: “off” or “on”. Due to these simplifying assumptions, the study of kinetic gene

regulation is still challenging because of the complexity of the biological process [8].

The Bayesian networks [9–12] integrate biological knowledge and measurements to infer

network structures. But the estimated results obtained from Bayesian networks depend on

the quality and completeness of prior knowledge. As pointed out by [13], the existing ODE

models and associated methods used to study GRN are flexible but are limited to small scale

gene expression levels. ODE models describe the dynamic behaviors of GRN in a quantitative

manner and represent gene expression level changes by functions of gene expression levels:

dXkðtÞ
dt
¼ Fðt;XðtÞ; θÞ; k ¼ 1; . . . ; p; ð1Þ

where X(t) = (X1(t), � � �, Xp(t))T represents gene expression levels at the time t of the p genes;

F(�, �, �) is a function which can be linear or nonlinear; and θ is an unknown parameter vector

which quantifies the regulations or interactions among the genes in GRN.

Once we can determine X(t), the gene expression levels which should be included in the

ODE model (1), we can infer the interactions within a dynamic GRN. This motivates us to

use appropriate models and to develop associated techniques in order to construct dynamic

GRN for time course gene expression data. Within a dynamic GRN, the majority of the genes

are not significantly relevant to each other. The precision of parameter estimation, model

interpretability, and the accuracy of forecasting will be reduced when irrelevant genes are

included in models [14]. Thus, those irrelevant genes should be excluded from the final model.

However, variable selection for ODE models using traditional statistical methods is important

but challenging, especially when it comes to dynamic GRN. The difficulties arise from two

aspects: one is the collinearity among genes, i.e., genes sharing same “pathway” are highly cor-

related in expressions; the other is the high-dimensional feature of GRN, i.e., a large-scale

GRN involves hundreds or even thousands of genes. When the number (n) of measurements

for individual genes is much smaller than the number (p) of genes, traditional statistical meth-

ods face significant challenges in developing statistical procedures and deriving theory [15].

Pioneering research has investigated gene regulatory networks using variable selection tech-

niques. For example, [13] proposed linear ODE models: dXk(t)/dt = γTX(t) and developed a

variable selection procedure based on SCAD penalty. [13] further employed their method to

construct a module-based dynamic network. However a linear ODE model has many limita-

tions and is unable to capture certain patterns. In reality, the first derivatives of the gene

expression profiles (the time-related changes of a gene expression) can be quantified as a func-

tion of gene expression levels of all related genes. The link functions that quantify the regula-

tory effects of genes on the first derivatives may be nonlinear. In other words, systems of

cellular regulations may be nonlinear [1, 16]. Due to the limitations of linear ODE models,

developing a flexible modeling approach to explore the interactions among genes has become

necessary. When the linear assumption cannot be satisfied, it is natural to consider a single-

index model, E(Y|X) = η(XT β) with η being an unknown differentiable function and β an

unknown parameter to be estimated. Single-index models have many advantages, such as

being able to model the curvature of a smooth curve and circumventing the so-called “curse of

dimensionality”. More discussions about the usefulness of single-index models are provided in

[17]. A nonlinear ODE model (given the function η) may suffer from misspecification and “the

curse of dimensionality”, whereas single-index ODE models can avoid these two problems and

are more flexible, and the index parameter (β) can be estimated with the root—n convergence

rate though the link function is unknown. More importantly, single index ODE models allow

the predictors to have interactions, which is common in characterizing gene-gene regulation.

Dynamic gene regulatory network
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Various methods have been proposed to estimate regression coefficients for single-index

models. See [18–23] for parameter estimators. In addition, much research has been done on

variable selection for single-index models. For example, [24] developed a variable selection

method based on sliced inverse regression. [25] proposed a leave-m-out cross-validation

method to select variables in a single-index model. [26] proposed semiparametrically efficient

profile least-squares estimators for parameter estimation, and employed the SCAD approach

to simultaneously select variables and estimate regression coefficients. [27] studied estimation

and variable selection coupling with dimension reduction procedures.

Although parameter estimation and variable selection for single-index models have gained

fruitful results, to the best of our knowledge, no method that couples single-index models with

ODE to study dynamic GRN is available. In this paper, we propose a single-index ODE model

to study dynamic GRN with the aim of overcoming the inadequacy of linear ODE models.

This model can be written as

dXkðtÞ
dt
¼ Zk XðtÞTβ½k�

0

� �
þ ε; k ¼ 1; . . . ; p; ð2Þ

where ηk(�) is an unknown differentiable function; β½k�
0

is a parameter vector with β½k�
0









 ¼ 1,

and the first element of β½k�
0

is positive (for identifiability), where k � k denotes the Euclidean

norm. X(t) = (x1(t), � � �, xp(t))T are state functions. Here X(t) can be gene-expressing levels of

genes or population mean curves for functional modules. To study the interactions within

dynamic GRN, one needs to identify the relevant X(t) for ODE models, that is β½k�
0
6¼ 0. We

therefore apply the penalized least-squares approach for this aspect and for estimating

dynamic parameters β½k�
0

.

