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Background: Since Lambotte and Payr first studied Mg-based alloys for

orthopedics in 1900, the research of this field has finally ushered in vigorous

development in the 21st century. From the perspective of quantitative analysis,

this paper clearly demonstrated the global research trend from 2005 to 2021 by

using bibliometrics and scientometric analysis.

Methods: We obtained the publications from the Web of Science Core

Collection (WoSCC) database. The bibliometric and scientometric analysis

was conducted by using R software, CiteSpace software, VOSviewer

software, Pajek software and Microsoft Excel program.

Results: In total, 1921 publications were retrieved. It can be found that the

number of publications is gradually increasing year by year. We can find that the

most prolific countrie, institution and researcher are China, Chinese Academy

of Sciences and Zheng Yufeng, respectively. The most influential journals in this

field are Acta Biomaterialia and Biomaterials, with 16,511 and 12,314 total

citations, respectively. By conducting the co-cited documents-based

clustering analysis, 16 research hotspots and their representative studies

have been identified. Besides, by conducting analysis of keywords, we

divided the keyword citation bursts representing the development of the

field into three stages.

Conclusion: The number of researches on the biodegradable Mg-based alloys

increased sharply all over the world in the 21st century. China has made

significant progress in biodegradable Mg-based alloy research. More focus

will be placed on osteogenic differentiation, fabrication, graphene oxide,

antibacterial property, bioactive glass and nanocomposite, which may be the

next popular topics in the field.

OPEN ACCESS

EDITED BY

Anuj Kumar,
Yeungnam University, South Korea

REVIEWED BY

Raman Kumar,
Guru Nanak Dev Engineering College,
India
Peisheng Chen,
Fuzhou Second Hospital of Xiamen
University, China

*CORRESPONDENCE

Qingyun Xue,
xueqingyun2021@163.com

SPECIALTY SECTION

This article was submitted to
Biomaterials,
a section of the journal
Frontiers in Bioengineering and
Biotechnology

RECEIVED 10 May 2022
ACCEPTED 12 July 2022
PUBLISHED 09 August 2022

CITATION

Zheng Z, Xu W, Xu Y and Xue Q (2022),
Mapping knowledge structure and
themes trends of biodegradable Mg-
based alloy for orthopedic application: A
comprehensive bibliometric analysis.
Front. Bioeng. Biotechnol. 10:940700.
doi: 10.3389/fbioe.2022.940700

COPYRIGHT

©2022 Zheng, Xu, Xu and Xue. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 09 August 2022
DOI 10.3389/fbioe.2022.940700

https://www.frontiersin.org/articles/10.3389/fbioe.2022.940700/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.940700/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.940700/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.940700/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.940700/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.940700/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.940700&domain=pdf&date_stamp=2022-08-09
mailto:xueqingyun2021@163.com
https://doi.org/10.3389/fbioe.2022.940700
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.940700


KEYWORDS

Mg-based alloy, biodegradable metal material, orthopedics, bibliometric analysis,
visualized study

1 Introduction

Since the 1960s, people have studied and screened traditional

industrial materials based on biocompatibility (Navarro et al.,

2008), and developed the first generation of biomedical materials

characterized by biological inertia and in vivo stability. In the

mid-1980s, a variety of bioactive materials including bioactive

glass (El-Ghannam et al., 1999), bioceramics (Hench, 1991) and

absorbable suture (Bezwada et al., 1995) began to be widely used.

The first- and second-generation medical implants, such as

such as 316L stainless steel, pure titanium and Ti-6Al-4V Alloy

and cobalt chromium molybdenum alloy, are still widely used in

orthopedics. However, Since the 21st century, the third

generation of medical materials that can induce cell

proliferation, differentiation, and the synthesis and assembly

of extracellular matrix are in the ascendant (Navarro et al.,

2008; Holzapfel et al., 2013). The third generation of medical

materials, namely biodegradable materials, is the combination of

two independent concepts of bioactive materials and degradable

materials (Yang et al., 2018).

As the third-generation biomedical material with bright

clinical application prospects, magnesium alloy has the

advantages of avoiding secondary surgery and promoting

tissue regeneration (Chen et al., 2018). The research on the

mechanical properties, degradation properties and

biocompatibility (Wang et al., 2022) of magnesium alloys is a

research hotspot that researchers all over the world are

committed to, but there is still a long way to go before the

clinical application of magnesium alloy products (Azadani et al.,

2022). The surge of researches and literatures makes this field

complicated and profound. Bibliometrics can review and

prospect this field from a clear, objective and comprehensive

perspective (Kumar and Goel, 1007).

Because of the uncontrollable degradation rate and hydrogen

production, the research on magnesium alloys in the 20th century

fell into a stagnant period for a long time, and did not enter a rapid

development stage until the 21st century. Researchers are mainly

making efforts to optimize the design of alloy composition,

improve the manufacturing technique, regulate the modification

of microstructure and surface (Li et al., 2014). Besides, researchers

explored the mechanism promoting osteoconduction,

osseointegration and osteogenic activity (Yoshizawa et al., 2014)

through various methods both in vitro and in vivo (Witte et al.,

2008). With the progress of industrial manufacturing technique

and computer science, new technology, such as additive laser

manufacturing (ALM 3D Printing) (Shuai et al., 2019), finite

element analysis, boundary element method 15and atomic layer

deposition, makes this field full of vitality.

The development of medical magnesium alloys is a long

process:

a) From the perspective of composition, the development

process is roughly as follows: (1) alloying (2) microalloying

(Stanford et al., 2008) (3) plain materials (Yang et al., 2017)

(4) high purification;

b) From the perspective of structure, the development is roughly

as follows: (1) multiphase and multicrystalline (Bottger et al.,

2006) (2) single phase (3) amorphous (Wu et al., 2017).

c) The development of nano materials has accelerated the

research and development of magnesium alloys. In

addition, the composition of magnesium alloys is also

changing, from Mg-Al, Mg-Zn and Mg-Ca alloys to Mg-

Re alloys with rare earth elements (Luo et al., 2020), as well as

Mg-Sr and Mg-Sc alloys which have great application

potential (Wang et al., 2014).

