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Abstract: Genome-wide association analysis is an important approach to identify genetic variants
associated with complex traits. Complex traits are not only affected by single gene loci, but also by the
interaction of multiple gene loci. Studies of association between gene regions and quantitative traits
are of great significance in revealing the genetic mechanism of biological development. There have
been a lot of studies on single-gene region association analysis, but the application of functional linear
models in multi-gene region association analysis is still less. In this paper, a functional multi-gene
region association analysis test method is proposed based on the functional linear model. From
the three directions of common multi-gene region method, multi-gene region weighted method
and multi-gene region loci weighted method, that test method is studied combined with computer
simulation. The following conclusions are obtained through computer simulation: (a) The functional
multi-gene region association analysis test method has higher power than the functional single gene
region association analysis test method; (b) The functional multi-gene region weighted method
performs better than the common functional multi-gene region method; (c) the functional multi-
gene region loci weighted method is the best method for association analysis on three directions
of the common multi-gene region method; (d) the performance of the Step method and Multi-gene
region loci weighted Step for multi-gene regions is the best in general. Functional multi-gene region
association analysis test method can theoretically provide a feasible method for the study of complex
traits affected by multiple genes.

Keywords: functional linear model; multi-gene regions; association analysis; region weighted;
loci weighted

1. Introduction

Genetic analysis of rare variants is considered to be one of the most important com-
ponents to compensate for the current deficiency of genetic variation, which has not yet
been explained [1]. Although the lack of catalogs to speculate on the genotypes of rare
variants and the high cost of sequencing technology have previously made it impossible to
conduct very in-depth studies on rare variants [2,3], the development of high-throughput
sequencing technology [4] has enabled scientists to obtain SNP data in a cheap and efficient
way, as it contains a large amount of data on rare variants [5,6]. However, many previous
tools and methods are designed for common variants, so there is still a lack of efficient and
practical tools for rare variants association analysis. At present, single-marker association
analysis is the most commonly used method of gene association analysis. However, if this
method is directly applied to rare variants, it will be impossible to find loci with a moderate
or low gene effect due to the limitations of single-marker association analysis [5,6]. The
effect of a locus of a rare variant is small and not easily detected, and if the single-marker
association analysis is used, many valuable association loci will be ignored.
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To better find the weak effect sites, some methods to make the weak effect more
significant by concentrating the association information of the whole gene region were
proposed: a) the method based on fold (Collapsing Methods) [7–9]. By directly compressing
multiple loci into a new variable, the associated rare variants with weak effects distributed
at multiple loci are aggregated to make it easier to find; b) the method based on kern [10–12].
When the variance of a set of random variables is 0, the set of variables is made up of the
same value, and therefore the kernel by method only needs to check whether the variance
component of the group of effect estimates corresponding to all genotype variables in the
whole region is 0; c) the method based on functional data analysis [13–16]. Functional data
analysis converts the discrete loci into a continuous variable through the basis function,
and only the coefficients of the effect estimation function corresponding to the continuous
variable need to be tested in association analysis. There is also a strategy to consider and
examine multiple loci at the same time and determine the significance of each locus [17,18],
which is more effective than single-marker gene association analysis because it considers
the interrelationships between multiple loci. The simplest method is to use the multivariate
linear model as the test model for the multi-gene locus test [17]. However, when only a
small part of the multiple gene loci included in the test are related, the large degree of
freedom of the uncorrelated loci will lead to the loss of power.

The above-mentioned methods, whether based on gene region information aggrega-
tion or multi-gene locus analysis, have their advantages and disadvantages. Moreover,
through continuous improvement and innovation of experts and scholars, the shortcomings
of these methods have been constantly overcome and their performance has become more
and more excellent. Since the single-gene region approach can aggregate small effects, the
multi-locus approach can improve the analysis power by considering the interrelationship
between multiple variables. If we combine these two methods, we can expect to obtain a
multi-region analysis method with the advantages of both methods. In addition, the actual
situation of phenotypic tend to be controlled by a few gene regions. Some of these gene
region effects are apparent, some are weak, and a strong effect is easy recognize. However,
a weak effect can easily be concealed by a stronger effect, even considering that this part of
the phenotypic is controlled by the effect of apparent genetic regions.

At present, some scholars have carried out research on the combination of the two
ideas, i.e., the aggregation of genetic information in gene regions and the use of interrela-
tionship among multi-gene regions: One of them is Turkmen and Lin [19], who further
extended the statistical test PDT (Pedigree Disequilibrium Test [20]) and FBAT (Family-
Based Association Test [21]), and proposed Block analysis methods. Firstly, the specific
approach is to divide the gene sequence to be analyzed into a block-by-block in a certain
way and assume that the variants within the region are interdependent, but that the rela-
tionship between the blocks is mutually independent; secondly, PDT or FBAT methods are
used to analyze the loci of each block; thirdly, the results in the region are generalized by
means of the squares sum of standardized variances. After the statistics of each small block
are obtained, the squares sum of the statistics is calculated again. After the aggregation
of the information twice, a statistic subject to chi-square distribution is obtained, which is
used as the gene association analysis statistics of the large gene region composed of these
blocks. This method assumes that the loci inside the block are interdependent and the
information inside the block is aggregated by PDT and FBAT methods, assuming that the
blocks are independent of each other. The other method is by Ayers and Cordell [22], who
improved the two methods of Group Lasso and Group Sparse Lasso [23], enabling them
to distinguish common and rare variants within a group. This method can test multiple
groups at the same time, in which one group is treated as a variable and the relationship
between different groups is considered.

The analysis method of a single gene region based on functional data is a method
to express the high-density genetic markers as functional data through integration and
analyze the region through a linear model. Many experts have shown that this is an
effective way to improve the power of gene association [13,14,24]. If the functional linear
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model considers multiple gene regions at the same time, it can not only improve the power
by considering the interaction between multi-gene regions, but also isolate the effects of
each gene region through the characteristics of the linear model, making the gene regions
with weak effects more obvious and easier to find. Therefore, we will explore the method of
gene association analysis of multi-gene regions based on functional data analysis, hoping
to find a method with higher power and better detection of association loci with weak
effects, and provide some references for researchers interested in this field in the future.

2. Materials and Methods
2.1. Statistic Model
2.1.1. Common Multi-Gene Region Method

Suppose that there are n individuals in a genetic population. The genome region
[0, T] is constructed by SNP sequences t1 ≤ t2 · · · ≤ tM for genetic association analysis
under the group structure and is not included. Let yi be the quantitative trait value of i-th
individual and the population structure of the sample is not considered, so the traditional
linear genetic model can be expressed as

yi = µ0 +
M
∑

j=1
xijβ j + εi

i = 1, 2, · · · , n.
(1)

where µ0 is the overall mean of the model, xij is a genotype profile (if A and a represent
a pair of alleles, then when the genotype of i-th individual is AA, xij is taken as 2; when
the genotype of i-th individual is Aa, it is taken as 1; when the genotype of i-th individual
is aa, is 0). β j represents the effect coefficient of genetic marker, εi ∼ N(0, σ2), σ2 is the
environmental genetic variance, M is the number of genetic markers. With the increase of
the number of genetic markers, the freedom degree of the model gradually increases, and
the multicollinearity among variables becomes more and more serious, eventually leading
to the reduction of estimation accuracy and power. This is especially true when the genetic
markers are low-frequency variations. When the discrete variants are at ultrahigh density,
the discrete variants in an interval are as continuous, and the functional linear model (FLM)
can be used instead of the multiple linear genetic model:

yi = µ0 +
∫ T

0 Xi(t)β(t)dt + εi

i = 1, 2, · · · , n.
(2)

where εi is an independent and normal distribution with zero mean and variance σ2, and
[0, T] represents the genomic region under consideration. The discrete genetic markers xij
in Equation (1) are converted into continuous genetic markers function Xi(t) in Equation
(2). At this time Xi(t) is a random function, and the effects of genetic markers β j are also
converted into a continuous genetic effect function β(t).

