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Abstract

The laboratory mouse is a key player in preclinical oncology research. However, emphasis

of techniques reporting at the expense of critical animal-related detail compromises

research integrity, animal welfare, and, ultimately, the translation potential of mouse-based

oncology models. To evaluate current reporting practices, we performed a cross-sectional

survey of 400 preclinical oncology studies using mouse solid-tumour models. Articles pub-

lished in 2020 were selected from 20 journals that specifically endorsed the ARRIVE (Ani-

mal Research: Reporting of In Vivo Experiments) preclinical reporting guidelines. We

assessed reporting compliance for 22 items in five domains: ethical oversight assurance,

animal signalment, husbandry, welfare, and euthanasia. Data were analysed using hierar-

chical generalised random-intercept models, clustered on journal. Overall, reporting of ani-

mal-related items was poor. Median compliance over all categories was 23%. There was

little or no association between extent of reporting compliance and journal or journal impact

factor. Age, sex, and source were reported most frequently, but verifiable strain information

was reported for <10% of studies. Animal husbandry, housing environment, and welfare

items were reported by <5% of studies. Fewer than one in four studies reported analgesia

use, humane endpoints, or an identifiable method of euthanasia. Of concern was the poor

documentation of ethical oversight information. Fewer than one in four provided verifiable

approval information, and almost one in ten reported no information, or information that was

demonstrably false. Mice are the “invisible actors” in preclinical oncology research. In spite

of widespread endorsement of reporting guidelines, adherence to reporting guidelines on

the part of authors is poor and journals fail to enforce guideline reporting standards. In partic-

ular, the inadequate reporting of key animal-related items severely restricts the utility and

translation potential of mouse models, and results in research waste. Both investigators and

journals have the ethical responsibility to ensure animals are not wasted in uninformative

research.
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Introduction

The laboratory mouse is a well-established and common research model used to study human

diseases, and a key link in the translation of bench experiments to clinical trials. In cancer

research, mouse models are major players in three domains. First, mouse models enable

insight into the genetic, mechanistic, and phenotypic mechanisms and interactions underlying

the pathogenesis of cancer initiation and tumour formation. Second, they serve as in vivo plat-

forms for drug discovery and therapeutic screening and evaluation. Finally, mouse models per-

mit direct testing of the relationship of tumorigenesis to various environmental factors not

possible in clinical studies of humans [1].

However, the ‘mouse model’ in oncology research is not a monolith. Mouse strains are

varied, animal genotypes are manipulated, induction methods are wide-ranging (e.g.

engraftment, syngeneic, orthotopic, and genetically-engineered models), and disparate

methods of determining marker expression are used [1, 2]. While lab bench methods are

usually well described and thoroughly documented in literature reports, the animals them-

selves have been ‘invisible actors’. Information on routine care, housing, welfare measures

(such as anaesthesia, analgesia, euthanasia, [3]), and animal signalment (strain, sub-strain,

age and sex) have all been documented to influence both progression of specific cancers and

expression of experimental outcomes [4]. An additional consideration is that many cancer

models are associated with high rates of lethality and potential for suffering, so reporting of

care and welfare measures are necessary for assessing if studies do in fact meet basic ethical

standards. However, this information has not been prioritised in much of the literature. The

omission of animal-related details, intentional or not, may be due in part to the perception

of mice as disposable, inter-changeable commodities, or “furry test tubes” [5]. Without

complete and accurate description of all methods related to the specific animal model,

including care and welfare, it will not be possible to assess the relevance of the models, inter-

pret and generalize results, or even determine if the research followed best-practice scien-

tific and ethical standards.