1.1 The implication of the state-of-art
review

According to our systematic review on the Clarivate

Analytics Web of Science (WOS) database (Harzing and

Google Scholar, 2016), the reviews on magnesium alloys for

orthopedic use in recent 5 years have been included in

Supplementary Table S1. These reviews have summarized and

revealed the great potential and bright prospects of magnesium

alloys for orthopedic applications from various angles, but there

was no bibliometric analysis regulating Mg-based alloy for

orthopedic applications (Latest search update: 10 Feb 2022).

The previous reviews included the valuable opinions put

forward by experts from their own point of view. If we can make

the systematic analysis in the form of bibliometrics, closely and

rigorously review the relevant variables of literature in this field,

and build a literature network by means of metrology and

statistics (Thelwall, 2008), we can further accelerate the

process of research, development and application of

magnesium alloys for orthopedics (Ninkov et al., 1007).

Bibliometric analysis is based on the global literature, using

mathematics, statistics and other methods, to study the

distribution pattern, quantitative relationship and evolution

law of the literature, then to explore and demonstrate the

structure, characteristics, distribution and development trend

of research in the field (Zhao et al., 2022). Bibliometrics

research includes analysis of distribution of literatures by year,

co-citation analysis (Yang et al., 2019), co-authorship network

analysis, and text mining (Moral-Munoz et al., 2020).
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1.2 Research questions and intended
contribution of the study

Keeping in mind the research gap derived from the above

analysis, the study focuses on one of the essential research questions:

“Do we need any Bibliometric Analysis of the Biodegradable

Mg-based Alloy for Orthopedic Application?”

The answer to this research question is yes; as a rapidly

developing and promising field, the global trend of magnesium

alloy research is still unclear. So, it was of necessity to adopt

bibliometric methods to clearly show the development process,

current research status and future trend of this field from a

qualitative and quantitative point of view (Cobo et al., 2011;

Kumar et al., 2022). In this case, our research is committed to

helping young researchers gain an exhaustive picture of the current

research status in this field and enables them to determine their own

research directions, seek the support of research platforms and

institutions that may be helpful to them, and quickly retrieve classic

literature. Our research will increase the overall system output of

biodegradable Mg-based alloys for orthopedics to a certain extent.

1.3 Objectives of the present review

Based on the above research gap and the expected contribution,

our research is based on the following research objectives:

1) To conduct an extensive bibliometric analysis of

biodegradable Mg-based alloy for orthopedic application.

2) To put forward the research prospect of biodegradable Mg

based alloy for orthopedic application, and describe its

possible application scope in the future.

With the help of the research tools and software discussed in the

“Materials and Methods” section, this study organized a

comprehensive bibliometric and statistical analysis of magnesium

alloys according to the trend of literature publication, the co-

authorship between countries, institutions, researchers, and the

co-citation of journals, references and keywords.

2 Materials and methods

The comprehensive search of data was conducted on the

Science Citation Index Expanded (SCI-Expanded) of the

Clarivate Analytics Web of Science Core Collection (WoSCC)

on a single day to avoid the discrepancies due to daily database

updates (Mongeon and Paul-Hus, 2016). WoSCC is an elaborate

collection of high-quality academic peer-reviewed literature

published worldwide (Mongeon and Paul-Hus, 2016), which

provides various retrieval methods and download paths for

bibliometric analysis. The search phrase was shown in

Figure 1. Because there was almost no literature published in

this field before 2005, we set the search timespan as 2005-2021,

which is a long enough time period to reflect the development

trends. The present analysis was concerned with only two types

of documents, articles and reviews published in the English

language, and no species restrictions were imposed. Finally,

1921 records were finally retrieved. Then “Full Records and

Cited References” were selected in the exported content of the

WOS records, “Pure Text” was selected in the file format. The

detailed screening and work flow chart are shown in Figure 1.

3 Data analysis

We mainly employed four analytic softwares and Microsoft

Excel program to perform bibliometric analysis.

Briefly, we used the “bibliometrix” package (version 3.0.3,

http://www.bibliometrix.org) installed in R software 4.0.3, which

provides a web-interface for bibliometric analysis. (Aria and

Cuccurullo, 2017).

CiteSpace software (version 5.7 R5W, https://citespace.podia.

com/courses/download) and VOSviewer software were used for

the quantitative analysis and mapping knowledge domain so that

readers can directly visualize the evolution and development

process (van Eck and Waltman, 2010). More information about

the CiteSpace parameters and the mechanism of generation of

knowledge network is available in Professor Chen’s articles.

(Chen, 2004; Chen, 2020).

Generally speaking, the figures generated by the bibliometric

software consist of nodes and lines. Through the labels attached

to the nodes, we can identify the various elements represented by

the nodes, including articles, authors, institutions, keywords, etc.

Lines represent the connections within the elements, including

co-author analysis, co-citation analysis, co-occurrence analysis,

etc. And the size of the nodes represents the number of

publications, citations, or occurrences.

In addition, analysis of main research trajectories was conducted

by Pajek software (Mrvar and Batagelj, 2016), a software program

for the analysis and visualization of themain paths in large networks.

After carefully investigating these documents in the main paths (Liu

and Lu, 2012), we can efficiently comprehend the major research

trajectories in the field, which facilitates us to better grasp the current

hotspots and predict the future trends.

4 Results

4.1 Distribution of articles by publication
years

Accessibility to Web of science, one of the largest citation

databases in the world, was obtained through Peking University
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FIGURE 1
The work flow diagram.