We will apply the mixed-effects nonparametric model with a mixture distribution frame-

work to cluster the genes into functional modules in the first step. This clustering approach

allows us to build the module-based dynamic network and identify the interesting functional

modules. These interesting modules may play important roles in ‘dynamic’ regulations.

Although these interesting modules may contain many genes with heterogeneous functions, it

can allow scientists to focus on the genes in each module for further investigations. As shown

in Fig 1 (below), most gene expression levels can be grouped in several clusters. In each cluster,

these expression levels share a similar pattern. The genes in a cluster (represented by a node)

may play a common function in biological procession. Such a network can single out regula-

tor-regulator interactions which are helpful to avoid tedious experiments and to speed biologi-

cal studies.

In Section of Methods, we briefly describe the procedure for GRN construction with details

for penalized profile least-squares (PPrLS) estimation and variable selection. In Section of

Numerical Results, we construct a module-based GRN structure by using PPrLS estimator for

the yeast cell cycle gene expression data with additional results (S1 and S2 Tables), and conduct

Monte Carlo simulation studies to evaluate the performance of the proposed procedure. The

simulation settings were designed to mimic the gene expression patterns from the real data

example. In Section of Discussions, we conclude the article with a brief discussion. All theory

and associated technical details are given in the supporting materials (S1–S7 Files).

Methods

Time-course gene expressions are synchronized to many ongoing biological processes such as

tissue repair, cell differentiation, or cell cycles [28, 29]. Through understanding the genes

underlying the cell cycles, we can study the mechanisms of many diseases at a molecular level

and in turn provide potential drug targets for treating those diseases. From the end of the last
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century, the identification of cell cycles associated genes has attracted considerable attention

in biological study. For example, [28, 30] performed genome-wide transcriptional analysis of

the cell cycle process of yeast using microarrays and identified about 800 cell-cycle-regulated

genes. GRN include genes, the products of genes, and the interactions among them, which

together affect many cellular processes. To understand the dynamic mechanism of cellular

processes, modeling and analysis of dynamic gene regulatory networks using time-course

gene expression data has attracted much attention. We model dynamic network for functional

modules based on observed time course gene expression levels in three steps.

Fig 1. The scatterplot of gene expressions against time (the same color for each individual gene in a module) and the population mean curve

(solid line) of 12 modules for the time course yeast cell data set.

https://doi.org/10.1371/journal.pone.0192833.g001
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Step 1. Group genes into functional modules using the smoothing spline clustering (SSC)

approach [31–33]. Final number of clusters was selected by the Bayesian information crite-

rion (BIC), and penalty parameters were determined by the leave-one-out cross-validation

procedure (GCV);

Step 2. Estimate state function X(t) and first derivative X0(t) for each functional module using

nonparametric mixed-effect models (NPME) and the spline method respectively;

Step 3. Select modules and estimate dynamic parameters using the PPrLS procedure given

below, for which tuning parameter was selected by the BIC, and bandwidths were deter-

mined by the GCV.

We now describe the details for these three steps.

Step 1—Clustering process

We assume the time-course gene expression levels for gene i can be represented by a smooth

function of time and follow a mixture Gaussian distribution:

giðtÞ � p1Nðm1;S1Þ þ p2Nðm2;S2Þ þ � � � þ ppNðmp;SpÞ; ð3Þ

where pk, k = 1, � � �, p are the probability that gene i belongs to cluster k; μk, k = 1, � � �, p and

Sk, k = 1, � � �, p are the vector representations of the mean curve and variances components for

each cluster respectively. The gene expression levels for individual genes are assumed to follow

an overall mean curve (fixed-effect) while having a gene-specific shift (random-effect). There-

fore nonparametric mixed-effect model can be constructed by fitting the time-course gene

expressions for each gene to a function over time by using the smoothing spline method.

Through maximizing the penalized log-likelihood, the SSC procedure estimates the probabili-

ties pk. The means μk and variances component Sk can be estimated as by-products also. More

details about the SSC procedure are available in [32] and [33].