We performed a cross-sectional survey [6] of studies of solid-tumour oncology mouse

models to evaluate the reporting of items specifically related to animal care and welfare,

animal-related cancer aetiology, and endpoint expression. We confined searches to recent

major cancer journals that explicitly endorsed the ARRIVE (Animal Research Reporting:

In Vivo Experiments) reporting guidelines [7, 8] because these guidelines provide an objec-

tive benchmark for quality reporting expectations [9]. The primary intent of this survey

was neither to synthesize evidence (as with systematic reviews), nor perform a complete

evaluation of adherence to all reporting items identified by ARRIVE. Instead, the main

objective of this investigation was to provide a prevalence snapshot of commonly-over-

looked reproducibility ‘risk factors’ specifically associated with animal use, humane care,

and welfare. To ensure rigorous review, we followed standards for conduct and reporting of

scoping reviews (The PRISMA Extension for Scoping Reviews (PRISMA-ScR) [10]. Oncol-

ogy studies utilizing mouse models were evaluated for reporting of items in five key ani-

mal-specific domains (ethical oversight assurance, animal signalment, husbandry, welfare,

and euthanasia), and evaluated for the extent of reporting compliance and major gaps. We

also evaluated reporting of simple study validity items (sample size, sample size justifica-

tion, and bias minimisation) to enable comparison with other, more general, reviews. We

discuss how reporting gaps identified in this survey limit the utility and translatability of

mouse oncology models, and provide a list of targeted recommendations to improve the

quality of these studies.

PLOS ONE Mouse model reporting in oncology research

PLOS ONE | https://doi.org/10.1371/journal.pone.0274738 October 20, 2022 2 / 17

https://doi.org/10.1371/journal.pone.0274738


Materials & methods

Eligibility and screening

Data were extracted from 400 articles in 20 oncology research journals representing six pub-

lishing groups (Fig 1). The study was purposefully restricted to a single year (2020). A total of

284 journals related to oncology research were identified and screened. Journals were selected

if the primary focus was on preclinical studies involving animal use, and if they explicitly

endorsed ARRIVE reporting guidelines in the Instructions to Authors [7, 8]. Journals were

excluded if subject matter was predominantly or exclusively clinical and/or molecular, as indi-

cated by both electronic search on the terms ((mouse OR mice OR murine) OR preclinical OR

animal) and visual search of article titles, abstracts, and main text in each journal. Impact fac-

tors ranged from 2.97 to 26.5, as determined from the 2020 Journal Citation Reports (Clarivate

Web of Science). We selected the first 20 articles in each journal for the year 2020 that

described original experimental research involving mouse oncology models. Clinical or

Fig 1. Flow diagram for journal identification, article selection, screening, inclusion, and exclusion.

https://doi.org/10.1371/journal.pone.0274738.g001
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epidemiological studies, in vitro studies, letters to the editor, conference abstracts, and reviews

were not included. Journal and article selection processes are described in more detail in the

S1 File: Supplementary Methods.

Data

Both authors independently screened each article by examining Materials and Methods,

Results, and article supplementary files (if provided) for reference to experiments involving

mice. Key reporting items in five domains (ethical oversight assurance, animal signalment,

animal husbandry, welfare-related items, and euthanasia), identified from the relevant sections

of ARRIVE guidelines [7, 8] and itemised in a checklist (S1 File: Supplementary Methods)

were scored as reported (1) or not reported (0). Only information included in the main text

and supplementary methods was included. Information reported in figure legends but not

mentioned elsewhere in the text was not considered as reported. The subset of articles that

reported measurements of subcutaneous tumour volume as an experimental outcome

(n = 290) were scored for tumour burden metrics reporting (method, sites, volume, maximum

tumour size, time to maximum tumour size). All articles were scored for simple study validity

metrics (total sample size, sample size justification, randomisation, blinding; S1 File: Supple-

mentary Methods).

Both authors scored all articles individually in separate spreadsheets (Microsoft Excel 2019;

Microsoft Corporation, Redmond, WA). Discrepancies between scored items were flagged

electronically. Discrepant entries were then compared to information in the original article for

correction if necessary, and remaining ambiguities or divergence resolved by consensus. Data

were imported into SAS 9.4 (Windows 10PRO x64; SAS Institute Inc., Cary, NC) for analysis.

Further details are given in S1 File: Supplemental Methods.

Statistical analyses

This was a descriptive study rather than a hypothesis-testing study. Data were itemized and

summarized by counts and percentages. Patterns of reporting compliance for care and welfare

items were analysed using two-level hierarchical generalised random-intercept models, with

articles clustered within journal, no predictors, and dichotomous (binary) outcomes [11, 12].