FIGURE 2
Trends in publications from WOS (2005–2021) by year in the field of the biodegradable Mg-based alloy for orthopedic application and the
corresponding polynomial fitted curves.
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FIGURE 3
(A) Country Collaboration Network generated by the VOSviewer software (B) the Country Collaboration plotted on the world map. (C)
Collaboration network of institutions generated by the Citespace software.
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library. We retrieved a total of 1921 documents related to Mg-

based alloy for orthopedic application. As is shown in Figure 2,

We can see that the number of articles is gradually increasing by

year. Polynomial model fitting revealed significant correlations

between the publication year and the publication output (the

coefficients of determination (R2) were 0.98, 0.967, and 0.932 for

total documents, articles, and reviews, respectively). On the basis

of polynomial curve fitting, the publication output is expected to

reach approximately 400 in 2025, comprising 350 articles and

50 reviews.

TABLE 1 The top 10 prolific countries from 2001 to 2021.

Rank Country Documents Citations Average article
citations

Total link
strength

1 Peoples R China 855 30,933 36.18 195

2 United States 268 9,109 33.99 204

3 Germany 256 17,266 67.45 139

4 India 120 2,574 21.45 37

5 Iran 107 2,338 21.85 81

6 Australia 89 5,269 59.20 70

7 SouthKorea 89 2,851 32.03 63

8 Japan 51 1946 38.16 48

9 Malaysia 51 1,225 24.02 60

10 Canada 40 2,168 54.20 50

TABLE 2 The top 20 prolific institutions from 2001 to 2021.

Rank Affiliations (affiliation name
disambiguation)

Number of publications Citations Total link strength

1 Chinese Acad SCI 161 8,696 230

2 Peking Univ 99 7,747 175

3 Shanghai Jiao Tong Univ 84 3,857 83

4 Hannover Med SCH 68 10,674 114

5 Leibniz Univ Hannover 60 4,353 102

6 Helmholtz Zentrum Geesthacht 46 1,374 29

7 Cent S Univ 44 1,645 58

8 Univ Teknol Malaysia 38 838 37

9 Zhengzhou UNIV 38 1,578 37

10 City Univ Hong Kong 37 2,431 47

11 Harbin inst Technol 36 1,557 45

12 Isfahan Univ Technol 36 1,172 58

13 Islamic Azad Univ 34 581 41

14 Univ Pittsburgh 34 1945 19

15 Univ Vet Med Hannover 31 1,530 64

16 Jilin Univ 30 469 22

17 Chinese Univ Hong Kong 29 2,208 61

18 Tianjin Univ 29 589 45

19 China Med Univ 28 1,573 38

20 Med Univ Graz 28 1,391 36
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4.2 Active countries/regions, institutes
and researchers

Figure 3(A,B) and Table 1 show the cooperation networks

among countries and the details of the 10 most productive

countries, respectively. The articles published by China had

the most citations (30,933), followed by Germany (17,266),

the United States of America (United States) (9,109) and

Australia (5,269). It can be seen that the leading countries in

this field are strong manufacturing countries with solid industrial

systems. Since the research of magnesium alloys for orthopedics

is multidisciplinary research of medicine and material science,

the development of technology and engineering is of vital

importance to the progress of medicine and biology.

The top 20 institutes are listed in Table 2. Collaborations

among these institutes were shown in Figure 3C. Chinese

academy of sciences had the most publications (161), followed

by Peking University (99), Shanghai Jiao Tong University (84)

and Hannover Medical School (68). Most of these institutions are

world-renowned research institutes, with prominent positions in

the history of biomaterial research and development. It can be

found that an effective international cooperation network has

been formed in this field. Chinese research institutions such as

Chinese Academy of Sciences, Peking University and Shanghai

Jiao Tong University have established close cooperative

relationship with German research institutions such as

Hannover University, Helmholtz-Zentrum Geesthacht and

American research institutions such as University of

Pittsburgh (Li et al., 2016), the University of Tennessee and

the Ohio State University (Jia et al., 2021). Focusing on the

academic achievements of these prolific research institutions can

help us better understand the development of biodegradable Mg-

based alloys.

A total of 520 publications were from the top 15 authors,

accounting for 27.07% of all publications in this field. The most

influential author is Zheng Yufeng, with 85 papers and

7,421 citations, followed by Witte Frank from Charite

universitatsmedizin Berlin, who laid the foundation for the

development of this field in the early stage, as well as Yang

Ke from the Chinese Academy of Sciences and Feyerabend Frank

from Helmholtz Association. Table 3 and Figure 4C show the

details of the top active researchers in this field and their

productions over time, respectively. Collaborations among

these authors were shown in Figures 4A, B. It can be found

that the three most prolific researchers, namely Zheng Yufeng

from Peking University and Tan Lili, Yang Ke from the Institute

of Metals Research, CAS have close collaboration with each

other, and they have also continued to produce high-quality

research papers in recent years. From Figures 4B,C, it can be

found that Prof. Witte Frank was extremely prolific at the initial

stage of theMg-based alloy research, laying a solid foundation for

the prosperity of the discipline. In addition, we found that the

international cooperation between top scholars has been

established. For example, Professor Qin Ling and Professor

Wang Jiali from the Chinese University of Hong Kong,

Professor Zheng Yufeng from Peking University, Professor

Witte Frank from Charite Universitatsmedizin Berlin and

Zhao Dewei from Dalian University reviewed and

summarized the current situation of clinical transformation of

magnesium alloys in 2018, and obtained huge influence (Zhao

TABLE 3 The top 10 prolific authors ranked by the citations.