Step 2—Applications of nonparametric mixed-effect models

After grouping genes into functional modules, we apply NPME models to estimate the state

function X(t) and its first derivative X0(t) for each functional module. For notation simplicity,

we consider the estimation of the state function and its first derivative for module 1 (k = 1) and

denote them by X(t) and X0(t) respectively. Suppose the number of genes in module 1 ism,

and the number of measurements collected from each gene ismi. The NPME model can be

described as

giðt ¼ XðtÞ þ viðtÞ þ εiðtÞ; i ¼ 1; � � � ;m; ð4Þ

where gi(t) is the observed gene expression level for the ith gene; X(t) presents the fixed-effect

or population curve which reflects an overall time-related trend of the gene expression level

for module 1; vi(t) describe individual curve variations; εi(t) are measurement errors; and vi(t)
and εi(t) are assumed to be independent.

We can combine the penalized spline [34–36] with the linear mixed-effects (LME) model-

ing framework [37] to approximate X(t). For presentation completeness, we briefly summarize

the estimation procedure. We first approximate X(t) and vi(t) by eXðtÞ and eviðtÞ, respectively,

which are expressed as:

eXðtÞ ¼
Xl

r¼0

art
r þ
XR

r¼1

urðt � zrÞ
l
þ
; and eviðtÞ ¼

Xl

r¼0

birt
r þ
XR

r¼1

wirðt � zrÞ
l
þ
; ð5Þ
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where l� 1 is an integer, z1 < � � �< zR are fixed knots, ur(t − zr)+ = max(0, t − zr),

α = (α1, � � �, αl), u = (u1, � � �, uR), bi = (bi0, � � �, bil), and wi = (wi0, � � �, wiR). Let

Si ¼

1 ti1 � � � tli1
1 ti2 � � � tli2

..

. ..
. . .

. ..
.

1 timi � � � tlimi

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; and Zi ¼

ðti1 � z1Þ
l
þ
� � � ðti1 � zRÞ

l
þ

ðti2 � z1Þ
l
þ
� � � ðti1 � zRÞ

l
þ

..

. . .
. ..

.

ðtimi � z1Þ
l
þ
� � � ðtimi � zRÞ

l
þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

The approximation of model (4) can be expressed as

g ¼ Sα þ Λbþ Zuþ Γw þ ε; ð6Þ

where S ¼ ðST
1
; � � � ; ST

mÞ
T
, g ¼ ðgT

1
; � � � ; gT

mÞ
T
, L ¼ diagðST

1
; � � � ; ST

mÞ, Z ¼ ðZ
T
1
; � � � ;ZT

mÞ
T
,

Γ ¼ diagðZT
1
; � � � ;ZT

mÞ, b ¼ ðb
T
1
; � � � ; bT

mÞ
T
, and w ¼ ðwT

1
; � � � ;wT

mÞ
T
. Model (6) is a standard

LME model. As a result, α, b, u and w can be estimated by using the function lme (available

in the R package nlme). Substituting the estimated bα and bu in Eq (5), we estimate the X(t)
for module 1. After estimating X(t), we apply the spline method (available in the R package

splines) to estimate the first derivative of bXðtÞ. The detailed estimation procedure is

referred to [38] and [39].

Step 3—Estimation procedure based on the penalized profile least-squares

approach

Suppose a genome-wide time course gene expression levels were clustered into pmodules;

Xj(t), j = 1, � � �, p are the population mean curves estimated by NPME models; and bX 0kðtÞ are

the estimates of the first derivative dXk(t)/dt for the k-th module. Substituting Xj(t), j = 1, � � �, p
and the first derivative bX 0kðtÞ for the k-th module in model (2), we obtain a single-index ODE

model for the k-th functional module which can be written as

YkðtÞ ¼ ZkðXðtÞ
Tβ½k�

0
Þ þ ε; k ¼ 1; � � � ; p; ð7Þ

where ηk is an unknown differentiable function, YkðtÞ ¼ bX 0kðtÞ, X(t) = (X1(t), . . ., Xp(t))T,

β½k�
0
¼ ðb

½k�
01
; � � � ; b

½k�
0pÞ

T
, and ε is the sum of numerical errors due to integration and estimation.

This complexity εmakes it challenging to study the properties of the proposed estimator for

β0s, For simplicity, we adopt an additive error model used in the literature [13, 40, 41]. Once

the X(t) can be identified, we construct a module-based network. Here we develop the variable

(population mean of functional modules) selection and estimation procedure for model (7)

based on the penalized profile least-squares approach as follows.

Selecting variables by penalized least squares has been widely studied in literature. See,

for example, the least absolute shrinkage and selection operator (LASSO) [42], the smoothly

clipped absolute deviation (SCAD) approach [43], the adaptive lasso estimator [44], the elas-

tic-net estimator [45] and the adaptive elastic-net estimator [46]. However, the variable selec-

tion problem for single-index ODE models has not been addressed in the literature. In this

paper, we extend the approach proposed by [26] to the single-index ODE model (7).