There were no previously published estimates for expected between- and within-cluster vari-

ances. Therefore, sample sizes for journals and articles per journal were selected to give reason-

able estimates and precision for model parameters [13]. Simulations have indicated that

confidence intervals with approximately correct coverage rates and minimal downwards bias

can be obtained with approximately 20 observations per cluster and at least 20 clusters [14].

Poor reporting of study validity items precluded formal analysis.

The binary response (yes/no) for each reporting item was modelled as ηij = γ0+u0j where ηij
is the log odds of a given item being reported for article i in journal j, γ0 is the random inter-

cept component representing the log odds of an item being reported for a given journal, and

u0j is the journal-level error, with u0j assumed to be normally distributed with mean 0 and vari-

ance τ0. The probability of reporting compliance for each item was calculated as

�ij ¼ eZij=ð1þ eZijÞ. The amount of variation in item reporting accounted for by journal mem-

bership was assessed by intraclass correlation coefficients (ICC). ICC is estimated as the pro-

portion of variance that can be attributed to between-journal variation:

ICC ¼ s2
jour=ðs

2
jour þ s

2
eÞ, where s2

jour is level-2 or between-journal variation, estimated from the

covariance parameter estimate, and s2
e is the level-1 or article-level variance, estimated as π2/3

for the standard logistic distribution. (The variance for a hierarchical generalized linear model

with binary outcomes is directly determined by the population mean [11, 12]). The ICC can
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also be interpreted as the correlation ρ of the response for any two articles selected at random

from the same journal [15]. Models were fitted using Laplace estimation in SAS proc glimmix
(SAS v.9.4, SAS Institute, Cary NC; S1 File: Supplemental Methods; [11]).

Results

General

The summary of reporting compliance for care and welfare items is given in Table 1. Count

summaries by journal are given in the S2 File: Supplemental Results. Median reporting com-

pliance was 23% (IQR 21, 27%) for all reporting items across journals in this survey. There was

no apparent relationship between percent compliance and journal or journal impact factor

(Fig 2). Unadjusted correlation for care and welfare items with journal impact factor was r =

−0.05 (95% confidence interval −0.48, 0.40), and the correlation of validity items with impact

factor was r = −0.18 (95% confidence interval −0.57, 0.29).

Reporting (Table 1) was highest for minimal ethical oversight statements (84%), nominal

strain identification (91%) and animal age class (81%), and lowest for animal husbandry (0–

10%), welfare (2–16%), and euthanasia (7%) items. The intraclass correlation coefficients

(ICC) indicate how much of the total variation in the probability of reporting a specific item is

accounted for by journal. ICCs were for the most part moderate to poor, reflecting rates of

reporting that were either uniformly high (e.g. ethical oversight items) or uniformly poor (e.g.

welfare items) across all journals. Items with ICC of zero reflect either almost no reporting at

Table 1. Summary of reporting probability ϕ (proportion of articles reporting a given item, corrected for journal membership) with 95% confidence intervals, and

intraclass correlation (ICC), estimated from two-level hierarchical models of articles nested within journal.