Rank Author Documents Citations Total
link
strength

H-index Affiliation

1 Zheng, Yufeng 85 7,421 238 84 Peking University

2 Yang, Ke 63 3,696 190 46 Chinese Academy of Sciences

3 Tan, Lili 45 1,694 134 39 Chinese Academy of Sciences

4 Chu, Paul K 32 1866 86 109 City University of Hong Kong

5 Shuai, Cijun 32 1,283 126 40 Central South University

6 Witte, Frank 31 6,789 21 34 Charite Universitatsmedizin Berlin

7 Willumeit, Regine 30 673 41 49 Helmholtz Association

8 Feyerabend, Frank 27 3,324 63 33 Helmholtz Zentrum Geesthacht

9 Zhang, Yu 27 618 121 32 Guangdong Academy of Medical Sciences

10 Qin, Ling 25 1,523 73 61 Chinese University of Hong Kong

11 Razavi, Mehdi 25 1,042 84 23 University of Central Florida

12 Reifenrath, Janin 25 1,032 98 23 Hannover Medical School

13 Seitz, Jan-Marten 25 848 70 24 University of Hannover

14 Yuan, Guangyin 25 795 89 40 Shanghai Jiao Tong University

15 Meyer-lindenberg,
Andrea

23 1,086 91 97 League of European Research Universities/Hannover Medical School/
University of Munich
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FIGURE 4
(A)Collaboration network of researchers generated by the VOSviewer software. (B)Collaboration overlay visualization of researchers generated
by the VOSviewer software. (C) The top twenty prolific researchers in the field and their publications over time. The larger the node, themore articles
published. The deeper the color, the more citations.
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et al., 2017a). The cooperative relationship between more

researchers can be seen from Figure 4. In Figure 4A, the

researchers are divided into clusters of different colors, and

the researchers in each cluster have a relatively close

cooperative relationship. For example, the green cluster

mainly reflected the cooperative relationship between scholars

from the Institute of Metals Research, CAS and Chinese

University of Hong Kong (Yan et al., 2018). In addition, the

change of colors in the overlay visualization in Figure 4B reflects

the active time period of researchers (Carley et al., 2017). The

lighter the color, the more recent the researchers have been active

in this field. Equally non negligible is the significant role of female

researchers, with excellent contributions from Prof. Tan Lili from

the Institute of metals Research, CAS. (Tan et al., 2013).

4.3 Journals

The reference relationship of academic journals represents

the knowledge exchange in the research field, in which the

cited papers form the Frontier of knowledge, and the cited

papers form the basis of knowledge. The top 15 journals were

presented in Table 4. Visualization of the journal co-citation

analysis was shown in Figure 5 (Hu et al., 2011). The journal

with the largest total citations is Acta Biomaterialia (total

citations = 16,511) while the journal with the largest number

of publications is Materials Science & Engineering

C-Materials for Biological Applications (Number of

Publications = 147). The journals in the list of Table 4 may

be the main channels of publications for future discoveries in

this field.

The dual-map overlay of journals, a new method of publication

portfolio analysis invented by professor Chen Chaomei, was shown

in Figure 6, with the citing journals on the left side, cited journals on

the right side, and the colored paths indicate the citation

relationships. The width of the connecting paths is proportional

to the frequency of z-score-scale citation. The journals are grouped

into clusters by adopting the Blondel algorithm to identify themajor

research disciplines. It can be found that studies, published in

Physics/Materials/Chemistry journals, usually cite the studies

which published in Chemistry/Materials/Physics and Molecular/

Biology/Genetics journals. This indicates that in the research of

biomaterial, the development of chemistry effectively supports the

progress of physics and materials science. And the development of

materials science, physics and chemistry has been oriented towards

molecular, physiology and genetics. And it is easy to find that the

third most enriched cluster of journals is Molecular/Biology/

Genetics, which is widely cited in the other clusters including

sports, rehabilitation, physics and materials. More information

about the representative citing and citied journals in each cluster

can be detected in Supplementary Table S2.

4.4 Reference

Analysis of references is one of the most important indicators

of bibliometrics. We mainly conduct the analysis of references

from two aspects.

TABLE 4 The top 15 journals with the most publications ranked by the H-index.

Rank Source titles Documents Citations Total link
strength

Impact
factor

WoS
quartiles

H
Index

1 Acta biomaterialia 145 16,511 5,101 8.947 Q1 207

2 Biomaterials 26 12,314 3,382 12.479 Q1 397

3 Materials Science Engineering C: Materials for
Biological Applications

147 5,069 2,507 7.328 Q1 145

4 journal of biomedical materials research part A 38 2,622 1,320 4.396 Q2 159

5 Applied Surface Science 49 2,141 749 6.707 Q1 204

6 Journal of Materials Science and Technology 35 1,646 640 8.067 Q1 81

7 Surface and Coatings Technology 78 1,596 907 4.158 Q2 182

8 Journal of Alloys and Compounds 52 1,511 794 5.316 Q2/Q1 185

9 Journal of the Mechanical Behavior of Biomedical
Materials

53 1,497 703 3.902 Q2/Q3 99

10 Materials 53 1,351 693 3.623 Q2/Q1 128

11 Journal of Biomedical Materials Research Part
b-Applied Biomaterials

37 1,291 821 3.368 Q2/Q3 116

12 Materials and Design 29 1,180 552 7.991 Q1 187

13 Journal of Materials Science-Materials in Medicine 37 1,086 691 3.896 Q2/Q3 133

14 Scientific Reports 21 971 367 4.38 Q1 242

15 Ceramics International 32 817 383 4.527 Q1 126
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FIGURE 5
(A)Cluster visualization of the journal co-citation analysis generated by the VOSviewer software. Each node represents a journal, and the size of
each circle is determined by the co-citations of the journal. (B) Density visualization of the journal co-citation analysis generated by the VOSviewer
software.
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1) Co-citation analysis of references and Main research

trajectories in the biological Mg-based alloy research field.