Step

The functional linear genetic model of single-gene region is generally in the follow-
ing form

yi = µ0 +
∫ T

0
Xi(t)β(t)dt + εi, i = 1, 2, 3, · · · , n. (3)

When the single-gene region is extended to the multi-gene region, the original linear
genetic model becomes the following form

yi = µ0 +
P

∑
p=1

∫ T

0
Xpi(t)βp(t)dt + εi, i = 1, 2, 3, · · · , n. (4)
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Suppose that there are P gene regions. There are SNP sequences tp
1 < tp

2 < · · · < tp
M

for p-th (p = 1, 2, · · · , P) gene region. Every gene region is [0, T]. For every region, the
lower bound of the interval is converted to zero, and the upper bound of the interval is
converted to T. According to the method of functional data analysis, a set of basis functions
ϕp1(t), ϕp2(t), · · · ϕpKG (t) and the coefficient dpi1, dpi2, · · · , dpiKG can be used to expand
Xpi(t) as

Xpi(t) =
KG

∑
k=1

dpik ϕpk(t), p = 1, 2, · · · , P; i = 1, 2, · · · , n. (5)

Similarly, a set of basis functions φp1(t), φp2(t), · · · , φpKβ
(t) and coefficient bp1, bp2, · · · ,

bpKβ
can be used to expand βp(t) as

βp(t) =
Kβ

∑
k′=1

bpk′φpk′(t), p = 1, 2, · · · , P. (6)

the expansion of Xpi(t) and βp(t), the model (4) becomes

yi = µ0 +
P

∑
p=1

KG

∑
k=1

Kβ

∑
k′=1

dpik

∫ T

0
ϕpk(t)φpk′(t)dt · bpk′ + εi , i = 1, 2, 3, · · · , n . (7)

Let dpi = [dpi1, dpi2, · · · , dpiKG ]
T
KG×1, bp = [bp1, bp2, bp3, · · · bpKβ

]T
Kβ×1

, as well as

Φp =


∫ T

0 ϕp1(t)φp1(t)dt · · ·
∫ T

0 ϕp1(t)φpKβ
(t)dt

... · · ·
...∫ T

0 ϕpKG (t)φp1(t)dt · · ·
∫ T

0 ϕpKG (t)φpKβ
(t)dt


KG×Kβ

Model (7) becomes

yi = µ0 +
P

∑
p=1

dT
piΦpbp + εi , i = 1, 2, 3, · · · , n . (8)

where ϕp1(t), ϕp2(t), · · · ϕpKG (t) and φp1(t), φp2(t), · · · , φpKβ
(t) are a set of orthonormal

basis. Usually, we choose the same basis function for ϕp1(t), ϕp2(t), · · · ϕpKG (t) and φp1(t),
φp2(t), · · · , φpKβ

(t). Therefore, the above genetic model can be further simplified as

yi = µ0 +
P

∑
p=1

dT
pibp + εi , i = 1, 2, 3, · · · , n . (9)

Model (8) becomes model (9). At this point, the genetic model is transformed into
the ordinary multiple linear regression model of Equation (9), for which variables can be
screened by stepwise regression [25–27]. Because only the interrelationship between whole
gene regions and traits is discussed, dpi represents the genetic information of p-th gene
region, so dpi, which represents the whole information of a gene region, is considered to be
added to the model as a “variable”. p gene regions should be screened as p variables.

There are three ways of screening variables for regression: forward selection, backward
selection, forward selection, and backward selection. Here, the backward selection method
is performed, where all gene regions to be analyzed are put into the model at the beginning,
and then some gene regions are removed step-by-step until a reduced model is obtained.
AIC (Akaike Information Criterion) information criteria will be used as the basis for each
step to determine which gene regions need to be removed from the model

AIC = n ln(Rss/n) + 2•K, (10)
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where Rss represents the squares sum of the residuals for the current model, and K rep-
resents the number of unknown variables, that is, the sum of the number of elements of
all dpi. After deciding which dpi to remove, we hypothetically delete each dpi existing in
the current model and calculate the AIC, which is made up of the rest of the gene region.
We find the model corresponding to the minimum AIC and then proceed to the next step.
By repeating the above steps, until deleting any of the gene regions in the model does not
make the AIC of the model smaller, we now have a very reduced model. Finally, the partial
F test commonly used in the multiple linear regression model was used to test each dpi in
the model, and the corresponding p-value was calculated as the evaluation basis for the
association between gene regions and quantitative traits.

Multi-SLoS

Lin et al. [28] proposed a locally sparse functional linear model (SLoS method, Smooth
and Locally Sparse method). By adding fSCAD (Functional Smoothly Clipped Absolute
Deviation) penalty function on the basis of smoothing penalty term, the functional linear
model has the ability to identify the sparse part of the estimated effect value β̂(t) and
compress the estimated value to null. In the paper, a single region is taken as an example,
but a model for multi-regions was also proposed:

yi = µ0 +
P

∑
p=1

∫ T

0
Xpi(t)βp(t)dt + εi , i = 1, 2, 3, · · · , n . (11)

According to the description of the paper, to estimate the corresponding β(t) =

(β1(t), β2(t), · · · βP(t))
T, we only need to solve the corresponding loss function:

Q(β, µ0) =
1
n

n
∑

i=1

[
yi − µ0 −

P
∑

p=1

∫ T
0 Xpi(t)βp(t)dt

]2

+
P
∑

p=1
γp‖Dmβp‖2 +

P
∑

p=1

M
T
∫ T

0 p′λk
(
∣∣βp(t)

∣∣)dt
(12)

Specific algorithms can be found in Lin et al. [28]. In order to distinguish the SLoS
method for a single region, we refer to it as the Multi-SLoS method. The Multi-SLoS method
has the ability of local sparse, that is, it can identify null and no-null in β(t). We hope to
use the local sparsity ability of this model for gene association test, which involves the
problem of the model test. That is, the significance test problem of individual gene regions
in the model (2) is presented based on the Multi-SLoS method. The following is a detailed
description of how to conduct the test based on the work of Lin et al. [28] for multi-gene
region association analysis.

The functional linear model of a single gene region can be transformed into a mul-
tivariate linear model of several variables (the number of basis functions plus intercept),
and then directly test whether the estimated coefficients of the basis functions are all
null [13,29,30]. Multi-regions association analysis can be done similarly. However, when
multi-gene regions are tested, not only must more variables be tested, but also the degrees
of freedom of the model should be adjusted. In addition, we found that the results obtained
after adjusting the degrees of freedom of the Multi-SLoS method as follows would be more
consistent with the features of the method and the actual results in the follow-up study of
polygenic regions. The reasons for the adjustment of degrees of freedom are given below.

Let the null gene regions denote gene regions where estimated effect values β̂p(t)(p =
1, 2, · · · , P) are all null, and non-null gene regions denote gene regions where estimated
effect value β̂p(t) are not all null. The Multi-SLoS method will directly compress the
estimated effect values β̂p(t) of null gene regions to null and identify the non-null and null
gene regions from p gene regions, regardless of whether the Multi-SLoS method is correct
in distinguishing the non-null and null gene regions (the results can be seen in the later
simulation). The regions where β̂p(t) is compressed to null have no effect on the estimated
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results, which means that these regions have been directly identified as β̂p(t) = 0 at a
certain estimation stage of the model and have no effect on the estimated model. Then, the
degrees of freedom of these gene regions should be removed from the calculation of the
model. Similarly, there are some sub-regions where the effect is also compressed to null
in non-null gene regions, which means that these sub-regions also have no effect on the
estimated model, and the degrees of freedom of these sub-regions should be deducted.

Combined with the adjustment of degrees of freedom, the partial F test of the Multi-
SLoS method is given below.

Let B represent the set of subscripts of gene regions with non-null effect, and b
represent one element of the set B. For the above linear genetic model, the following
method is used to test the association between gene region b and quantitative traits.

(a) Calculate the sum of square residuals of the full model including all non-null gene
regions:

ŷi = µ0 + ∑
k∈A

∫ T

0
Xki(t)βk(t)dt , i = 1, 2, 3, · · · , n . (13)

SSE( f ull) =
n

∑
i=1

(yi − ŷi)
2

(14)

(b) Calculate the sum of square residuals of the reduced model excluding gene region a:

ŷi = µ0 + ∑
k∈B−b

∫ T

0
Xki(t)βk(t)dt (15)

SSE(reduced) =
n

∑
i=1

(yi − ŷi)
2

(16)

(c) Adjustable degrees of freedom:

The adjusted freedom degree of SSE (full) (freedomadj(full)) should be: the number
of individuals (n)—the sum of the number of non-null basis function coefficients in all
non-null gene regions—1.

The adjusted freedom degree of SSE (reduced)–SSE (full) (freedomadj(reduced)) should
be: the number of non-null basis function coefficients in gene region a.

(d) Calculate the corresponding values of F and p value

F =

SSE(reduced)−SSE( f ull)
f reedomadj(reduced)

SSE( f ull)
f reedomadj( f ull)

∼ F( f reedomadj(reduced), f reedomadj( f ull)

2.1.2. Multi-Gene Region Weighted Method

In common gene association analysis, common variants can be easily identified if the
associated loci contain both rare and common variants, but rare variants are difficult to
detect because of their micro effects. For the association analysis of multi-gene regions,
a similar situation is likely to occur—only the associated regions with rare variants are
difficult to identify if the associated loci exist in the regions only with common variants and
the regions only with rare variants at the same time. The common solution to this problem
in gene-association analysis is to assign different weights to different types of variants. The
same approach is used to assign different weights to different gene regions, by assigning
weights to different types of gene regions to eliminate differences due to different allele
frequencies rather than different degrees of association with phenotypic values.
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Weighted SLoS (W-SLoS)

The SLoS approach has been applied to polygenic regions in Section 2.1.1, which
asks the question: would it further improve the power if different weights were given to
different types of gene regions? The loss function of the SLoS method is:

Q(β, µ0) =
1
n

n
∑

i=1

[
yi − µ0 −

P
∑

p=1

∫ T
0 Xpi(t)βp(t)dt

]2

+
P
∑

p=1
γp‖Dmβp‖2 +

P
∑

p=1

M
T
∫ T

0 p′λp
(
∣∣βp(t)

∣∣)dt
(17)

It can be seen from the loss function that different gene regions can be assigned
different weights by adjusting parameters γp and p′λp

. Therefore, based on the research
of Lin et al. [28], we have made appropriate adjustments to the code in the slos package
of R language provided by Lin et al., so that the method is not only theoretically feasible
but also runs smoothly in the actual program. Finally, the Weighted SLoS method only
increases the weight compared to the Multi-SLoS method, and the same statistical test can
be used to test the significance of each gene region.