Reporting Probability

Number of articles, n ϕ 95% CI ICC

Ethical oversight Institutional approval 331 0.838 0.779 0.883 0.28

Approval number 105 0.236 0.160 0.332 0.38

Care and use guidelines 174 0.430 0.350 0.515 0.29

Signalment Nominal strain identifiers 356 0.909 0.851 0.945 0.35

Verifiable strain identifiers 34 0.045 0.018 0.106 0.64

Source or derivation 290 0.745 0.659 0.816 0.33

Age 325 0.813 0.766 0.853 0.24

Sex 287 0.725 0.659 0.782 0.27

Weight 45 0.082 0.043 0.149 0.45

Husbandry Caging 16 0.028 0.011 0.071 0.41

Number of mice per cage 14 0.018 0.005 0.058 0.59

Enrichment 4 0.000 0.000 0.056 0.00

Temperature 28 0.033 0.011 0.093 0.71

Photoperiod 45 0.072 0.034 0.143 0.55

Food and water access 47 0.096 0.058 0.156 0.36

Feed type 16 0.021 0.006 0.066 0.60

Acclimation 18 0.044 0.023 0.083 0.25

Welfare Anaesthesia 59 0.127 0.082 0.192 0.33

Analgesia 11 0.022 0.008 0.059 0.34

Humane endpoints 65 0.163 0.129 0.202 0.00

Euthanasia Method identified 78 0.135 0.066 0.255 0.72

Not specified 213 0.530 0.419 0.637 0.37

Not reported 108 0.261 0.202 0.329 0.27

https://doi.org/10.1371/journal.pone.0274738.t001
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all (enrichment, n = 4/400 articles), or rare intermittent and inconsistent reporting across mul-

tiple journals (humane endpoints n = 65/400). Items with the highest ICC resulted from low

overall frequency of reporting, resulting from high reporting concentrated in only one or two

journals and poor reporting for all other journals. For example, ‘temperature’ has an overall

reporting frequency of 3.3% (ϕ = 0.033) but an ICC of 0.71, reflecting 13 reports located in

only two journals, and 15 reports in the remaining 18 journals (S2 File: Supplemental

Results).

Ethical oversight

Approximately 84% (ϕ = 0.838) of articles explicitly reported that prior institutional approval

was obtained, and 43% reported adherence to recognised and verifiable standards of humane

animal care and use. However, fewer than one in four (24%) provided verifiable institutional

protocol or license numbers, and 26/400 (7%) did not report any verifiable declaration of

either institutional approval or care and use guidelines. One article claimed that their study

“was not required to complete an ethical assessment”, and one study stated that approval had

been obtained “retrospectively”. Approval numbers and oversight statements of six articles

were identical to those reported in articles on different topics published in different journals

Fig 2. Association of journal impact factors and percent overall animal care & welfare reporting for mouse-based

oncology studies in 20 journals.

https://doi.org/10.1371/journal.pone.0274738.g002

PLOS ONE Mouse model reporting in oncology research

PLOS ONE | https://doi.org/10.1371/journal.pone.0274738 October 20, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0274738.g002
https://doi.org/10.1371/journal.pone.0274738


by unrelated research groups. Animal Welfare Assurance Numbers, which do not refer to indi-

vidual animal use protocols but are granted to Public Health Service (PHS) awardee institu-

tions, were reported by seven articles.

Animal signalment

Signalment is the complete description of the animal model itself, and should include unam-

biguous identification of strain, strain source (a recognised vendor, repository, or laboratory),

age, sex, and if possible, body weight, as stipulated in the ARRIVE guidelines. For genetically

modified strains, either reference to recognised official consensus identifiers (RRID, vendor

stock or strain numbers), or a complete description of genotype derivation should be reported

[16]. Although 91% of surveyed articles provided at least a nominal strain identification, only

75% provided a source or recognised vendor, and fewer than 5% of articles provided clear,

complete and verifiable genotype identifiers or a sufficiently detailed description of breeding

stock development. In 9% (44/400) of surveyed studies, strains used were either not identified,

or only vague descriptors (such as “nude mice”) were provided. The journal Cancer Cell,
which uses a structured reporting format for methods (STAR-Methods, [17]) had the most

thorough documentation of strain identifiers, with 12/20 articles supplying complete

information.

The majority of research articles reported sex (73%) and age (81%). Nearly half (47%)

reported using animals 4 to 6 weeks of age, although it was not clear if these were the ages at

which animals were acquired, or if they were the ages at which experimental manipulations

occurred. Body weights were reported for only 45/400 (11%) of surveyed studies.

Husbandry

Key husbandry information was poorly reported. Basic information on caging, cage density

(number of mice per cage), and enrichment was almost never described (0–3%). Environmen-

tal variables temperature and photoperiod were also poorly reported (3% and 7% respectively).