Frequently cited literatures usually have great influence in the

relevant research fields. As is shown in Figure 7A, A network of

co-cited references was constructed to demonstrate the most

significant studies. The parameters were set as follows: # Years

Per Slice = 1, Top N% = 1, pruning algorithm was adopted. A

network map with 175 nodes, and a network density of

0.0187 was obtained. The most cited articles are shown in

Supplementary Table S3. These articles are obviously the most

influential articles in this field. However, because of the snowball

effect of the accumulation of citations of the references, the

citation burst algorithm of Citespace was employed to show the

most influential documents cited frequently in different time

period, and show the top 30 references with the strongest citation

bursts as Figure 7B. These articles have had a significant impact

in their respective time periods. The time period represented by

the outer color circle of the nodes corresponding to each

reference in Figure 7A represents the burst time duration in

Figure 7B. It can be seen that the references with the strongest

citation bursts are Li ZJ, 2008 (Li et al., 2008a), Staiger, MP, 2006

(Staiger et al., 2006), Witte F, 2008 (Witte et al., 2008), Zhang SX,

2010 (Zhang et al., 2010), Zheng YF, 2014 (Zheng et al., 2014).

Among the references with citation burst lasted until 2021, the

publication with highest strength was Zhao DW, 2017 (Zhao

et al., 2017a), Agarwal S, 2016 (Agarwal et al., 2016), Radha R,

2017 (Radha and Sreekanth, 2017) and Li LY, 2018 (Li et al.,

2018).

In Figure 7B, the 10 papers with the strongest citation bursts

are five reviews and five original researches. Staiger, MP, 2006

(Staiger et al., 2006), Witte Frank, 2008 (Witte et al., 2008), Witte

Frank, 2010 (Witte, 2010) summarize and prospect this industry

in the initial stage of magnesium alloy research from the

perspective of the properties, biological performance,

FIGURE 6
The dual-map overlay of journals on Mg-based alloy for orthopedic application.
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challenges and future directions of Mg-based biomaterials, which

plays a fundamental role in this field. In addition, Zheng YF, 2014

(Zheng et al., 2014) summarized the achievements and problems

at the end of the first decade of rapid development of magnesium

alloys.

In addition, the corrosion resistance and biocompatibility of

Mg-based alloys have always been a problem that researchers are

committed to solving. In the initial stage of this field, the

mainstream solution to this problem is to test binary alloys

in vitro and in vivo, which is the focus of the five original

articles of the 10 references with the strongest citation burst

(Witte et al., 2005; Gu et al., 2009a; Zhang et al., 2010).

The most cited articles are often the profound reviews or

breakthrough experimental results published by famous scholars

in the early stage of the development of the industry, which have

received a large number of citations and laid the foundation for

the subsequent vigorous development of this field.

Tracing the main research trajectories in a small research

domain may be an easy task as scholars do not have to devote

great efforts to review a large amount of literature. However,

when the research domain grows even larger, the difficulty of

tracing the main research trajectories increases significantly.

Professor Liu (Liu and Lu, 2012) introduced a quantitative

approach, namely, main path analysis, to simplify a large and

complicated research domain to one or several main trajectories

(paths) consisting of several key nodes and the links, as shown in

Figure 7C. These figures were generated by using Pajek software

(Mrvar and Batagelj, 2016).

2) A co-cited documents-based clustering analysis.

A co-cited documents-based clustering analysis may present

subfields which represent the main research hotspots in this field.

Figure 7D presents the clusters of the co-citation network of

references: “osteogenic differentiation (cluster #0),” “cytotoxicity

(cluster #1),” “zinc (cluster #2),” “corrosion resistance (cluster

#3),” “mμCT (cluster #4),” “mg-based alloys (cluster #5),”

“additive manufacturing (cluster #6),” “microstructure (cluster

#7),”“coating (cluster #8),”“nanocomposites (cluster #9),”

“corrosion behavior (cluster #10),” “corrosion fatigue (cluster

#11),” “calcium phosphate (cluster #12),” “mechanical properties

(cluster #13),” “atomic layer deposition (cluster #14),”

“mineralized collagen (cluster #15).” The Modularity Q score

was 0.6967, >0.5, indicating the network was reasonably divided
into loosely coupled clusters. The Weighted Mean silhouette

score was 0.8724, more than 0.5, meaning that the homogeneity

was acceptable. Index items extracted from articles were used as

cluster markers. Apparently, the corrosion of biodegradable Mg-

based alloys in human body, containing three

dimensions——corrosion resistance, corrosion behavior and

corrosion fatigue, is an extremely significant research hotspot.

We speculate that many academic achievements will continue to

emerge in these subfields for a long time in the future, so as to

FIGURE 7
(A) Intellectual base of research on Mg-based alloy for
orthopedic application. This figure is arranged in chronological
order from left to right. It can be seen that the influential literature
has gradually increased in recent years, and more links have
been generated. (B) The top 30 references with the strongest
citation bursts. The red bars indicate the duration of the burst,
namely, the time period when the keyword is highly frequently
cited, while the green bars represent the time period when the
keyword is less infrequently cited. (C) The research main path
during 2005–2021. (D) Cluster visualization of the co-citation
network of references via Citespace, together with the
representative references of the generated clusters.
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TABLE 5 The top keywords with the strongest citation bursts.