Let p be the number of all modules; Xi = (X1(ti), . . ., Xp(ti))T, i = 1, . . ., N, Yi ¼ bX 0kðtiÞ be the

vector representations of the mean curves of p function modules and the estimates of the first

derivative dXk(t)/dt for the k-th module. Assume the functional data of the kth module follows

Dynamic gene regulatory network
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the single-index ODE model

Yi ¼ ZkðXT
i β
½k�Þ þ εi; k ¼ 1; � � � ; p; ð8Þ

Let Li ¼ XT
i β
½k�. ηk(u) can be estimated utilizing the local linear regression method [47], i.e.,

minimizing

XN

i¼1

fak þ bkðLi � uÞ � Yig
2KhðLi � uÞ; ð9Þ

with respect to ak and bk, where Kh(�) = K(�/h)/h, K(�) is a kernel function and h is a bandwidth.

We can then obtain

Ẑkðu; βÞ ¼ bak ¼
K20ðu; βÞK01ðu; βÞ � K10ðu; βÞK11ðu; βÞ

K00ðu; βÞK20ðu; βÞ � K2
10
ðu; βÞ

; ð10Þ

where Kjlðu; βÞ ¼
XN

i¼1

KhðXT
i β
½k� � uÞðXT

i β
½k� � uÞjYli ; for j = 0, 1, 2 and l = 0, 1, 2. Conse-

quently, the profile least squares function can be proposed as a function of β[k]

Qðβ½k�Þ ¼
XN

i¼1

fYi � ẐkðX
T
i β
½k�Þg

2
: ð11Þ

The above estimation procedure can be used when the true model is known a priori.

Because we wish to identify GRN structure and enhance the predictive power of a proposed

model, we apply the penalized least-squares approach to simultaneously select modules and

estimate parameters. Define a penalized profile least-squares (PPrLS) function

LP β½k�
� �

¼
1

2
Q β½k�
� �

þ N
Xp

j¼1

pl½k� jb
½k�
j j

� �
; ð12Þ

where pλ[k](�) is a penalty function with a regularization parameter λ[k]. The PPrLS estimator of

β[k] is the minimizer of Eq (12); i.e.,

bβ½k� ¼ argminLPðβ
½k�Þ: ð13Þ

For a given tuning parameter λ[k], we can estimate β[k] by minimizing LPðβ
½k�Þ with respect to

β[k]. By determining non-zero β[k], we identify the modules having impacts on the kth module

and therefore construct GRN.

There are various penalty functions in the literature of variable selection for semiparametric

models. Considering the SCAD method has many good theoretical properties, we adopt the

SCAD penalty function [43], and adopt BIC selector proposed by [48] to choose the regulariza-

tion parameters λ[k] by minimizing the following objective function:

BICðl½k�Þ ¼ logfMSEðl½k�Þg þ f log ðNÞ=NgDFl½k� ; ð14Þ

where MSEðl½k�Þ ¼ N � 1
XN

i¼1
Yi � Ẑk X

T
i
bβ½k�

l½k�

� �n o2

and DFλ[k] is the number of nonzero coeffi-

cients of bβ½k�
l½k�

, the PPrLS obtained from (12) for each λ[k].

Remark. Although the proposed method needs three steps to implement and its computa-

tional cost is high, compared to the existing methods, its gain in computational efficiency is

significant. Most of dynamic network models such as dynamic Bayesian networks and random
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graph models require extensive computations for posterior inference. As a result, Bayesian

based methods allow one to deal with only small networks. The proposed method can avoid

numerically solving the differential equations directly, and does not need the initial or bound-

ary conditions of the state variables. The method also incorporate the high-dimensional ODEs

to allow us to perform variable selection and parameter estimation for one equation. These

good features gain computational efficiency.

Numerical results

Real data analysis

We used the procedure introduced in Section of Methods to analyze a time-course yeast cell

cycle gene expression data set. These 297 genes were identified as expressions across 18 time

points during approximate two cell cycles; i.e., each gene has 18 time-related observations

[49].

We implemented Step 1 using the MFDA function (available in the R package MFDA),

and identified 12 functional modules. The population mean curves for the functional modules

are given in Fig 1. We can see that for each functional module, the genes included share a simi-

lar pattern. These time-related patterns show two cell cycles (Fig 1). The number of genes

included in each functional module ranges from 9 to 53.

In order to construct a functional landscape of the genome-wide regulatory network

through identifying interactions among modules, we used the Database for Annotation, Visu-

alization and Integrated Discovery [50, 51] to identify enriched functional annotations in

Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways for each functional

module. A modified Fisher exact test was used to test the null hypothesis that a certain function

is not over-represented in the module compared to the background population. Due to space

limitation, we displayed part of the selected functional annotations in Table 1. All enriched

functional annotations were provided in S1 Table.

