

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 18 April 2016
Accepted 26 April 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; one-dimensional $\mathrm{Ni}^{\text {II }}$ coordination polymer; pyridine-2,6-dicarboxylic acid; pyrazine; $\pi-\pi$ stacking; $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction; hydrogen bonding.

CCDC reference: 1476677

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structure of catena-poly[[(dimethyl sulfoxide- κO)(pyridine-2,6-dicarboxylato$\left.\kappa^{3} O, N, O^{\prime}\right)$ nickel(II)]- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$

Chen Liu, ${ }^{\text {a }}{ }^{*}$ Annaliese E. Thuijs, ${ }^{\text {b }}$ Ashley C. Felts, ${ }^{\text {b }}$ Hamza F. Ballouk ${ }^{\text {a }}$ and Khalil A. Abboud ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry and Environmental Science, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada, and bepartment of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA. *Correspondence e-mail: cliu@grenfell.mun.ca

The title coordination polymer, $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]_{n}$, consists of [010] chains composed of $\mathrm{Ni}^{\mathrm{II}}$ ions linked by bis-monodentate-bridging pyrazine molecules. Each of the two crystallographically distinct $\mathrm{Ni}^{\mathrm{II}}$ ions is located on a mirror plane and is additionally coordinated by a dimethyl sulfoxide (DMSO) ligand through the oxygen atom and by a tridentate 2,6-pyridine-dicarboxylic acid dianion through one of each of the carboxylate oxygen atoms and the pyridine nitrogen atom, leading to a distorted octahedral coordination environment. The title structure exhibits an interesting complementarity between coordinative bonding and $\pi-\pi$ stacking where the $\mathrm{Ni}-\mathrm{Ni}$ distance of 7.0296 (4) \AA across bridging pyrazine ligands allows the pyridine moieties on two adjacent chains to interdigitate at halfway of the $\mathrm{Ni}-\mathrm{Ni}$ distance, resulting in $\pi-\pi$ stacking between pyridine moieties with a centroid-to-plane distance of 3.5148 (2) \AA. The double-chain thus formed also exhibits $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between pyridine $\mathrm{C}-\mathrm{H}$ groups on one chain and pyrazine molecules on the other chain. As a result, the interior of the double-chain structure is dominated by $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, while the space between the double-chains is occupied by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network involving DMSO ligands and carboxylate groups located on the exterior of the doublechains. This separation of dissimilar interactions in the interior and exterior of the double-chains further stabilizes the crystal structure.

1. Chemical context

In general, $\pi-\pi$ interactions are considered important mechanisms for molecular recognition and may function as structure-directing factors in the design and preparation of coordination polymers. However, $\pi-\pi$ interactions are not always observed in the final coordination polymer simply by using starting materials containing aromatic moieties. During our investigation of the rational design and synthesis of coordination polymers, we have previously reported a dinuclear $\mathrm{Ni}^{\mathrm{II}}$ complex obtained by reacting 2,6-pyridine dicarboxylic acid and nickel carbonate using water as solvent (Liu et al., 2011). The intermolecular force between the dinuclear complexes is dominated by hydrogen bonding. We recently repeated the synthesis of this compound using dimethyl sulfoxide (DMSO) as solvent under solvothermal conditions and obtained the title compound. We herein report its synthesis and structure which exhibits both $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving two different aromatic molecules, viz. pyridine and pyrazine.

2. Structural commentary

The asymmetric unit contains two half $\mathrm{Ni}^{\mathrm{II}}$ complexes with mirror symmetry (denoted A and B), where each of the $\mathrm{Ni}^{\mathrm{II}}$ atoms is coordinated by a 2,6-pyridine-dicarboxylic acid dianion, a pyrazine molecule, and a DMSO ligand (Fig. 1). The tridentate 2,6-pyridine-dicarboxylate anion coordinates to $\mathrm{Ni}^{\mathrm{II}}$ in a meridional fashion via the pyridine nitrogen atom and two carboxylate oxygen atoms; the DMSO molecule coordinates to $\mathrm{Ni}^{\mathrm{II}}$ through its oxygen atom and the pyrazine ligands through their N atoms. Thus each $\mathrm{Ni}^{\mathrm{II}}$ is in an $\mathrm{N}_{3} \mathrm{O}_{3}$ coordination environment. Individual $\mathrm{Ni}^{\mathrm{II}}$ complexes are linked along the axial positions by bis-monodentate bridging pyrazine molecules to form a linear chain parallel to [010] and propagated through mirror symmetry elements passing through the $\mathrm{Ni}^{\mathrm{II}}$ atoms, the anions, and bisecting both the pyrazine ligands and the DMSO molecules along the $\mathrm{S}=\mathrm{O}$ bonds. In the chains, the $\mathrm{Ni}-\mathrm{Ni}$ distance across bridging pyrazine is 7.0296 (4) \AA, i.e. the length of the b axis.