2.1.3. Multi-Gene Region Loci Weighted Method

Although it is possible to distinguish rare variants from common variants and then
divide them into rare variants regions and common variants regions for analysis in the
multi-gene region analysis, it is more common in the actual situation that both common
variants and rare variants exist in a gene region to be analyzed. Therefore, the multi-gene
region loci weighted method is proposed, which is a more general method of combining
functional data analysis by assigning different weights to each locus within each region
rather than to the gene region, as in Section 2.1.2.

Multi-Gene Region Loci Weighted Step (LW-Step)

Similar to Section 2.1.1, there are n individuals in a genetic population. The genome re-
gion [0, T] is constructed by SNPs sequences t1 < t2 < · · · < tM for genetic association anal-
ysis under no group structure. Accordingly, the genetic markers are xi1, xi2, · · · , xiM(i =
1, 2, · · · , n). Let yi be the quantitative trait value of the i-th individual and the population
structure of the sample is not considered, and the traditional linear genetic model can be
expressed as

yi = µ0 +
M

∑
j=1

xijβ j + εi, i = 1, 2, · · · , n. (18)

With the increase of the number of genetic markers, the functional linear model (FLM)
can be used instead of the multiple linear genetic model

yi = µ0 +
∫ T

0
Xi(t)β(t)dt + εi, i = 1, 2, · · · , n. (19)

A set of basis functions ϕ1(t), ϕ2(t), ϕ3(t), · · · , ϕK G (t) and coefficients di1, di2, di3, · · ·
diKG can be used to expand Xi(t) as

Xi(t) =
KG

∑
k=1

dik ϕk(t) (20)
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According to functional analysis method [31], let Xi = [xi1, xi2, · · · , xiM] represent the
gene data vector for the i-th individual, then,

di = [di1, di2, · · · , diKG ]
T,

ϕ(t) = [ϕ1(t), ϕ2(t), · · · , ϕKG (t)]
T,

ϕ = [ϕ(t1),ϕ(t2), · · · ,ϕ(tM)]T,

And

ϕ =


ϕT(t1)
ϕT(t2)

...
ϕT(tM)

 =


ϕ1(t1) ϕ2(t1) · · · ϕKG (t1)
ϕ1(t2) ϕ2(t2) · · · ϕKG (t2)

...
... · · ·

...
ϕ1(tM) ϕ2(tM) · · · ϕKG (tM)


M×KG

Then Xi(t) = dT
i ϕ(t), i = 1, 2, · · · , n. According to the functional data analysis meth-

ods, there are

ϕdi =


dT

i ϕ(t1)

dT
i ϕ(t2)

...
dT

i ϕ(tM)

 =



KG
∑

k=1
ϕk(t1)dik

KG
∑

k=1
ϕk(t2)dik

...
KG
∑

k=1
ϕk(tM)dik


=


Xi(t1)
Xi(t2)

...
Xi(tM)

 = Xi(t) (21)

The coefficient di is solved in a smooth way

PENSSEλx (x) = (XT
i −ϕdi)

T
(XT

i −ϕdi) + λx

∫ T

0
[D2X(t)]

2
dt, (22)

∫ T

0
[D2X(t)]

2
dt =

∫ T

0
dT

i [D
2ϕ(t)][D2ϕ(t)]

T
didt = dT

i R2di. (23)

Here, R2 is a penalty matrix,

[R2]jk =
∫ T

0
[D2 ϕj(t)][D2 ϕk(t)]dt, j = 1, 2, · · · , KG; k = 1, 2, · · · , KG. (24)

The solution result is d̂i = [ϕTϕ+ λxR2]
−1
ϕTXT

i , then

Xi(t) = Xiϕ[ϕ
Tϕ+ λxR2]

−1
ϕ(t),i = 1, 2, · · · , n. (25)

In addition,

β(t) =
Kβ

∑
k′=1

bk′φk′(t) = [φ(t)]Tb, (26)

whereφ(t) = [φ1(t), φ2(t), · · · , φKβ
(t)]T, b = (b1, b2, · · · , bKβ

)T, combined Xi(t), β(t) and
functional linear model

yi = µ0 +
∫ T

0
Xi(t)β(t)dt + εi, (27)

the following can be obtained

yi = µ0 + XiWb + εi, i = 1, 2, · · · , n. (28)

where W = ϕ[ϕTϕ+ λxR2]
−1∫ T

0 ϕ(t)[φ(t)]Tdt.
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Next, as in Belonogova et al. [32], a M×M diagonal matrix Θ was designed, where
each element on the diagonal of the matrix corresponds to the weight of genotype data
Xi = [xi1, xi2, · · · , xiM]. The weight can be determined by Beta distribution

Beta(MAFij, a1, a2), i = 1, 2, · · · , n, j = 1, 2, · · · , M.

where a1, a2 are the preset parameters, and MAFij represents the j-th genotype frequency of
the i-th individual. The diagonal matrix Θ is embedded to the simplified functional linear
equation [32]

yi = µ0 + XiΘWb + εi,i = 1, 2, · · · , n. (29)

This gives us a weighted functional linear function. This is the method of a single gene
region, corresponding to the functional linear equation of multiple gene regions, which can be

yi = µ0 +
P

∑
p=1

∫ T

0
Xpi(t)βp(t)dt + εi, i = 1, 2, · · · , n. (30)

All the assumptions about gene regions are the same before. According to the specific
situation of each region, add a weight matrix Θp to assign different weights to the loci in
the region, then

yi = µ0 +
P

∑
p=1

XpiΘpWpbp + εi, i = 1, 2, · · · , n. (31)

The above statement is used to better explain the method in theory, in fact, the actual
processing is not so complicated as in theory. Returning to the fitting of genotype data, the
problem of loci weighting can be viewed from another perspective. First, let X∗i = XiΘ, and
then expand X∗i with the same functional smoothing parameters, so that

Xi(t) = Xiϕ[ϕ
Tϕ+ λxR2]

−1
ϕ(t) (32)

X∗i (t) = X∗i ϕ[ϕ
Tϕ+ λxR2]

−1
ϕ(t) = XiΘϕ[ϕTϕ+ λxR2]

−1
ϕ(t) (33)

These are the same smooth parameters, basis functions, number of basis functions, and
nodes. The value of ϕ[ϕTϕ+ λxR2]

−1
ϕ(t) is decided by the above factors.

ϕ[ϕTϕ+ λxR2]
−1
ϕ(t) is the same as the expansion of Xi(t) and X∗i (t). The difference

between Xi(t) and X∗i (t) is the weight matrix Θ. This result can be used to deduce the
single gene loci weighted functional linear model as follows

yi = µ0 + XiΘWb + εi

= µ0 + XiΘϕ[ϕTϕ+ λxR2]
−1∫ T

0 ϕ(t)[φ(t)]Tdtb + εi

= µ0 + X∗i ϕ[ϕ
Tϕ+ λxR2]

−1∫ T
0 ϕ(t)[φ(t)]Tdtb + εi

= µ0 +
∫ T

0 X∗i ϕ[ϕ
Tϕ+ λxR2]

−1
ϕ(t)[φ(t)]Tbdt + εi

= µ0 +
∫ T

0 X∗i (t)β(t)dt + εi

(34)

where W = ϕ[ϕTϕ+ λxR2]
−1∫ T

0 ϕ(t)[φ(t)]Tdt, i = 1, 2, · · · , n.
It can be seen from the derived results that the single gene loci weighted linear

functional linear model can be understood as the weighted transformation of the original
genotype data into new functional data X∗i (t), and then the functional linear model can
be established by using X∗i (t). We extend this result into the multi-gene region weighted
functional linear model, and all the assumptions are the same as the above section. The
model becomes the ordinary multi-gene region functional linear model

yi = µ0 +
P

∑
p=1

∫ T

0
X∗pi(t)βp(t)dt + εi, i = 1, 2, · · · , n (35)
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Then,

yi = µ0 +
P
∑

p=1

∫ T
0 X∗pi(t)βp(t)dt + εi

= µ0 +
P
∑

p=1

∫ T
0 X∗piϕp[ϕ

T
pϕp + λxR2]

−1
ϕp(t)[φp(t)]

Tbpdt + εi

= µ0 +
P
∑

p=1
X∗piϕp[ϕ

T
pϕp + λxR2]

−1∫ T
0 ϕp(t)[φp(t)]

Tdtbp + εi

(36)

where ϕp(t) = [ϕp1(t), ϕp2(t), · · · , ϕpKG (t)]
T,

φp(t) = [φp1(t), φp2(t), · · · , φpKβ
(t)]T,

ϕp = [ϕp(t
p
1 ),ϕp(t

p
2 ), · · · ,ϕp(t

p
M)]

T
,

And

ϕp =


ϕT

p (t
p
1 )

ϕT
p (t

p
2 )

...
ϕT

p (t
p
M)

 =


ϕp1(t

p
1 ) ϕp2(t

p
1 ) · · · ϕpKG (t

p
1 )

ϕp1(t
p
2 ) ϕp2(t

p
2 ) · · · ϕpKG (t

p
2 )

...
... · · ·

...
ϕp1(t

p
M) ϕp2(t

p
M) · · · ϕpKG (t

p
M)


M×KG

, p = 1, 2, · · · , P.