As shown in Table 1, the function annotation analysis suggested that genes in the identified

functional modules participate in broad biological process such as cell cycle, DNA replication

or packaging, meiosis, regulation of transcription etc. For example, module 3 was highly

enriched in DNA packaging; module 7 was enriched in cell-division cycle and mitosis; and

DNA metabolic process was related to module 12. Although each functional module has multi-

ple enriched annotations, but most annotations can be grouped into one or two clusters.

After grouping genes into functional modules, we applied step 2 to all functional modules,

and obtained Xi(t) and bX 0iðtÞ; i ¼ 1; � � � ; 12. Following the data augmentation strategy used in

[13, 52, 53] and [54], we selected 300 time points from Xi(t) and the first derivative bX 0
1
ðtÞ for

the module. Therefore, the sample size is N = 300. After substituting the estimates into single-

index models, we built the full model for module 1, for instance, as follows.

y1 ¼ Z1ðXðtÞ
Tβ½1�

0
Þ þ ε; ð15Þ

where the response variable y1 ¼
bX 0

1
ðtÞ, the estimated first derivatives; X(t) = (X1(t), . . ., X12(t))T

are the population mean estimates of 12 functional modules; and β½1�
0
¼ ðb

½1�

01
; . . . ; b

½1�

012
Þ

T
. Apply-

ing the PPrLS procedure given in step 3 to model (15), we detected significant variables X(t)
and obtained nonzero bβ½1�. As a result, we identified the modules related to the gene-expression

changes of the module 1. For a comparison, we also fitted y to X(t) by using a linear ODE model

[13]

y1 ¼ XðtÞTβ½1�L0
þ ε: ð16Þ
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We also selected XðtÞ and estimated β½1�L0
¼ ðb

½1�

L01
; . . . ; b

½1�

L012
Þ

T
by applying the SCAD method to

the linear ODE model (16).

Applying the procedure to all functional modules, we constructed a regulatory network

among modules (Figs 2 and 3) and estimated their corresponding dynamic coefficients by

both single-index and linear ODE models.

To compare the results provided by the single-index ODE and linear ODE models, we sum-

marized the inward (significantly impact on) and outward (impacted by) regulatory relation-

ships between modules in Table 1. The number of genes in each module was displayed in the

parentheses. One can see that the residuals of sum squares (RSS) of single-index ODE models

were smaller than those of the linear ODE models. We can also observe that the single-index

ODE models selected more modules than the linear ODE models did. For example, the single-

index ODE model indicated that module 2 was impacted by modules 1, 2, 7, 8, 9 and 12 of

which only modules 1, 7 and 9 were selected by the linear ODE model. Both linear ODE and

single-index ODE indicated that modules 3, 7 and 8 were important because they regulated

more than 50% modules. We also noted that module 8 only included 9 genes. Further experi-

ments are needed to explore these new discoveries in biological progression.

A simulation study

In this part we conducted Monte Carlo simulation studies to validate the proposed procedure

for the single-index ODE models. Due to the intensive computational cost, we designed a sys-

tem with 7 ODEs, which include following linear and nonlinear forms. The simulation settings

Table 1. The inward and outward regulations in the module-based regulatory network and RSS based on the linear ODE (L-ODE) and the single-index ODE (Si-

ODE).

Module Selected function annotation and associated p-values (in parentheses) Outward influence

modules

Inward influence modules RSS

L-ODE Si-ODE L-ODE Si-ODE L-ODE Si-ODE

module1

(12)

DNA replication (0.013), regulation of RNA metabolic process (0.014),

meiosis (0.021)

3, 5, 7, 8 1, 3, 7, 8, 9,

12

2, 6, 9, 12 1, 2, 3, 4, 5, 8,

9, 10, 11

3.07E-

03

1.41E-

04

module2

(30)

cellular carbohydrate biosynthetic process (0.006), 1, 7, 9 1, 2, 7, 8, 9,

12

7 2, 4, 5, 8, 9,

10, 12

5.20E-

04

3.38E-

05

module3

(15)

protein—DNA complex assembly (< 0.001), DNA packaging (< 0.001) 3, 7, 8,

10

1, 7, 8, 12 1, 3, 4, 5, 6, 7,

8, 12

1, 4, 5, 6, 7, 8,

10, 11, 12

3.37E-

03

3.58E-

03

module4

(32)

DNA metabolic process (< 0.001), DNA replication (< 0.001), DNA

repair (< 0.001), cell-division cycle (0.025)

3, 5, 7, 8 1, 2, 3, 7, 8,

9, 11, 12

NA 6, 8, 9, 11, 12 4.52E-

03

1.05E-

03

module5

(16)

interphase of mitotic cell cycle (< 0.001), DNA replication initiation (<

0.001)