Welfare

Descriptions of welfare-related assessments and procedures (analgesia and anaesthesia, post-

operative and palliative care, and humane endpoints) were poorly reported. Anaesthesia and

analgesia use were reported by 13% and 2% of articles respectively. Articles reporting use of

specific agents rarely provided necessary information on methods of administration, dose,

route, concentration, manufacturer, indications for use, and/or administration schedules. Less

than 1% (3/400) papers described pre-emptive analgesia use, 2.5% (10/400) reported using

post-operative analgesia, and 2% (8/400) reported use of opioids. Most studies reported moni-

toring experimental animals for days to weeks post-tumour induction and before euthanasia,

and 52% reported some sort of “survival analysis” using methods for time to event data (e.g.

Kaplan-Meier estimates, Cox proportional hazards regression). However, only 16% (65/400

studies) reported specific humane endpoints. No study reported direct assessments of pain-

related behaviours or response to palliative care measures.

Tumour volume is commonly used to assess disease progression, tumorigenicity, and

response to therapeutic intervention [18], and tumour burden is a critical humane endpoint

[3]. Specific methodological details for tumours are not explicitly identified in the ARRIVE

guidelines. Nevertheless, it should be apparent that all methods used to determine a key experi-

mental endpoint should be reported in adequate detail, and specific guidelines for reporting

tumour burden and humane endpoints have been available for over a decade [3]. Of the 290

articles describing subcutaneous tumour volume as endpoint, pertinent descriptors necessary
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for volume determination were not reported by the majority of papers. Twenty-seven percent

(78/290) did not report the anatomical site of tumour induction or gave only a vague descrip-

tion, 52% (152/290) did not report whether induction sites were unilateral or bilateral, 53%

(152/290) did not report the measurement tool used (e.g. callipers), 29% (85/290) did not

report the volume calculation formula, 72% (210/290) did not report the a priori maximum

allowable tumour size for humane endpoint, and 59% (172/290) did not report the a priori
maximum duration allowable for tumour growth prior to euthanasia. Inspection of results and

figures suggested that at least 39% of reported studies (114/290) allowed tumours exceed the

recommended limit of 1500 mm3 without scientific justification [3], 9% (46/290) showed ani-

mals with tumours exceeding 3000 mm3, and 8 articles reported tumour sizes exceeding 6000

mm3. Another 16% (46/290) either did not report volumes at all (although describing the

methods of doing so), or reported only ‘relative’ or ‘normalised’ volumes or nonstandard met-

rics which could not be assessed. There was also considerable variety in methods of calculating

tumour volume. Nearly half (49%, 141/290) of surveyed studies measured tumour size with

external callipers and calculated volume as a quadrangular prism in two dimensions (length x

width2/2). However, the remainder described use of up to 11 different formulae or variations.

No paper reported determination of associated measurement errors or intra-observer

variation.

Euthanasia

Euthanasia methods were explicitly identified in only 14% of surveyed articles. Only two jour-

nals (BMC Cancer, British Journal of Cancer) consistently reported euthanasia methods (90%;

36/40). Although over half (53%) all surveyed articles reported that animals were euthanized,

no methods were identified or described in these papers. The remaining 27% of articles did

not report any method of animal disposition before tissue harvest.

Study validity

Although all studies reported results of null hypothesis statistical tests, few studies reported

verifiable information for total numbers of animals used, formal sample size justification, or

bias minimisation methods (randomisation, blinding). Only 15% (59/400) articles provided

‘total’ sample sizes, and 31% (124/400) gave a sample size per intervention arm. However,

these numbers are likely an under-estimate of the number of animals used, as animal loss due

to attrition and discarded experiments was not recorded, nor was it clear how many whole-

animal experiments were actually conducted, or even how many intervention arms were

tested. Formal sample size justification using power calculations was claimed by 7 papers (2%),

although descriptions were too incomplete to allow verification. Another 16 papers provided

other unverifiable forms of sample size ‘justification’, based on ‘previous experience’, ‘mouse

availability and feasibility’, numbers ‘as small as possible to produce valid results’ or the ‘num-

ber used to obtain statistically significant results’. ‘Randomisation’ was claimed by 41% (165/

400), with apparent stratification on tumour volume, animal weight, or age by 7 (<2%). Only

4 articles described using software or a random numbers table, and none described the rando-

misation method or the unit of randomisation. Two articles described as ‘random’ allocation

that was sequential or alternating, respectively. Blinding was mentioned by 16 articles (4%),

but none described how concealment was performed.