Let d∗pi = X∗piϕp[ϕT
pϕp + λxR2]

−1

Φp =


∫ T

0 ϕp1(t)φp1(t)dt · · ·
∫ T

0 ϕp1(t)φpKβ
(t)dt

... · · ·
...∫ T

0 ϕpKG (t)φp1(t)dt · · ·
∫ T

0 ϕpKG (t)φpKβ
(t)dt


KG×Kβ

Then

yi = µ0 +
P

∑
p=1

d∗piΦpbp + εi, i = 1, 2, · · · , n. (37)

For the same reasons as in Step method, when ϕp1(t), ϕp2(t), · · · ϕpKG (t) and
φp1(t), φp2(t), · · · , φpKβ

(t) are a set of orthonormal basis and the same basis function, the
difference between different individual data is mainly reflected in the coefficients. There-
fore, it is reasonable to simply take the coefficients of the basis function as a new variable
as the basis of subsequent method operations, and simplify the model as follows

yi = µ0 +
P

∑
p=1

d∗pibp + εi, i = 1, 2, · · · , n. (38)

The model becomes a multivariate linear model with the coefficients of the basis
functions in the region as the new variables. The difference between the two methods
compared with the Step method is that, at this time, the coefficients are obtained by
functional data analysis of genotype data after weighting. The simplified model treats each
gene region as a “variable” for stepwise regression and conducts a partial F test on the final
simplified model to obtain the significance level of each gene region. The method is called
the Multi-gene region loci weighted Step (LW-Step).
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Multi-Gene Region Loci Weighted SLoS Method (LW-SLoS)

For the multi-gene region, the model becomes the ordinary multi-gene region func-
tional linear model

yi = µ0 +
P

∑
p=1

∫ T

0
X∗pi(t)βp(t)dt + εi, i = 1, 2, · · · , n. (39)

The SLoS method can be used to solve the model, and the statistical test method pro-
posed in Multi-SLoS method can be used to test the model. Finally, in order to distinguish
between other types of SLoS methods, we will call this method LW-SLoS, which means
Loci Weight SLoS.

2.2. Design of Simulation Evaluation
2.2.1. Simulation of Common Multi-Gene Region Method

In the simulation analysis of the common multi-gene region method, 25 gene regions
are generated at a time and spliced together as the "multi-gene region" to be analyzed at
one time. We design four different multi-gene regions: (a) rare variant multi-gene regions,
i.e., all variants within the regions are rare variants (MAF (Minor Allele Frequency) < 0.01);
(b) common variant multi-gene regions, i.e., all variants within the regions are common
variants; (c) the hybrid variant multi-gene regions (15 gene regions are common variant
gene regions and 10 gene regions are rare variant gene regions); (d) the hybrid variant
multi-gene regions: each gene region is a mixture of 60% rare variants and 40% common
variants. The purpose of designing these multi-gene regions is to better find out the specific
scenarios applicable to multi-gene analysis and the different manifestations of multi-gene
region analysis in different scenarios.

The rare variant gene regions and common variant gene regions in the multi-gene
region are generated as follows: for rare variant gene regions, each time, a 5 kb gene segment
is randomly selected as a gene region from the rare haploid dataset (the R language SKAT
package [33] contains a set of such data produced by simulating allele frequency and
linkage imbalance information in European populations) with a length of 200 kb, then
2000 individuals are randomly selected from 10,000 individuals twice to synthesize the
diploid region of the rare variant genes. For common variant gene regions, firstly, the allele
frequencies of gene loci are generated uniformly distributed; secondly, according to the
frequency of each locus, haploid datasets of common variants with the same structure
and size as the rare variants dataset are generated by simple random sampling; finally,
the common variant gene regions are generated in the same way as the rare variant gene
regions. Among the 4 multi-genic regions: the rare variant multi-gene regions are directly
composed of 25 rare variant gene regions; the common variant multi-gene regions are
directly composed of 25 common variant gene regions; the hybrid variant multi-gene
regions are composed of 15 common variant gene regions and 10 rare variant gene regions,
in addition, the splicing order of the two gene regions is random; the hybrid variant
multi-gene regions is generated in this way—firstly, make 25 regions of rare variants and
25 regions of common variants (rare variant regions and common variant regions must be
of the same size and structure); secondly, 40% of the rare variants are randomly selected
from the first rare variant gene region and filled with genotypes corresponding to first
common variant gene region. This is repeated until the generation of the 25-th gene region
is completed.

In power simulation, the associated loci should be assumed as the target of the analysis
and the quantitative traits should be simulated as the analysis objects. Therefore, in each
simulation, five of the 25 gene regions splicing “multi-gene regions” are selected as the
associated gene regions, and then three loci are randomly selected from each associated
gene region as the associated loci. The generation of simulated traits adopted the additive
effect model. At the same time, three different scenarios are made for the effect of the
associated loci: Scenario I, all effect directions are positive; Scenario II, the effect direction
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of all associated loci are negative in two of the five associated regions; Scenario III, the
effect direction of one locus in each associated region is negative. The absolute value of
effect value is determined by the following effect model∣∣∣β(tj)

∣∣∣=∣∣∣log10 (</mo>MAFtj)
∣∣∣/4× 1.5, t1 ≤ · · · ≤ tj · · · ≤ tM. (40)

where MAFtj represents the minimum allele frequency of the tj-th genotype as the asso-
ciated locus in the associated gene regions. In the false-positive proportional simulation,
random numbers were generated through normal distribution N(0, 0.1) as the phenotypic
values of the simulation, since it was assumed that no associated gene loci existed in the
gene region.

The multi-gene regions that are composed of 25 gene regions are analyzed for every
simulation. Each gene region is simulated 100 times under different association effect
hypotheses. There are 2500 (100× 25) gene regions analyzed. In each scenario, 5 gene
regions are assumed to be associated regions, and 20 gene regions are assumed to be
unrelated regions. That is, there are 500 associated gene regions and 2000 unrelated gene
regions for every case. Under given significance level α based on every model, every
method and every scenario, the number of significant gene regions is n1. The number of
significant gene regions, but no significant gene regions, in fact, is n2. The power is n1

500 and
the false positive rates (Type I error rates) are n2

2000 .
In order to compare the Step and Multi-SLoS method of multi-gene region analysis

with the single-gene region functional method, the SLoS method and FLM method are also
performed in this simulation. The single-gene region method analyzes the sub-regions of the
simulated multi-gene region one by one and then summarizes the results to test the multi-
gene regions. The FLM method is proposed by Svishcheva et al. [14] as a functional gene
region analysis method for family and population gene data. The author provides a package,
“FREGAT”, written in the R language, that contains the computer program for the method.
Moreover, the method can also be used for genetic association analysis in populations
with no family relationship. For SLoS method and Multi-SLoS method, the compression
parameter and smoothing parameter are set as 0.1 and 0.1 in the common variants multi-
gene regions simulation; as 0.01 and 0.01 in the rare variants multi-gene regions simulation;
and as 0.05 and 0.05 for the hybrid variants multi-gene regions simulation and the hybrid
variants multi-gene regions simulation. The fitting of SLoS and Multi-SLoS models requires
the "SLoS" package of R language [28], but the statistical part needs to be supplemented
by the R language code written by us. In the process of simulation, genotype data needs
to be converted into functional data, all gene regions are smoothed by 25 Fourier basis
functions, the number of nodes is equal to the number of variants in the gene regions, and
the distance of nodes is equidistant. The number of basis functions of the effect function
uses the default settings for the appropriate software. The basis functions and node settings
are the same in subsequent computational simulations, except for additional instructions.