3, 5, 7, 8 1, 2, 3, 5, 8,

9, 11, 12

1, 4, 5, 6, 7, 8,

9, 10, 11, 12

5, 7, 10, 11 5.28E-

03

3.45E-

04

module6

(38)

lipoprotein biosynthetic process and metabolic process (0.004), regulation

of DNA metabolic process (0.005), chromosome organization (< 0.001)

1, 3, 5, 7 3, 4, 6, 7, 8,

9, 12

NA 6, 9 1.10E-

03

2.88E-

05

module7

(20)

nuclear division (< 0.001), cell-division (< 0.001), mitosis (< 0.001) 2, 3, 5, 8 3, 5, 7, 8, 9,

10, 12

1, 2, 3, 4, 5, 6,

8, 9, 10, 11

1, 2, 3, 4, 6, 7,

8, 10

2.10E-

03

2.67E-

04

module8 (9) cell cycle (0.007), regulation of cell cycle (0.025) 3, 5, 7, 8 1, 2, 3, 4, 7,

8, 9, 11, 12

1, 3, 4, 5, 7, 8,

9, 10, 11

1, 2, 3, 4, 5, 6,

7, 8, 9, 11

1.01E-

02

7.90E-

04

module9

(35)

Glycosylation (< 0.001), mitotic cell cycle (< 0.001), nuclear division (<

0.001)

1, 5, 7, 8 1, 2, 4, 6, 8,

11

2 1, 2, 4, 5, 6, 7,

8, 11

5.20E-

04

1.34E-

05

module10

(14)

regulation of cell cycle (< 0.001), regulation of cell cycle process (0.001) 5, 7, 8,

12

1, 2, 3, 5, 7,

11, 12

3, 11 7, 11 6.55E-

03

6.82 E-

06

module11

(53)

cell cycle (0.043), nuclear migration along microtubule (0.012) 5, 7, 8,

10

1, 3, 4, 5, 8,

9, 10

NA 4, 5, 8, 9, 10 8.03E-

05

8.70E-

06

module12

(23)

mitotic recombination (< 0.001), DNA metabolic process (< 0.001) 1, 3, 5 2, 3, 4 10 1, 2, 3, 4, 5, 6,

7, 8, 10

2.27E-

03

1.41E-

04

https://doi.org/10.1371/journal.pone.0192833.t001
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are data-driven because the gene expression pattern show sine and cosines patterns (Fig 1)

dX1ðtÞ
dt

¼ 0:05 � ðb01 � X1 þ b02 � X2Þ;
dX2ðtÞ
dt
¼ cosðb03 � X2 þ b04 � X3Þ;

dX3ðtÞ
dt

¼ sinðb05 � X2 þ b06 � X3Þ;
dX4ðtÞ
dt
¼ 0:1 � ðb07 � X2 þ b08 � X4Þ;

dX5ðtÞ
dt

¼ sinðb09 � X2 þ b010 � X4Þ;
dX6ðtÞ
dt
¼ 0:05 � expðb011 � X3 þ b012 � X6Þ;

dX7ðtÞ
dt
¼ 0:2 � ðb013 � X2 þ b014 � X3Þ; Xpðt0Þ ¼ Xp0; p ¼ 1; � � � ; 7;

ð17Þ

Fig 2. The GRN identified by the linear ODE models for the time course yeast cell data set. Each node represents a module and the arrows presents

the direction of influence.

https://doi.org/10.1371/journal.pone.0192833.g002
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where β½1�
0
¼ ðb01; b02; 0; 0; 0; 0; 0Þ

T
¼ ð0:707; 0:707; 0; 0; 0; 0; 0Þ

T
,

β½2�
0
¼ ð0; b03; b04; 0; 0; 0; 0Þ

T
¼ ð0; 0:555; � 0:832; 0; 0; 0; 0Þ

T
,

β½3�
0
¼ ð0; b05; b06; 0; 0; 0; 0Þ

T
¼ ð0; 0:832; � 0:555; 0; 0; 0; 0Þ

T
,

β½4�
0
¼ ð0; b07; 0;b08; 0; 0; 0Þ

T
¼ ð0; 0:600; 0; � 0:800; 0; 0; 0Þ

T
,

β½5�
0
¼ ð0; b09; 0;b010; 0; 0; 0Þ

T
¼ ð0; 0:894; 0; 0:447; 0; 0; 0Þ

T
,

β½6�
0
¼ ð0; 0; b011; 0; 0; b012; 0Þ

T
¼ ð0; 0; 0:894; 0; 0; � 0:447; 0Þ

T
, and

β½7�
0
¼ ð0; b013; b014; 0; 0; 0; 0Þ

T
¼ ð0; 0:894; � 0:447; 0; 0; 0; 0Þ

T
.