Top keywords with the strongest citation bursts

Keywords Year Strength Begin End 2005–2021

Stage Ⅰ (2005–2010)

cartilage/cartilage repair 2005 2.63 2006 2014 ▂▂▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂

electrochemical behavior 2005 1.14 2006 2008 ▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂

calcium phosphate coating/ca-p coating 2005 7.84 2007 2018 ▂▂▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂

apatite 2005 5.14 2007 2012 ▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂

metal matrix composite 2005 4.11 2007 2013 ▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂

rat 2005 2.41 2007 2011 ▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂

tissue 2005 1.37 2007 2015 ▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂

in vivo corrosion 2005 25.12 2008 2015 ▂▂▂▃▃▃▃▃▃▃▃▂▂▂▂▂▂

simulated body fluid 2005 6.39 2008 2017 ▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂

ion implantation 2005 6.29 2008 2014 ▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂

bone/bone implant application 2005 4.49 2008 2010 ▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂

fatigue 2005 2.42 2008 2011 ▂▂▂▃▃▃▃▂▂▂▂▂▂▂▂▂▂

tensile property 2005 1.68 2008 2012 ▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂

stress corrosion cracking 2005 1.29 2008 2011 ▂▂▂▃▃▃▃▂▂▂▂▂▂▂▂▂▂

az91d 2005 0.76 2008 2011 ▂▂▂▃▃▃▃▂▂▂▂▂▂▂▂▂▂

pure magnesium 2005 2.8 2009 2010 ▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂

surface machining treatment 2005 3.75 2010 2014 ▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂

Stage Ⅱ (2011–2015)

silicate 2005 3.22 2011 2014 ▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂

ca/mgca0.8 2005 3.18 2011 2013 ▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂

bone resorption 2005 2.7 2011 2015 ▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂

animal model 2005 2.16 2011 2015 ▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂

amorphous alloy 2005 1.84 2011 2014 ▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂

rare earth alloy 2005 1.59 2011 2013 ▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂

beta-TCP 2005 1.19 2011 2012 ▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂

osseointegration 2005 0.81 2011 2012 ▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂

rabbit model 2005 0.81 2011 2012 ▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂

vitro/vitro corrosion/vitro degradation 2005 6.4 2012 2016 ▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂

zr 2005 6.17 2012 2014 ▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂

sol gel coating 2005 0.98 2012 2014 ▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂

sr/sr alloy 2005 10.71 2013 2019 ▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂

microarc oxidation 2005 6.14 2013 2017 ▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂

cell adhesion 2005 4.89 2013 2017 ▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂

zn alloy 2005 2.21 2013 2018 ▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂

interference screw 2005 1.4 2013 2014 ▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂

biomedical application 2005 7.12 2014 2018 ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂

internal fixation 2005 3.12 2014 2017 ▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂

aluminum 2005 2.1 2014 2015 ▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂

proliferation 2005 1.2 2014 2017 ▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂

Stage Ⅲ(2016–2021)

screw 2005 3.56 2016 2021 ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃

powder metallurgy 2005 1.54 2016 2019 ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂

mesenchymal stem cell 2005 3.3 2017 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂

high strength 2005 2.27 2017 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂

osteogenic differentiation 2005 2.02 2017 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃

(Continued on following page)
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better improve the biological properties of Mg-based alloy for

better clinical application.

4.5 Keywords

Keywords in the retrieved publications were extracted and

analyzed. The top keywords with the strongest citation bursts were

listed in Table 5. We conducted keyword burst analysis to show the

keywords whose occurrence frequency increased significantly in a

short time (Zou et al., 2018). These keywords can reflect sudden

changes and emergent trends in the progress of scientific literature,

which can be attributed to new scientific discoveries and technological

breakthroughs in this field.

The keywords with strongest citation burst are divided into

three stages according to the starting time, namely stage 1, stage

2 and stage 3. The keywords with strongest burst in stage 1 are “in

vivo corrosion” (2008–2015), “Ca-P coating” (2007–2013),

“simulated body fluid” (2008–2017) and “ion implantation”

(2008–2014). The key words that broke out in phase 2 were

“Sr/Sr alloy” (2013–2019), “biomedical application”

(2014–2018), “Zr” (2012–2014) and “microarc oxidation”

(2013–2017). The key words of phase three outbreak are

“screw”, “osteogenetic differentiation”, “fabric”, “design”,

“graphene oxide”, “antimicrobial property”, “bioactive glass”,

“cytocompatibility” and “nanocomposite”. The citation bursts

of these keywords continue are still ongoing, indicating that they

have received great attention in recent years and may become the

research frontiers in the next few years.

5 Discussion

Compared with traditional alloys, degradable Mg-based

alloys solve the problems of stress shielding and secondary

surgery. (Yang et al., 2020).And compared to degradable

polymer products such as poly (L-lactic acid) (PLLA),

magnesium alloy has a more bone-like mechanical strength

and brittleness, which allows it to avoid the risk of re-fracture

to a certain extent. (Zhao et al., 2017b).

Systematic bibliometrics analysis including main path

analysis, co-cited documents-based clustering analysis,

research Frontier analysis can help us review a large number

of literatures emerging in this domain since the first article

appeared, so as to better understand the development process,

hot spots and future trend of the field.

According to the main path analysis and the co-cited

documents-based clustering analysis, improving corrosion

resistance of Mg-based alloys and revealing the mechanisms

underlying the osseointegration and osteoconduction have

long been the research hotspot. There are two ways to

improve the corrosion resistance of Mg-based alloys:

microstructure modification and surface modification.

1) As is shown in Figure 7D, cluster #7 is Microstructure:

Microstructure modification includes adjustment of alloy

composition, amorphization, grain refinement, heat

treatment and improvement of alloy purity. Newly

developed microstructures include porous structure,

magnesium metal matrix composites (MMCs) and Mg-

based bulk metallic glasses (BMGs) (Gu et al., 2010). From

Li ZJ, 2008, Gu XN, 2009, Hort N, 2010 to Gu XN, 2012,

researchers studied the mechanical properties, corrosion

resistance and biocompatibility (cytotoxicity and

hemocompatibility) of a variety of different binary Mg-

based alloys including Mg-RE alloys (Li et al., 2008b; Gu

et al., 2009b; Hort et al., 2010; Gu et al., 2012). They found it

was difficult to cast binary Mg-based alloys that could fully

meet the requirements. Witte Frank firstly confirmed that the

biodegradable magnesium-hydroxyapatite metal matrix

TABLE 5 (Continued) The top keywords with the strongest citation bursts.