Discussion

Mice are the ‘invisible actors’ in much pre-clinical oncology research. In spite of explicit

endorsement of the ARRIVE reporting guidelines by all journals in this survey, reporting of
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animal-related information was inadequate. Descriptions of experimental techniques and pro-

cedures were emphasised at the expense of critical animal-related detail, and many details

essential for assessing both study reliability and animal welfare were not reported. The wide-

spread failure to report these details represent significant methodological omissions in preclin-

ical oncology research.

Unfortunately, the results of this survey are consistent with those of other recent reviews

that have found poor reporting compliance for other research specialties [19, 20]. There is

increasing concern that the lack of reproducibility of much animal-based research is directly

related to poor methodological documentation of critical information both ‘inherent to the

animals’ (such as strain, age, sex etc.), but also those ‘extrinsic factors of the animals’ environ-

ment . . . that systematically influence the experimental outcomes’ [21–23]. Without these

details, much of the evidence claiming translation potential of mouse-based oncology models

will be suspect. Complete and accurate reporting of experimental details is crucial for assessing

model relevance, potential sources of variation and model disparity, translation potential, and

(not least) if animal-based research has been conducted in compliance with best-practice ani-

mal welfare standards.

Ethical oversight of animal research is a fundamental research requirement. All journals in

the current survey expressly stipulated that prospective studies required approval from the rel-

evant institutional oversight committee before research animals were obtained or used. There-

fore, it was both disappointing and unexpected that unambiguous and verifiable statements of

institutional approval showed much less than 100% compliance, nearly one in ten studies

failed to report any verifiable ethical oversight information at all, and some provided informa-

tion that was demonstrably false. Poor animal care and use is poor science. Without verifiable

ethical oversight information, it is impossible to tell if ethical review of the animal experiments

was actually performed, if studies were conducted under appropriate ethical oversight, or if the

work followed best practices for humane care and use. Plagiarised or false ethical oversight

information is research misconduct.

Standardized, genetically defined mouse strains and stocks are primary biomedical research

tools. However, in this survey, <10% of studies reported verifiable strain descriptions or used

standardised nomenclature. This is of concern, because mice, and especially inbred strains, are

subject to both obvious and quiet genetic mutations with each round of breeding [16, 24–26].

These mutations can be due to genetic drift with differential fixation, or genetic contamination

resulting from breeding colony mismanagement [27]. Quiet mutations are the most problem-

atic because they do not result in a readily visible phenotype, and can go undetected unless

genetic stability testing is performed routinely [16]. Sub-strains of inbred lines produced by

different commercial vendors, or continuous in-house breeding programs, may differ both

genetically and phenotypically, thus contributing to variation and compromising data inter-

pretation [28]. The scientific community must follow basic guidelines for breeding and

describing research animals, such as those endorsed by FELASA (Federation of European Lab-

oratory Animal Science Associations) [16]. Meticulous and accurate identification of mouse

lines used is essential to ensure the assumed genetic model is in fact the correct model for pur-

pose, facilitate scientific communication, and improve reproducibility. Without specific infor-

mation on genetic background and strain derivation, it will not be possible to assess model

relevance, identify appropriate controls, or interpret and generalize the results in a meaningful

way [28, 29].

Descriptions of housing and husbandry practices are frequently overlooked in methods

reporting, and in this survey were rarely reported. These omissions are of concern for study

reproducibility in general, because housing and husbandry conditions can have profound

effects on health and welfare of mice, and can be a cause of phenotypic variation. More
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specifically for oncology studies, housing and environmental conditions can greatly affect rates

of tumour induction, invasion or remission, and response to test interventions. For example,

both tumour formation and development in mice are affected by solitary versus social housing.