Given initial values Xp0, p = 1, . . ., 7, we can numerically solve the above ODE system and

obtain the numerical solution Xp(t), p = 1, . . ., 7. In this simulation study, we first generated

Fig 3. The GRN identified by the single-index ODE models for the time course yeast cell data set. Each node represents a module and the arrows

presents the direction of influence.

https://doi.org/10.1371/journal.pone.0192833.g003
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initial values Xp(0), p = 1, . . ., 7 by using

Xp0 ¼ X0 þ 0:5 � ep; p ¼ 1; . . . ; 7;

where ep follows N(0, 1) and X0 = (0.7628, 0.6789, 1.2351, 0.6170, 2.7800, 0.2906, 0.4441).

We then numerically solved the ODE system (17) and output Xp(t), p = 1, . . ., 7, using three

different schedules: equally spaced time points on the ranges of [0, 18], but three different inter-

vals between time points. As a result, we simulated seven population means Xp(ti), p = 1, . . ., 7,

i = 1, . . .,Nwith sample sizes N = 180, 288, 360. After generating the population mean

curves, we used the spline method to estimate the first derivatives, which are denoted by bX 0pðtÞ,
p = 1, . . ., 7. For notation simplicity, we gave the model structure and estimation procedure for

the first ODE (k = 1). The same procedure can be applied to the rest of the ODEs. Substituting

the generated Xp(t), p = 1, . . ., 7 and estimated bX 0
1
ðtÞ into the single-index ODE models, we

obtained the largest model for the first ODE as follows:

bX 0
1
ðtiÞ ¼ Z1ðXðtiÞ

Tβ½1�
0
Þ þ εi; i ¼ 1; . . . ;N;

where β½1�
0
¼ ðb

½1�

01
; . . . ; b

½1�

07
Þ

T
and X(ti) = (X1(ti), � � �, X7(ti))T, i = 1, � � �,N. Applying the procedure

given in Step 3, we selected X(t) and estimated β½1�
0

for the first ODE. Applying the same proce-

dure to the other six ODEs, we estimated β½k�
0

, k = 2, . . ., 7. As a result, we constructed GRN for

the simulated functional modules. We repeated the same procedure 100 time and summarized

the MSEq ¼
P100

j¼1
ðbbqj � b0qÞ

2
=100 and AREq ¼

P100

j¼1

jbbqj � b0qj

jb0qj
; q ¼ 1; . . . ; 14, where bbqj is

the estimated βq for jth iteration. In Table 2, “overfitted (O)” represents extra variables; “under-

fitted (U)” represents incorrectly deleting necessary variables. We can see that the PPrLS method

can correctly select the variables for most cases in terms of the number of correctly fitted model.

Larger sample sizes lead to better performance. For ODEs with a linear form, namely ODE1,

ODE4, and ODE7, both variable selection and parameter estimation procedures have good per-

formance when the sample size is 180. For the nonlinear case, with the increase of the sample

size, both variable selection and parameter estimation tend to work better. In addition, we

reported the 10% trimmed MSE and ARE (discarding 5% of the lowest and the highest values).

Meanwhile, we constructed networks among simulated functional modules for each iteration

(see Figs 4, 5 and 6). The thick lines represents true connection, and the numbers present the

times which were found by our method in 100 iterations. From Figs 4, 5 and 6, we can see that

the constructed GRN match the true network in most cases.

Conclusions and discussions

In this paper, we have proposed single-index ODE models and developed a procedure to select

variables and estimate parameters. The procedure has further been used to analyze a time-

course data set with the aim of exploring the module based and regulator-regulator interac-

tions. We found the interactions identified by using single-index ODE were more accurate,

i.e., the linear ODE models overlooked some confirmed regulator-regulator interactions [55].

We took module 12 as an example. MBP1 is a DNA-binding protein that forms MBF complex;

a protein complex that binds to the Mlu1 cell cycle box promoter element. [56, 57] showed

that MBP1 is topologically related to transcription factors, including SWI4 in Saccharomyces
cerevisiae. In addition, there is physical and genetic evidence that MBP1 interacts with SKN7,

a transcription factor [58]. These two interactions are identified as potential interactions in

module 12 by single-index ODE models, but are overlooked by the linear ODE models.
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Table 2. The simulation results for the SCAD method for scenarios with different sample sizes based on 100 replications. The simulation results for the SCAD method

for scenarios with different sample sizes based on 100 replications. Correctly fitted (C); underfitted (U); overfitted(O).