2.2.2. Simulation of Multi-Gene Region Weighted Method

We designed three different multi-gene regions: (a) rare variants multi-gene regions,
i.e., all variants within the regions are rare variants (MAF < 0.01); (b) common variants
multi-gene regions, i.e., all variants within the regions are common variants; (c) the hybrid
variants multi-gene regions: 15 are common variants gene regions and 10 are rare variants
gene regions. Here, a simulation of the multi-gene region weighted method is only aimed
at hybrid variants multi-gene regions analyzed in the simulation of common multi-gene
region method. Besides, there are two common variant gene regions and three rare variant
gene regions for five associated regions. In addition to counting the power and false
positive rates of common and rare variant gene sub-regions in multi-genic regions, the rest
of the settings are similar with those simulations of the common multi-gene region method,
in order to count the power and false positive rates of the common variants gene regions
and the rare variants gene regions in the multi-gene regions respectively. We illustrate
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the rare variants gene regions as an example: the power of rare variants gene sub-regions
is the total number of significant and true associated gene regions in the rare variants
gene sub-regions divided by the total number of rare variants gene sub-regions in the
multi-gene regions. False positive rates of rare variants gene sub-regions: the total number
of significant but unrelated gene regions in rare variants gene sub-regions is divided by the
total number of rare variants gene sub-regions in multi-gene regions.

Three methods are used in this simulation: Step, FLM, and Weighted SLoS (W-SLoS).
During the simulation of the W-SLoS method, the smoothing parameters of common
variants gene sub-regions are 0.02 and the compression parameters are 0.05. The smoothing
parameter and compression parameter of rare variants gene sub-regions are 0.01 and 0.0025,
respectively. All settings for the nodes and the effect of genetic variations are similar as the
computer simulations for the common multi-gene region method (Section 2.2.1).

2.2.3. Simulation of Multi-Gene Region Loci Weighted Method

The multi-gene regions generated by the simulation in the multi-gene regions loci
weighted analysis is composed of 10 mixed variants gene regions. The proportion of rare
variants in the 10 regions of mixed variants are as follows: [0.7,0.8,0.6,0.95,0.9,0.95,0.7,0.9,0.8,0.6],
respectively. Common variants and rare variants of every sub-region are random distribu-
tions for simulated multi-gene regions. The gene loci are weighted in the sub-regions. The
rare variants and common variants in each gene region are generated in the same way as
the common multi-gene regions simulations. This multi-gene region will be analyzed 100
times during the simulations. During the power simulation, the associated gene regions
are preset as 2-th, 4-th, 5-th, 7-th, and 10-th gene regions, the proportion of rare variants in
the corresponding gene regions is [0.8,0.95,0.9,0.7,0.6], and the 4-th and 5-th gene regions
are adjacent. Although the associated gene regions are determined, the associated loci
in each gene region are randomly extracted from loci with a minimum allele frequency
of less than 0.02 within the corresponding gene regions in each simulation. In addition,
the model and method used to simulate phenotypic values and the effect value scenario
settings of the associated loci are the same as those in the common multi-gene regions
simulations. Suppose that there are three scenarios for the effect of the associated loci:
Scenario I, all effect directions of all associated loci are positive for gene loci; Scenario II,
the effect directions of all associated loci are negative for the 4-th and 7-th gene region;
Scenario III, choose a locus at random form associated loci and the effect direction of that
locus is negative in each associated region.

For power and false positive rates in the simulation, it is assumed that in the set of
regions that are significant under a certain condition, the number of regions that are truly
correlated and significant is n1, while the number of uncorrelated regions and identified
as significant is n2, and then the total power in the simulation is: n1

500 , and the total false
positive rates (Type I error rates) are: n2

500 . Suppose that the number of regions identified as
significant in the 2-th, 4-th, 5-th, 7-th, 10-th gene regions is ni1, (i = 2, 4, 5, 7, 10), respectively.
Then, the powers of the corresponding gene sub-regions are ni1

100 , (i = 2, 4, 5, 7, 10). Suppose
that the number of regions in the 1-th, 3-th, 6-th, 8-th, 9-th gene regions identified as
significant is: ni2, (i = 1, 3, 6, 8, 9) (in fact, those gene regions are no significant), then the
false positive rates of corresponding gene sub-regions are ni2

100 ,(i = 1, 3, 6, 8, 9).
Four methods are used in the simulation: Step, Loci Weighted Step (LW-Step), Multi-

SLoS, and Loci Weighted SLoS (LW-SLoS). The smoothing and compression parameters of
the Multi-SLoS and LW-Step methods are set to 0.001. The multi-gene region loci weighted
method needs to set the weights of different loci. In this paper, it is realized by setting the
weight matrix. Here, the weight matrix is set as the diagonal matrix, and the weight of the
corresponding gene loci of the diagonal elements on the matrix is generated through the
beta distribution:

Beta(MAFi, 1, 10).
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3. Results
3.1. Results of the Common Multi-Gene Region Method

It can be seen from Table 1 that the power of the Step method is the highest among
the four methods at each significance level in the rare variants multi-gene regions, and
the power of the Multi-SLoS method is not higher than that of FLM and Step, but it is
also slightly higher than that of SLoS; in hybrid variants multi-gene regions I and hybrid
variants multi-gene regions II the power of the Step method is higher than the FLM method,
but the power of the Multi-SLoS method is not higher than the SLoS method. Therefore,
in terms of power performance, multi-gene region analysis has a comparative advantage
in rare variants multi-gene regions, and the power of the Step method is the best in four
simulated gene regions. By comparing the power on different types of gene regions, the
SLoS and Multi-SLoS method have higher power for multi-gene regions with common
variants; the Step method makes it less powerful in multi-gene regions that contain common
variants; the FLM method is more effective in multi-gene regions consisting of only rare
or common variants, but the performance of hybrid variants multi-gene regions I is very
strange.

Table 1. Simulation results of the power for four types of multi-gene regions regarding the common
multi-gene region method.

Gene Effect α

Common Variant Rare Variant Hybrid Variant Hybrid Variant

Multi-Gene Region Multi-Gene Region Multi-Gene Region I Multi-Gene Region II

Step Multi-
SLoS FLM SLoS Step Multi-

SLoS FLM SLoS Step Multi-
SLoS FLM SLoS Step Multi-

SLoS FLM SLoS

Scenario I

0.05 0.9560 0.8360 0.9680 0.8540 0.9880 0.7120 0.9820 0.7140 0.9720 0.7480 0.3120 0.7720 0.9000 0.8460 0.8980 0.8600
0.01 0.9560 0.8300 0.9540 0.8500 0.9880 0.7020 0.9600 0.6880 0.9700 0.7440 0.2640 0.7700 0.8980 0.8460 0.8720 0.8520
0.001 0.9480 0.8260 0.9240 0.8480 0.9880 0.6860 0.9200 0.6660 0.9640 0.7400 0.2420 0.7620 0.8900 0.8440 0.8620 0.8480

1 × 10−4 0.9220 0.8120 0.8780 0.8360 0.9860 0.6820 0.8820 0.6580 0.9600 0.7320 0.2220 0.7540 0.8780 0.8240 0.8460 0.8260
1 × 10−6 0.8600 0.7540 0.7920 0.7600 0.9780 0.6720 0.8380 0.6420 0.9200 0.7120 0.2000 0.7240 0.8660 0.8120 0.8020 0.8000
1 × 10−8 0.7840 0.6600 0.6680 0.6500 0.9680 0.6660 0.7880 0.6300 0.8780 0.6900 0.1780 0.6800 0.8520 0.7920 0.7420 0.7560

Scenario II

0.05 0.9680 0.8560 0.9800 0.8860 0.9860 0.6900 0.9520 0.6900 0.9600 0.7340 0.3040 0.7520 0.8800 0.8240 0.8900 0.8540
0.01 0.9660 0.8460 0.9640 0.8840 0.9860 0.6740 0.9400 0.6580 0.9600 0.7340 0.2640 0.7480 0.8800 0.8200 0.8560 0.8540
0.001 0.9540 0.8360 0.9440 0.8840 0.9860 0.6600 0.9240 0.6480 0.9560 0.7320 0.2360 0.7400 0.8760 0.8160 0.8320 0.8320

1 × 10−4 0.9360 0.8200 0.9080 0.8720 0.9840 0.6580 0.8980 0.6400 0.9480 0.7280 0.2280 0.7240 0.8720 0.8080 0.8100 0.8060
1 × 10−6 0.8940 0.7440 0.8040 0.7920 0.9840 0.6460 0.8420 0.6280 0.9080 0.7040 0.2040 0.6880 0.8400 0.7820 0.7620 0.7620
1 × 10−8 0.8080 0.6640 0.6900 0.6740 0.9680 0.6400 0.7980 0.6140 0.8560 0.6820 0.1860 0.6400 0.8120 0.7580 0.7180 0.7200