Social isolation stress enhances tumour invasion, metastasis [30–34], tumour growth [34–44],

and gene expression, and attenuates response to chemotherapy [35]. Compared to solitary ani-

mals, group-housed animals typically have smaller tumours and increased rates of tumour

regression or rejection [40, 45, 46]. Additional environmental factors affecting tumour kinetics

and gene expression include housing on ventilated racks [47–55], temperature (heat or cold)

stress [56–62], bedding type [63], and enrichment [62, 64, 65]. Handling methods [47, 66] and

the diet fed [67–72] also contribute to animal stress, and therefore may be expected to influ-

ence tumour growth and metastasis.

Results of this survey support prior observations [19, 73, 74] that preclinical research studies

do not consistently report use of anaesthesia, analgesia, or other pain control measures. Even if

surgery is not performed, general anaesthesia is generally used as a restraint agent in imaging

studies. Choice of anaesthetic agents can introduce considerable experimental artefact and

must be identified and justified [3]. Further, it is an ethical imperative to minimize pain and

distress of animals used in invasive research. Pain management can be a methodological chal-

lenge if anaesthesia or analgesia agents have the potential to affect experimental endpoints,

such as engraftment, tumour growth, or metastasis [75–77]. Thus, both cancer pain and meth-

ods of pain control have the potential to act as meaningful confounding factors [74]. Neverthe-

less, there is no good reason why responsible pain alleviation cannot be used [73]. Pain is a

common clinical effect of many cancer types, and pain management is an integral part of

human and veterinary oncology practice. Most cancer studies are conducted under the

assumption that major morbidity and mortality will result from tumour progression without

intervention. Analgesic use promotes welfare in animal oncology models by sustaining tumour

growth to predetermined experimental endpoints without undue animal suffering [78]. Pre-

emptive, perioperative and follow-up administration of pain relief measures are required for

major and/or multiple survival surgeries, and studies with long post-injury monitoring peri-

ods. Analgesia should be the default for research protocols, and there should be very high sci-

entific and ethical bar for withholding analgesia.

Given that many oncology studies have the potential for animal suffering and death, it is of

major concern that information on welfare monitoring, humane endpoints, and euthanasia

was reported so infrequently. Humane endpoints must be defined for so-called “survival stud-

ies” because death as an endpoint is discouraged by most reputable ethical oversight bodies.

Failure to euthanize animals at predefined humane endpoints can lead to significant animal

suffering and poor welfare. Potential adverse events and clinical signs associated with the ther-

apeutic compounds under test should also be categorised a priori, identified and reported,

especially if long-term study goals include translation.

Specification of humane endpoints should prioritise clear descriptions of methods for

determining tumour burden, and predefined limits to maximum permissible tumour burden

and duration of tumour growth. Because tumours vary in size and aggressiveness depending

on the cancer type and location, ethical expectations are that protocols must also include

clearly defined study-specific humane endpoint criteria, descriptions of monitoring frequency,

and methods used to minimise suffering of the animals. More conservative tumour burden

limits must also be considered if multiple tumours are present. Rigorous specification of these

key metrics is necessary, both as reliable measures of tumorigenesis and intervention effects,

and as humane endpoint indicators. Published consensus guidelines have been available for

over a decade that specify limits to tumour size consistent with humane use and study validity

(e.g. [3]), and animal ethics oversight committees usually have clear specifications for
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maximum permissible tumour size. It was therefore disappointing that this survey showed that

these items were poorly reported.

Evaluation of tumorigenesis data is further confounded by lack of consistent standards for

tumour volume determinations. External calliper measurements (the most commonly used

method) are prone to major systematic biases and observer variability [18, 79]. These problems

are exacerbated by different methods of estimating tumour volume from linear measurements,

which may result in considerable under- or over -estimation of tumour sizes. Because certain

cancers have the potential for explosive tumour growth, measurement frequency should be tai-

lored to the specific cancer type to avoid tumours exceeding allowable limits between measure-

ment intervals. The inappropriate reporting of ‘relative’ or ‘normalised’ tumour volumes,

alternative metrics or methods of calculating volume that do not relate reliably to tumour bur-

den, plus failure to define maximum time and burden limits, also contribute to lack of trans-

parency and oversight.