Top keywords with the strongest citation bursts

Keywords Year Strength Begin End 2005–2021

heat treatment 2005 1.25 2017 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂
extrusion 2005 2.34 2018 2019 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂

fabrication 2005 8.01 2019 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

design 2005 5.02 2019 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

graphene oxide 2005 4.86 2019 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

antibacterial property 2005 4.17 2019 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

bioactive glass 2005 4.1 2019 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

cytocompatibility 2005 3.83 2019 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

nanocomposite 2005 1.05 2019 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

The bold values represent the starting time of keywords citation burst.

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Zheng et al. 10.3389/fbioe.2022.940700

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.940700


composites (MMC-HA) is a cytocompatible biomaterial with

adjustable mechanical and corrosive properties. (Witte et al.,

2007a).

2) As is shown in Figure 7D, cluster #8 is coating: surface

modification includes chemical conversion coatings (Li

et al., 2013), micro-arc oxidation coatings, calcium-

phosphorus coatings (cluster #12) and biodegradable

polymer coatings. Ca-P compound is similar to the

inorganic composition of human hard tissue and has

excellent biocompatibility. It is one of the most promising

biological modified coating materials (Staiger et al., 2006).

Though many coatings have been proved to have good

biocompatibility, such as the microarc oxidation coating in

the core study (Gu et al., 2011), there is still no coating that

have been put into clinical application.

The largest cluster in the co-cited documents-based

clustering analysis is osteogenic differentiation (cluster #0).

From Witte F 2007 to Kraus T, 2012, Chaya A 2015 and

Zhang YF 2016, the mechanism in osteoconduction and

osseointegration has been a long-standing research hotspot,

and in recent years with the application of microfocus CT

(mμCT) (mμCT (cluster #4), the research on osseointegration

mechanisms has gradually progressed in depth. (Witte et al.,

2007b; Witte et al., 2007c; Kraus et al., 2012; Chaya et al., 2015;

Zhang et al., 2016).

In addition, analytical methods used in studying the

corrosion rate of magnesium alloys in vivo and in vitro have

been stressed by researchers since the early stage. Witte Frank

pointed out that the results obtained by adopting in vitro

measurement could not be directly used to predict in vivo

corrosion rates (Witte et al., 2006). And in 2008, Witte Frank

summarized various analytical methods both in vitro and in vivo,

and prospectively proposed the necessity of establishing effective

in vitro models that can simulate in vivo corrosion, which was

deepened by Professor Zhao in 2017 (Witte et al., 2008). Zhao

proposed that it was essential to establish a sufficiently

complicated animal model that can mimic clinical indications

(Zhao et al., 2017b). Sezer summarized the application of

computer science in Mg-based alloy research in 2018,

including Finite element models (FEM), boundary element

method (BEM), CFD model, etc (Sezer et al., 2018). This

exhibits a process that is deepening continuously from in vitro

to in vivo and in silico, from animal models to clinical trial.

According to the keyword burst analysis, the research of

magnesium alloy is divided into three stages:

1) In the first stage, the research mainly focused on the corrosion

and electrochemical mechanism of magnesium alloy in vivo

(Witte et al., 2005) and in vitro, that is, simulated body fluid

(Li et al., 2008a), as well as the test of its mechanical

properties, including tensile property and stress corrosion

cracking (Zhang et al., 2009a). In addition, the research on the

optimization of magnesium alloy properties, especially

surface machining treatment (Uddin et al., 2015), has also

made preliminary progress, including the application of ion

implantation (Wan et al., 2008) for surface modification, the

application of calcium phosphate coating (Yang et al., 2008)

and metal matrix composite (Witte et al., 2007d).

2) In the second stage, the research on alloy composition has

become a hot spot, including the addition of various

elements: Ca (2011–2013), Zr (2012–2014) (Li et al.,

2012), Sr (2013–2019) (Guan et al., 2013), Zn

(2013–2018) (Guan et al., 2012), Al (2014–2015) and

rare earth elements (2011–2013) (Remennik et al.,

2011). In addition, the research on Beta-TCP (Khanra

et al., 2010) and the application of sol gel coating (Tang

et al., 2013) and micro-arc oxidation layer (Gao et al.,

2011) also further improves the properties of magnesium

alloy. The research on the cytocompatibility of the

magnesium alloy has also been further deepened,

including its role in bone resorption, osseointegration

(Castellani et al., 2011) and cell adhesion (Zhang et al.,

2009b). At this stage, the clinical application of

magnesium alloy has been gradually emphasized by

scholars, including its application in orthopedic

surgery as an interference screw (Ezechieli et al., 2016)

in internal fixation.

3) The keywords emerging in the third stage represent advanced

research directions and hotspots, including the application of

mesenchymal stem cells combined with magnesium alloy in

orthopedic therapy and the application of graphene oxide

(Zhao et al., 2018), bioactive glass (Yin et al., 2019) and

nanocomposite (Mousa et al., 2018) in magnesium alloy

manufacturing. In addition, the fabrication and design

strategies of magnesium alloy production and

manufacturing have also been emphasized by researchers,

including the application of additive manufacturing (Wang

et al., 2016) to produce biocompatible metals to provide

patient specific, site specific, morphology specific and

function specific implants.

Methods to improve the performance of magnesium based

orthopedic implants in three stages are summarized as follows,

which is also the main means to solve the inherent problems of

magnesium alloys at present:

1 Alloying

1) Binary Mg-based alloys: Mg-Al, Mg-Mn, Mg-Zn, Mg-Ca,

Mg-Sr alloys, etc.