ODE bb’s C U O MSE MSEtrim ARE(%) AREtrim(%)

N = 180

1 bb1
100 0 0 < 0.001 < 0.001 0.005 0.004

bb2
< 0.001 < 0.001 0.005 0.004

2 bb3
96 0 3 0.012 < 0.001 4.012 0.013

bb4
0.028 < 0.001 4.005 0.006

3 bb5
97 1 2 0.014 < 0.001 2.271 0.006

bb6
0.007 < 0.001 2.366 0.013

4 bb7
99 0 1 0.004 < 0.001 1.025 0.024

bb8
0.006 < 0.001 1.014 0.013

5 bb9
65 6 24 0.295 0.255 35.181 32.363

bb10
0.064 0.057 32.669 30.219

6 bb11
93 2 3 0.053 0.005 6.443 1.105

bb12
0.014 0.003 6.811 1.538

7 bb13
100 0 0 < 0.001 < 0.001 0.004 0.003

bb14
< 0.001 < 0.001 0.016 0.014

N = 288

1 bb1
100 0 0 < 0.001 < 0.001 0.002 0.001

bb2
< 0.001 < 0.001 0.002 0.001

2 bb3
96 0 4 0.012 < 0.001 4.003 0.003

bb4
0.028 < 0.001 4.001 0.001

3 bb5
97 1 2 0.014 < 0.001 2.264 0.002

bb6
0.007 < 0.001 2.49 0.003

4 bb7
100 0 0 < 0.001 < 0.001 0.007 0.007

bb8
< 0.001 < 0.001 0.004 0.004

5 bb9
77 5 13 0.166 0.14 21.242 18.046

bb10
0.055 0.035 23.601 18.503

6 bb11
96 1 2 0.024 < 0.001 3.167 0.001

bb12
0.006 < 0.001 3.19 0.003

7 bb13
100 0 0 < 0.001 < 0.001 0.001 0.001

bb14
< 0.001 < 0.001 0.004 0.004

N = 360

1 bb1
100 0 0 < 0.001 < 0.001 0.001 0.001

bb2
< 0.001 < 0.001 0.001 0.001

2 bb3
96 0 4 0.012 < 0.001 4.002 0.002

bb4
0.028 < 0.001 4.001 0.001

3 bb5
97 1 2 0.014 < 0.001 2.278 0.001

bb6
0.007 < 0.001 2.402 0.002

4 bb7
100 0 0 < 0.001 < 0.001 0.005 0.005

bb8
< 0.001 < 0.001 0.003 0.003

(Continued)
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Table 2. (Continued)

ODE bb’s C U O MSE MSEtrim ARE(%) AREtrim(%)

5 bb9
78 5 10 0.15 0.122 19.267 15.852

bb10
0.039 0.032 20.493 17.214

6 bb11
96 0 4 0.032 < 0.001 4 < 0.001

bb12
0.008 < 0.001 4.002 0.002

7 bb13
100 0 0 < 0.001 < 0.001 0.001 < 0.001

bb14
< 0.001 < 0.001 0.002 0.002

https://doi.org/10.1371/journal.pone.0192833.t002

Fig 4. The constructed gene regulatory networks for simulation studies with N = 180 and 100 iterations. Solid lines: the true connections, numbers

present: the times correctly identified using our procedure in 100 iteration, dots line: incorrectly identified connections.

https://doi.org/10.1371/journal.pone.0192833.g004
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The advantages of our method include (i) single-index ODE models can fit the data better

than linear ODE models; (ii) the interactions found by single-index ODE models can cover

most of the interactions identified by linear ODE models for some of the modules; and (iii)

our method is computationally efficient because we can select significant modules and esti-

mate index coefficients simultaneously.

Similar to the linear ODE model, our method needs estimated population means and their

corresponding first derivatives, which may be treated as the limitation of the proposed proce-

dure. The PPrLS estimator has good performance in identifying significant modules. But new

stable techniques are still needed to group genes to reduce the gene cluster uncertainty because

cluster assignment still plays an important role in enhancing the usefulness of this research.

It is worth noting that the PPrLS estimates may not be most efficient in terms of estimation

accuracy because PPrLS estimation is a nonparametric method and inherits error if the data

Fig 5. The constructed gene regulatory networks for simulation studies with N = 288 and 100 iterations. The legend is the same as in Fig 4.

https://doi.org/10.1371/journal.pone.0192833.g005
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contain a large noise. Regulator-regulator interaction exploration depends on the knowledge

of gene-regulator relationship, which we study. So the proposed method may provide valuable

insights into complicated biological processes with understanding gene-gene and gene-regula-

tor relationships. Overall, our procedure is useful to single out high level (module based) and

potential regulator-regulator interactions which are helpful to provide guidance for tedious

and costly experiments.
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