Methods of euthanasia can induce large differences in protein, metabolite, and biomarker

expression, depending on both agent and pre-euthanasia versus post-euthanasia timing of tis-

sue collection [80–82]. Our finding that 80% (321/400) of articles in this survey did not report

any verifiable euthanasia methods at all is also concerning, as it is therefore impossible to com-

pare results based on tissue harvest data.

Previous reviews have reported uniformly disappointing results for reporting of study valid-

ity and risk of bias items [10, 19, 21, 83]. This survey showed shared the (sadly) common fea-

tures of inadequate sample size reporting, inappropriate justification, and poor understanding

of basic concepts involved with bias minimisation. The extent of claimed randomisation

observed in this study is probably greatly exaggerated, as it is likely that many investigators

conflate ‘random’ with ‘haphazard’ or ‘unplanned’, and no study provide sufficient detail to

indicate if the appropriate units of analysis were used in subsequent hypothesis tests. There

was no indication that journal impact factor made much, if any, difference to risk of bias in

published articles.

Limitations of this study include the potential for selection bias and lack of quality appraisal

of the included studies [7, 84]. We selected only oncology journals from the larger established

publishing groups, excluded those published in a language other than English, and included

only those that explicitly endorsed the ARRIVE guidelines. Because reporting guidelines repre-

sent the minimum information necessary for assessing research reliability [9], we reasoned

that journals endorsing such guidelines would provide a compliance benchmark for other

journals not following such guidelines. However, this was not the case. Reporting compliance

overall was extremely poor, with major methodological reporting gaps and no apparent rela-

tionship between rates of reporting and journal impact factor. Second, because this was a

cross-sectional survey and not a formal systematic review, we did not evaluate the quality of

evidence for individual studies, differences between cancer models, or validity of results [83].

Instead our goal was to determine patterns of reporting and reporting gaps for animal care

and welfare items known to contribute to variability in response to both cancer induction

methods and experimental interventions. We cannot rule out bias in the studies themselves.

Perceived bias against publication of ‘‘negative” results may mean that investigators probably

do not report all experiments with all animals, but only those with “significant” findings [83].

A recent survey of preclinical investigators indicated that the major reason for failure to

report ARRIVE items in research reports was because those items were not considered ‘impor-

tant’ or ‘necessary’ [20]. The widespread omissions noted in this survey indicate that animal-

related information, although specifically singled out in the ARRIVE guidelines, definitely

takes a back seat to that for other resources and procedures. Unfortunately, reporting quality

has remained consistently poor across diverse research specialties and journals since the
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guidelines were introduced [10, 19]. One factor contributing to the lack of improvement is the

current publication fashion for the reporting of numerous diverse experiments in a single

paper, presumably to indicate if results are ‘robust’. This has resulted in highly information-

dense reporting of the results for numerous individual experiments and incomplete methodol-

ogy documentation, making studies difficult or impossible to review for substance [85]. A sec-

ond factor is the widespread failure of journal and peer reviewers to actively enforce agreed-

upon best-practice reporting standards [19, 20].

Investigators, journal editors, and peer reviewers need to put the ‘mouse’ back into mouse

model-based research. Editorial and journal staff must be more actively involved in enforcing

reporting standards [9, 20] and ensure that all relevant animal-based information (including

details of ethical oversight) are described. Mandatory completion of ARRIVE or Structured,

Transparent, Accessible Reporting (STAR Methods) checklists by the submitting authors has

been documented to significantly improve scientific reporting when enforced by journals [86–

88]. The reform of journal content in the direction of fewer, but better and more thoroughly

documented and reported experiments should be prioritised. This would have the added

advantage of reducing information overload and therefore the burden on reviewers, and possi-

bly contribute to more thorough reviews [85].

Accountability in science is key to improving practices. It is a scientific imperative to ensure

that models are relevant and translatable. It is an ethical imperative to minimize pain and dis-

tress in animals used in invasive research and that appropriate oversight guardrails are in

place. If methodological substance is de-emphasised in favour of the narrative of results, pre-

clinical oncology research will continue to be compromised.
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