Scenario III

0.05 0.9560 0.8240 0.9740 0.8420 0.9940 0.6980 0.9660 0.6680 0.9480 0.7620 0.2880 0.7840 0.8900 0.8360 0.8900 0.8540
0.01 0.9540 0.8200 0.9460 0.8420 0.9940 0.6660 0.9480 0.6300 0.9480 0.7580 0.2380 0.7760 0.8900 0.8340 0.8700 0.8500
0.001 0.9380 0.8100 0.9120 0.8400 0.9940 0.6440 0.9200 0.6080 0.9380 0.7480 0.2180 0.7600 0.8880 0.8300 0.8440 0.8340

1 × 10−4 0.9120 0.7940 0.8680 0.8280 0.9900 0.6280 0.8900 0.5940 0.9240 0.7320 0.2020 0.7380 0.8760 0.8160 0.8220 0.8140
1 × 10−6 0.8420 0.6940 0.7680 0.7200 0.9860 0.6160 0.8340 0.5740 0.8860 0.7000 0.1840 0.6900 0.8540 0.7860 0.7780 0.7820
1 × 10−8 0.7620 0.6000 0.6720 0.6340 0.9700 0.6000 0.7880 0.5540 0.8360 0.6500 0.1640 0.6180 0.8400 0.7580 0.7300 0.7340

Note: Scenario I—all effect directions are positive: Scenario II—the effect direction of all associated loci are
negative in two of the five associated regions; Scenario III—the effect direction of one locus in each associated
region is negative.

Combined with the simulation results of false positive rates in Table 2, the results are
further analyzed. In rare variants multi-gene regions, the Multi-SLoS method has a higher
false positive rate than the SLoS method, and the Step method has a higher false positive
rate than the FLM method under different effect directions and higher significance level.
The false positive rates in both the Step method and Multi-SLoS method are very low in
the common variants multi-gene regions. In the hybrid variants multi-gene regions II, the
Step method and Multi-SLoS method compared to the FLM and SLoS methods have lower
false positive rates. Therefore, the addition of common variants to the sub-regions of the
multi-gene regions has the effect of reducing the false positive rates.

On the one hand, the multi-gene region Step method based on functional data analysis
has the best power and performance in false positive rates. Indeed, it can better find
some associated regions that cannot be found in single gene regions, especially some
associated gene regions with micro effects. On the other hand, the Multi-SLoS method
has no significant advantages over the SLoS method and needs further improvement and
adjustment.
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Table 2. Simulation results of the false positive rate for four types of multi-gene regions regarding
the common multi-gene region method.

Gene Effect α

Common Variant Rare Variant Hybrid Variant Hybrid Variant

Multi-Gene Region Multi-Gene Region Multi-Gene Region I Multi-Gene Region II

Step Multi-
SLoS FLM SLoS Step Multi-

SLoS FLM SLoS Step Multi-
SLoS FLM SLoS Step Multi-

SLoS FLM SLoS

Scenario I

0.05 0.0045 0.0000 0.0530 0.0000 0.0755 0.0685 0.0910 0.0310 0.0110 0.0515 0.2830 0.1055 0.0060 0.0060 0.0550 0.0290
0.01 0.0045 0.0000 0.0085 0.0000 0.0750 0.0315 0.0410 0.0040 0.0110 0.0275 0.2315 0.0485 0.0060 0.0040 0.0135 0.0170
0.001 0.0030 0.0000 0.0015 0.0000 0.0670 0.0200 0.0135 0.0000 0.0085 0.0085 0.2105 0.0050 0.0060 0.0015 0.0010 0.0035

1 × 10−4 0.0005 0.0000 0.0000 0.0000 0.0580 0.0155 0.0075 0.0000 0.0055 0.0020 0.1975 0.0000 0.0050 0.0005 0.0000 0.0005
1 × 10−6 0.0000 0.0000 0.0000 0.0000 0.0445 0.0095 0.0025 0.0000 0.0030 0.0000 0.1785 0.0000 0.0015 0.0005 0.0000 0.0000
1 × 10−8 0.0000 0.0000 0.0000 0.0000 0.0380 0.0075 0.0005 0.0000 0.0025 0.0000 0.1595 0.0000 0.0005 0.0005 0.0000 0.0000

Scenario II

0.05 0.0025 0.0000 0.0430 0.0000 0.0615 0.0710 0.0920 0.0305 0.0070 0.0530 0.2645 0.1270 0.0045 0.0075 0.0455 0.0230
0.01 0.0020 0.0000 0.0095 0.0000 0.0605 0.0475 0.0375 0.0045 0.0065 0.0325 0.2250 0.0560 0.0045 0.0050 0.0085 0.0135
0.001 0.0005 0.0000 0.0005 0.0000 0.0540 0.0355 0.0095 0.0000 0.0035 0.0050 0.2000 0.0050 0.0020 0.0010 0.0005 0.0000

1 × 10−4 0.0005 0.0000 0.0000 0.0000 0.0490 0.0295 0.0035 0.0000 0.0030 0.0020 0.1855 0.0005 0.0010 0.0000 0.0000 0.0000
1 × 10−6 0.0000 0.0000 0.0000 0.0000 0.0385 0.0245 0.0000 0.0000 0.0020 0.0010 0.1675 0.0000 0.0005 0.0000 0.0000 0.0000
1 × 10−8 0.0000 0.0000 0.0000 0.0000 0.0335 0.0155 0.0000 0.0000 0.0010 0.0010 0.1505 0.0000 0.0000 0.0000 0.0000 0.0000

Scenario III

0.05 0.0065 0.0000 0.0525 0.0005 0.0675 0.0875 0.1035 0.0365 0.0090 0.0565 0.2675 0.1220 0.0045 0.0050 0.0425 0.0280
0.01 0.0060 0.0000 0.0110 0.0005 0.0665 0.0615 0.0455 0.0040 0.0080 0.0270 0.2255 0.0490 0.0040 0.0040 0.0065 0.0150
0.001 0.0030 0.0000 0.0000 0.0000 0.0575 0.0530 0.0150 0.0000 0.0040 0.0095 0.2060 0.0085 0.0025 0.0010 0.0015 0.0015

1 × 10−4 0.0015 0.0000 0.0000 0.0000 0.0510 0.0435 0.0065 0.0000 0.0030 0.0040 0.1955 0.0015 0.0015 0.0000 0.0005 0.0005
1 × 10−6 0.0000 0.0000 0.0000 0.0000 0.0400 0.0325 0.0020 0.0000 0.0010 0.0025 0.1670 0.0000 0.0015 0.0000 0.0000 0.0000
1 × 10−8 0.0000 0.0000 0.0000 0.0000 0.0320 0.0260 0.0005 0.0000 0.0000 0.0025 0.1470 0.0000 0.0005 0.0000 0.0000 0.0000

Note: Scenario I—all effect directions are positive: Scenario II—the effect direction of all associated loci are
negative in two of the five associated regions; Scenario III—the effect direction of one locus in each associated
region is negative.

3.2. Results of Multi-Gene Region Weighted Method

As can be seen from the power simulation results in Tables 1 and 3, the highest power
of the Multi-SLoS method is 76.2% and of the SLoS method is 78.4%. The lowest power
of W-SLoS is 84% for the hybrid variant multi-gene region I (see Table 1). Therefore, the
SLoS method with weighted multi-gene regions has a significant improvement in power.
The FLM method still does not perform well in this case. Combined with the previous
simulation of the FLM method, it has a good performance when the gene sub-region in
the multi-gene regions is of the same type, but the performance is not good when the
multi-gene regions are mixed with multiple types of gene regions. It can be known that
this method may be more suitable for the detection of multi-gene regions with the same
type of gene sub-regions. The Step method is still the most powerful of the four methods,
both in terms of overall power and in gene regions with common or rare variants. Almost
all of the common variant gene regions are identified, and rare variants gene regions have
lower power than that of the common variants gene regions. In general, the three methods
can more easily identify rare variants gene regions, but common variants gene regions still
require higher power.

Table 4 shows the simulation results of false positive rates. It is obvious that the false
positive rates of FLM are larger than that of other methods. Among three methods, the
false positive rates of the W-SLoS method are the lowest, followed by the Step method. In
general, the performance of W-SLoS is better than that of Step on false positive rates from
Table 4. It means the W-SLoS method is not as effective as the Step method for detecting
gene regions, but it is more reliable for gene regions selected by the W-SLoS method.

By weighting the sub-regions, the performance of the multi-gene region SLoS method
exceeds that of the single-gene region SLoS method. This indicates that weighting can
further improve the power of the polygenic region analysis model.



Genes 2022, 13, 455 16 of 22

Table 3. Simulation results of the power for three types of multi-gene regions regarding the multi-gene
region weighted method.