2) Ternary Mg-based alloys: Mg-Zn-Ca, Mg-Zn-Sr alloys, etc.

3) Quaternary magnesium alloy: Mg-Zn-Zr-Y, Mg--Zn--Sn--Sr

alloys, etc.

2 Mg-based composites: Mg-Hydroxyapatite composites,

Mg-Bioactive glass composites, etc.
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3 Coatings: HA coatings, Micro-arc oxidation (MAO)

coating; Chemical conversion coating; Polymeric coatings;

fluoride coatings; Bone morphogenetic proteins (BMP)

coatings; Self-assembly Monolayer (SAM) coatings, etc.

4 Methods to fabricate porous implants

1) Powder metallurgy (PM), Titanium wire space holder

(TWSH) technique.

2) Additive manufacturing (AM) techniques: Powder bed fused

(PBF) technique, Wire arc additive manufacturing (WAAM),

Three-Dimensional (3D) jet printing, Paste extrusion

deposition (PED).

3) Electric discharge drilling (EDD).

4) Melting techniques.

According to our keyword analysis, screws have a stronger citation

burst in recent years, which is inseparable from the increase in clinical

trials and in vivo testing of magnesium alloys in recent years.

In 2015, AjouUniversity Hospital (Suwon, Korea) conducted a 1-

year postoperative follow-up of magnesium alloy screws in surgical

fixation of distal radius. It was found that magnesium alloy screws

have excellent biocompatibility and bone integrity (Lee et al., 2016). At

Hannover Medical University, a clinical study on the application of

Mg-Y-RE-Zr screws produced by Syntellix company in Germany in

2010 confirmed that it had a good effect in hallux valgus surgery

(Windhagen et al., 2013). In addition, the Medical College of Dalian

University from China applied pure magnesium screws to free iliac

bone transplantation for femoral head necrosis in a randomized

controlled trial (Zhao et al., 2016), and achieved significantly better

osteogenic performance than the control group. These findings

preliminarily confirmed the osteogenesis of magnesium alloy

screws in the non-weight-bearing area. The performance of

magnesium alloy implants in the load-bearing area and high

torsion area needs more tests to confirm. With more clinical trials,

the research of biodegradable magnesium alloy implants will be

further promoted.

According to the above discussion based on reference and

keyword analysis, we clearly show the global research trends

and progress in this field. Researchers will be committed to

optimizing the microstructure by improving manufacturing

methods and process parameters in the future. In addition,

the research on alloying, coating and Mg-bioglass

composites will still be a hot spot for a long time. If

researchers are committed to the research to improve the

performance of implants and the research on clinical

translational applications, they may achieve greater

breakthroughs.

5.1 Managerial implications of the study

This study shows that the research on biodegradable

magnesium alloys is still in full swing, and the citation and

keyword bursts are used to speculate on the future hot spots and

research trends. This study provides managerial implication for

academia, industry, scholars and medical researchers.

Researchers and relevant institutions can utilize our

conclusions and the massive information contained in tables

and pictures according to their own requirements. This study

helps researchers in industry and medicine clarify their own

research direction faster, choose scholars and institutions that

can cooperate, so as to accelerate the research progress of medical

magnesium alloys and obtain stable clinically available medical

magnesium alloy products as soon as possible.

5.2 Limitations

There are certain limitations in our study. Firstly, in our

study, we only searched the Web of Science Core Collection

(WoSCC) and did not incorporate other databases, such as

PubMed, Scopus or Embase. However, it may be unscientific

to merge and analyze the data from multiple databases, because

different databases have different measurement of citation

frequency counting and classification of publications (Wu

et al., 2021/10; Wu et al., 2021).

Besides, there may exist differences between the real world

and the present results. For example, the latest publications may

not be emphasized enough because of lower citation frequency

due to the lack of temporal accumulation (Sangwal, 2014).

Therefore, we need to pay continued attention to non-

English studies as well as the latest high-quality studies in our

daily scientific research work.

6 Conclusion

This is the first bibliometric analysis to comprehensively

evaluate the general aspects and future trends in the field of

the biodegradable Mg-based alloy for orthopedic

applications.

We collected 1921 articles from 2005 to 2021 from Web of

Science database to carry out this research work. The paper “The

development of binary Mg-Ca alloys for use as biodegradable

materials within bone” by Li et al. (2008) was the article with the

strongest citation burst. The paper “Magnesium and its alloys as

orthopedic biomaterials: a review” is the most cited article. The

most influential journals in this field are Acta Biomaterialia and

Biomaterials, with 16,511 and 12,314 total citations, respectively.

Zheng Yufeng ranked first with 85 articles and 7,421 citations,

followed by Witte Frank and Yang Ke. The corresponding

institutions with the highest production are Chinese Academy

of Sciences, Peking University and Shanghai Jiao Tong

University.

According to the keyword burst analysis, we divide the

development and application of biodegradable magnesium
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alloys into three stages: the first is the research of mechanical

properties and degradation characteristics of magnesium alloys,

the second is the research on the composition and coating of

magnesium alloys, and this research hotspot has continued to the

present, and then enter the “pre-clinical application stage”,

focusing more on clinical use, including the application of

nano materials and mesenchymal stem cells, exploration of

angiogenesis promotion and antibacterial ability, etc.

It is observed that the research on biodegradable magnesium

alloy has been gradually deepened, and scientists and clinical

researchers have tried to use it for clinical use, but there is still a

gap between its basic research and development and clinical

practical application. So far, there is still no biodegradable

magnesium alloy product that can be stably used in clinic.

This bibliometric research shows a broad field for future

young researchers, which helps them shorten the threshold of

entering this field and quickly comprehend the development

status and pattern.
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