Gene Effect α
Common Variant Multi-Gene Region Rare Variant Multi-Gene Region Hybrid Variant Multi-Gene Region I

W-SLoS Step FLM W-SLoS Step FLM W-SLoS Step FLM

Scenario I

0.05 0.9220 0.9600 0.9680 0.8900 0.9960 0.9700 0.9040 0.9680 0.2940
0.01 0.9220 0.9600 0.9520 0.8900 0.9960 0.9480 0.9000 0.9680 0.2660
0.001 0.9220 0.9480 0.9220 0.8900 0.9960 0.9320 0.8960 0.9580 0.2520

1 × 10−4 0.9220 0.9260 0.8800 0.8900 0.9960 0.8940 0.8860 0.9540 0.2400
1 × 10−6 0.8880 0.8580 0.7900 0.8900 0.9920 0.8360 0.8700 0.9280 0.2260
1 × 10−8 0.8400 0.7800 0.6680 0.8860 0.9820 0.8060 0.8520 0.9020 0.2080

Scenario II

0.05 0.9360 0.9700 0.9800 0.8780 0.9940 0.9720 0.9260 0.9780 0.3040
0.01 0.9360 0.9700 0.9580 0.8780 0.9940 0.9600 0.9260 0.9780 0.2680
0.001 0.9360 0.9700 0.9280 0.8780 0.9940 0.9060 0.9220 0.9740 0.2460

1 × 10−4 0.9360 0.9480 0.8940 0.8780 0.9920 0.8680 0.9160 0.9720 0.2360
1 × 10−6 0.9120 0.8720 0.7940 0.8720 0.9900 0.8320 0.9040 0.9500 0.2240
1 × 10−8 0.8740 0.7920 0.7080 0.8700 0.9880 0.7940 0.8880 0.9280 0.1840

Scenario III

0.05 0.9080 0.9520 0.9720 0.8920 0.9940 0.9680 0.8920 0.9680 0.3380
0.01 0.9080 0.9520 0.9540 0.8920 0.9940 0.9340 0.8900 0.9680 0.2900
0.001 0.9080 0.9420 0.8940 0.8920 0.9920 0.9000 0.8800 0.9640 0.2640

1 × 10−4 0.9040 0.9060 0.8620 0.8920 0.9900 0.8800 0.8740 0.9540 0.2540
1 × 10−6 0.8820 0.8440 0.7720 0.8900 0.9860 0.8280 0.8580 0.9320 0.2240
1 × 10−8 0.8320 0.7700 0.6640 0.8840 0.9800 0.7940 0.8400 0.9040 0.1940

Note: Scenario I—all effect directions are positive: Scenario II—the effect direction of all associated loci are
negative in two of the five associated regions; Scenario III—the effect direction of one locus in each associated
region is negative.

Table 4. Simulation results of the false positive rate for three types of multi-gene regions regarding
the multi-gene region weighted method.

Gene Effect α
Common Variant Multi-Gene Region Rare Variant Multi-Gene Region Hybrid Variant Multi-Gene Region I

W-SLoS Step FLM W-SLoS Step FLM W-SLoS Step FLM

Scenario I

0.05 0.0020 0.0065 0.0480 0.0070 0.0640 0.0960 0.0060 0.0110 0.2815
0.01 0.0020 0.0055 0.0075 0.0065 0.0635 0.0415 0.0045 0.0105 0.2335
0.001 0.0015 0.0010 0.0000 0.0060 0.0585 0.0140 0.0020 0.0065 0.2120

1 × 10−4 0.0015 0.0000 0.0000 0.0060 0.0500 0.0060 0.0010 0.0040 0.1980
1 × 10−6 0.0000 0.0000 0.0000 0.0045 0.0415 0.0015 0.0005 0.0025 0.1810
1 × 10−8 0.0000 0.0000 0.0000 0.0035 0.0310 0.0000 0.0000 0.0015 0.1620

Scenario II

0.05 0.0015 0.0055 0.0520 0.0055 0.0615 0.0785 0.0150 0.0110 0.2670
0.01 0.0015 0.0050 0.0090 0.0055 0.0610 0.0295 0.0085 0.0110 0.2300
0.001 0.0015 0.0015 0.0010 0.0050 0.0570 0.0090 0.0040 0.0070 0.2120

1 × 10−4 0.0005 0.0005 0.0000 0.0050 0.0515 0.0045 0.0020 0.0040 0.2015
1 × 10−6 0.0000 0.0000 0.0000 0.0040 0.0440 0.0000 0.0000 0.0010 0.1870
1 × 10−8 0.0000 0.0000 0.0000 0.0035 0.0355 0.0000 0.0000 0.0005 0.1715

Scenario III

0.05 0.0020 0.0070 0.0500 0.0070 0.0665 0.0820 0.0215 0.0145 0.2625
0.01 0.0020 0.0065 0.0080 0.0060 0.0660 0.0290 0.0110 0.0140 0.2150
0.001 0.0015 0.0035 0.0015 0.0050 0.0555 0.0090 0.0055 0.0090 0.1895

1 × 10−4 0.0005 0.0005 0.0000 0.0050 0.0495 0.0025 0.0035 0.0065 0.1780
1 × 10−6 0.0000 0.0000 0.0000 0.0045 0.0420 0.0000 0.0015 0.0035 0.1655
1 × 10−8 0.0000 0.0000 0.0000 0.0035 0.0360 0.0000 0.0010 0.0025 0.1545

Note: Scenario I—all effect directions are positive: Scenario II—the effect direction of all associated loci are
negative in two of the five associated regions; Scenario III—the effect direction of one locus in each associated
region is negative.

3.3. Results of Multi-Gene Region Loci Weighted Method

Tables 5 and 6 show the power and the false positive rates simulation results of the
multi-gene region loci weighted method. In the power simulation results, there are three
unweighted methods: FLM, Multi-SLoS and Step, and the highest power of these methods
is 94.2%. The highest power of the two loci-weighted methods is 98.2%. This suggests that
multi-gene regions loci weighted methods can indeed improve the power in this simulation.
For false positive rates simulation, the false positive rates of LW-Step are higher than that
of Step, but lower than that of the other three methods. The LW-SLoS method has much
higher false positive rates than the LW-Step method, but the false positive rates of LW-SLoS
approach that of the LW-Step method as the significance level increased gradually.

Since the multi-gene regions in each simulation are fixed, so are the associated gene
sub-regions as well, and the power and false positive rates of each gene sub-region are
calculated. Figures 1 and 2, respectively, show the power of the 2-th, 4-th, 5-th, 7-th, and
10-th associated gene regions, and the false positive rates of the 1-th, 3-th, 6-th, 8-th, and
9-th unassociated gene regions. Figure 1 shows that the power of different gene regions is
different under different effect hypotheses, the proportion of common and rare variants
in a gene region affects power of the region. Figure 2 shows that in general, the LW-SLoS
method has higher false positive rates in the 1-th and 3-th gene regions. The proportions
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of rare variants in these two gene regions are 0.7 and 0.6, which are the second and the
smallest in the five gene regions.

In general, the multi-gene region loci weighted method has an advantage in the multi-
gene regions, where the proportions of various variants in each gene region are different.
Moreover, the simulation results of power and false positive rates show that such results are
not simply lowering the threshold, but it improves the power of the analysis at reasonable
false positive rates. The simulation further analyses the power and false positive rates
of different gene sub-regions in the same multi-gene regions. The results show that the
presence of some common variants in the sub-gene regions could improve the power of the
method and reduce false positive rates.
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Figure 1. The simulation power of gene regions 2, 4, 5, 7, and 10 using the multi-gene region loci
weighted method. Scenario I—all effect directions of all associated loci are positive for gene loci;
Scenario II—the effect directions of all associated loci are negative for the 4-th and 7-th gene region;
Scenario III—choose a gene locus at random and the effect direction of the gene loci is negative for
every associated region.
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Figure 2. The simulation false positive rates of gene regions 1, 3, 6, 8, and 9 using the multi-gene
region loci weighted method. Scenario I—all effect directions of all associated loci are positive for
gene loci; Scenario II—the effect directions of all associated loci are negative for the 4-th and 8-th
gene region; Scenario III—choose a gene locus at random and the effect direction of the gene loci is
negative for every associated region.

Table 5. Simulation results of the power for mixed variation region regarding the multi-gene region
loci weighted method.

Gene Effect α LW-Step LW-SLoS Step Multi-SLoS FLM

Scenario I

0.05 0.9740 0.9800 0.9160 0.9420 0.9000
0.01 0.9740 0.9680 0.9160 0.9220 0.8740
0.001 0.9700 0.9560 0.9100 0.8920 0.8480

1 × 10−4 0.9620 0.9500 0.9080 0.8800 0.8140
1 × 10−6 0.9520 0.9340 0.8900 0.8540 0.7700
1 × 10−8 0.9460 0.9240 0.8640 0.8300 0.7300

Scenario II

0.05 0.9760 0.9820 0.9060 0.9400 0.9100
0.01 0.9740 0.9720 0.9060 0.9120 0.8780
0.001 0.9700 0.9660 0.9000 0.8840 0.8520

1 × 10−4 0.9620 0.9520 0.8940 0.8640 0.8380
1 × 10−6 0.9500 0.9280 0.8720 0.8320 0.7860
1 × 10−8 0.9300 0.9120 0.8540 0.8140 0.7520

Scenario III

0.05 0.9680 0.9820 0.9140 0.9320 0.9020
0.01 0.9660 0.9720 0.9140 0.9240 0.8800
0.001 0.9660 0.9560 0.9120 0.9020 0.8440

1 × 10−4 0.9560 0.9400 0.9040 0.8800 0.8040
1 × 10−6 0.9380 0.9060 0.8780 0.8500 0.7500
1 × 10−8 0.9080 0.8720 0.8620 0.8060 0.7000

Note: Scenario I—all effect directions are positive: Scenario II—the effect direction of all associated loci are
negative in two of the five associated regions; Scenario III—the effect direction of one locus in each associated
region is negative.
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Table 6. Simulation results of the false positive rate for mixed variation region regarding the multi-
gene region loci weighted method.

Gene Effect α LW-Step LW-SLoS Step Multi-SLoS FLM

Scenario I

0.05 0.0300 0.5280 0.0060 0.4780 0.0420
0.01 0.0300 0.4420 0.0060 0.3620 0.0060
0.001 0.0300 0.3440 0.0060 0.2560 0.0000

1 × 10−4 0.0300 0.2780 0.0060 0.1980 0.0000
1 × 10−6 0.0240 0.1640 0.0020 0.0980 0.0000
1 × 10−8 0.0140 0.1000 0.0000 0.0600 0.0000

Scenario II

0.05 0.0280 0.5280 0.0100 0.3500 0.0720
0.01 0.0280 0.4320 0.0100 0.2500 0.0240
0.001 0.0260 0.2920 0.0060 0.1560 0.0020

1 × 10−4 0.0220 0.2280 0.0060 0.0940 0.0000
1 × 10−6 0.0180 0.1400 0.0040 0.0500 0.0000
1 × 10−8 0.0120 0.0800 0.0040 0.0180 0.0000

Scenario III

0.05 0.0300 0.5280 0.0080 0.3800 0.0700
0.01 0.0280 0.3860 0.0080 0.2700 0.0180
0.001 0.0260 0.2860 0.0060 0.1560 0.0040

1 × 10−4 0.0180 0.2120 0.0000 0.1020 0.0000
1 × 10−6 0.0120 0.0980 0.0000 0.0360 0.0000
1 × 10−8 0.0100 0.0460 0.0000 0.0140 0.0000

Note: Scenario I—all effect directions are positive: Scenario II—the effect direction of all associated loci are
negative in two of the five associated regions; Scenario III—the effect direction of one locus in each associated
region is negative.

4. Discussion

In this paper, a total of five analysis methods are proposed for the analysis of multi-
gene regions, which can be divided into three categories: the common multi-gene region
method, the multi-gene region weighted method, and the multi-gene region loci weighted
method. the Step method merged the two ideas together with the gene information of
the region and the relationship among the gene regions. The simulation results showed
that the power of the Step method is higher than that of the FLM and SLoS method for a
single gene region, even for that of the region-weighted SLoS method. It means the power
is improved for considering the relationship among gene regions. The multi-gene region
loci weighted method is the most complex but also the most effective. Its power simulation
results are much higher than the unweighted single gene region analysis method and the
false positive ratio is much lower than the single gene region analysis method. For the
SLoS method, the simulation results of the common multi-gene region method are only
slightly better than the common single-gene region analysis method, which also shows that
even the simplest multi-gene region analysis method can effectively improve the power
of the analysis compared with the single-gene region analysis method. In general, the
simulation results of the Step method and LW-Step method are better methods for the
associated analysis of multi-gene region. By modified freedom degree of test statistic F, the
multi-SLoS, W-SLoS and LW-SLoS are feasible for the associated analysis of multi-gene
region. Compared with the rare variant multi-gene region, the associated analysis result of
the common variant multi-gene region is better than using the multi-gene region analysis
method.

The multi-gene region loci weighted method is a further expansion and extension of
the weighting idea of Belonogova et al. [32]. However, there are some differences between
our work and Belonogova’s paper: firstly, the weighted idea was not applied to a multi-
gene region in his paper; secondly, the coefficient of functional data is estimated by the
smooth method in our paper and the least square method in Belonogova’s paper.

The Fourier basis function is selected to fit the genotype data when the functional
expansion is carried out. The reason as to why we chose the Fourier basis function is that
some studies have compared the Fourier basis to the spline basis, achieving similar results
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(the previously cited papers on functional gene-association analysis have compared it in
their papers). However, some people question how genes can be represented by periodic
Fourier bases. Perhaps they both extracted the same amount of information for the gene
regions they wanted to summarize in their way, and after a lot of people compared the
results of the two bases, there was only a very small difference. Even though the Fourier
basis function might look better in some cases, it is not good enough for the authors of
those papers to conclude that the Fourier basis function is a better choice. Usually, both of
the basis functions are used, so one can choose one of two types of basis functions. The
reason why the Fourier basis is selected in this paper is that the Fourier basis only needs to
determine the number of basis functions, while the spline basis not only needs to select
the number of basis functions but also the order of the basis function, so the selection of
the Fourier basis function is much simpler. It must choose the Fourier basis for the Step
method and the LW-Step method.

Regarding the selection of compression parameters and smoothing parameters, the
paper does not necessarily choose the weights that can give the method the best perfor-
mance, but it basically selects the parameters according to the most common standards and
methods (such as 10-fold cross-validation, etc.). The specific parameter selection strategy
can be: Firstly, determine the selection criteria of parameters, then determine the approxi-
mate range of compression parameters and smoothing parameters according to the method
and the actual situation, finally, the computer program is used to screen out the optimal
parameters. This process must be repeated in the processing of actual data, because the
genetic region composition of the actual data is constantly changing, and so it requires
that the parameters change accordingly. However, in the simulation, the same situations
in the genetic regions are made up the same way. Therefore, in order to save computing
resources, a suitable parameter is directly selected in this paper.

One might ask: why not just analyze it as a larger gene region? Instead, we analyze it
in the way of this multi-gene region, and the functional data can do this only by increasing
the number of nodes and the number of basis functions. One reason is that the large gene
regions can be divided into smaller gene regions, and then the multi-gene region method
can be used to get more detailed test results. Another reason is that, as mentioned in the
previous article, due to the consideration of the interrelationship between different gene
regions, the multi-gene region method can better identify some regions with relatively
weak effects and have higher power. So, compared to single-gene region testing, multi-
gene region testing can detect gene regions where the effect is smaller or where the effect
overlaps with that of other regions.

We focused on independent SNPs for common variants. Rare variants come from
the rare haploid dataset (the R language SKAT package [33] contains a set of such data
produced by simulating allele frequency and linkage imbalance information in European
populations) with a length of 200 kb. However, we also simulate linkage disequilibrium
in common variant multi-gene region of Scenario I based on the common multi-gene
region method and multi-gene region weighted method. When the r2 measure of linkage
disequilibrium is between 0.25 and 0.64, the power of the linkage disequilibrium based
on the SLoS and Multi-SloS methods is higher than that of linkage equilibrium, but the
false positive rates also increase significantly. The power of the linkage disequilibrium
based on the Step method decreases slightly, and the false positive rates remain largely
unchanged. The power and false positive rates of the linkage disequilibrium based on the
FLM method does not change significantly. This indicates that the linkage disequilibrium
among the gene loci causes SLoS and Multi-SLoS methods to more easily misidentify non-
associated gene regions. The association analysis between gene region and quantitative
trait is susceptible to linkage disequilibrium of gene loci for SLoS and Multi-SLoS methods.
Then, the association analysis of gene regions for quantitative traits was unstable for SLoS
and Multi-SLoS methods, while Step and FLM methods are more stable. The reason may
be the parameter estimation of SLoS and Multi-SLoS method. Furthermore, we compare
the simulation results of forward selection and backward selection and find that the power
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of the forward selection method is slightly higher than that of the back selection method,
but the false positive rates of the forward selection method is far greater than that of the
back selection method. Finally, we study the distribution of allele frequencies of gene loci.
The results show that the power of following a normal distribution is higher than that of
following a uniform distribution, which may be due to the fact that the MAF of the normal
distribution is mostly smaller than that of the uniform distribution. According to the effect
function expression, the effect size of the normal distribution is larger at this time and can
make the locus easier to detect.

The model we considered is an ideal state, as it is only a study of basic assumptions,
without considering group structure and population with relatives, and there is no missing
genotype. In practice, it is inevitable that there will be missing genotypes. At this time, we
can use statistical methods to fill in the missing data, and then convert the discrete genetic
data into continuous functions. In future research, we will consider incorporating models
of group structure and population with relatives.
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