Figure 1
A view of the asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. All disordered components are shown.

3. Supramolecular features

In the crystal, two $\mathrm{Ni}^{\mathrm{II}}$ chains form a double-chain structure via $\pi-\pi$ stacking between their pyridine moieties (Fig. 2). Two stacked pyridine rings in the double-chain structure are separated by a centroid-to-plane distance of 3.5148 (2) A. This separation distance is half of the $\mathrm{Ni}-\mathrm{Ni}$ distance, indicating that the formation of $\pi-\pi$ stacking in the double-chain structure may have been promoted by coordinative bonding distances across bridging pyrazine ligands. A search in the literature returned only a few other examples of coordination polymers exhibiting similar structural features (Zheng et al., 2000; Nawrot et al., 2015). Within the double-chain, two $\pi-\pi$ stacked pyridine moieties are also parallel-shifted by 1.50422 (8) \AA, consistent with values obtained from computational studies (Huber et al., 2014). Although $\pi-\pi$ stacking interactions are prevalent among systems composed of discrete aromatic molecules, it is not always observed in coordination polymers synthesized from aromatic starting materials. The title structure thus provides an interesting example for further investigation on the interplay between coordinative bonding and $\pi-\pi$ stacking as a potential strategy for incorporating $\pi-\pi$ stacking in the design and synthesis of coordination polymers.

Accompanying the $\pi-\pi$ stacking interaction described above, there is also a T-shaped $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between the pyridine $\mathrm{C} 4-\mathrm{H} 4$ group and the bridging pyrazine molecule (Tiekink \& Zuckerman-Schpector, 2012), contributing additional stability to the double-chain structure. The

Figure 2
A view of the double-chain structure of the title compound running parallel to [010].

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 B-\mathrm{H} 11 B \cdots \mathrm{O} 1 B$	0.95	2.50	$3.0442(13)$	117
$\mathrm{C} 11 B-\mathrm{H} 11 B \cdots \mathrm{O} 5 A$	0.95	2.66	$3.2871(18)$	124
$\mathrm{C} 11 A-\mathrm{H} 11 A \cdots \mathrm{O} 3 A$	0.95	2.42	$3.0252(14)$	121
$\mathrm{C} 11 A-\mathrm{H} 11 A \cdots \mathrm{O} 5 B$	0.95	2.43	$3.0462(17)$	122
$\mathrm{C} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 3 B$	0.95	2.37	$2.9978(13)$	123
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 1 A$	0.95	2.45	$3.0221(14)$	119
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.95	2.61	$3.2230(18)$	122
$\mathrm{C} 21 B-\mathrm{H} 21 A \cdots \mathrm{O} 2 B^{\text {ii }}$	0.98	2.49	$3.3321(19)$	144
$\mathrm{C} 21 A-\mathrm{H} 21 D \cdots \mathrm{O} 4 A^{\text {iii }}$	0.98	2.47	$3.277(4)$	139
$\mathrm{C} 21 A-\mathrm{H} 21 E \cdots \mathrm{O} 2 A^{\text {i }}$	0.98	2.27	$2.959(9)$	126
$\mathrm{C} 21 A-\mathrm{H} 21 E \cdots \mathrm{O} 2 A^{\text {iv }}$	0.98	2.50	$3.246(9)$	132
$\mathrm{C} 22 A-\mathrm{H} 22 A \cdots \mathrm{O} 4 A^{\text {iii }}$	0.98	2.57	$3.377(4)$	140

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $x+1,-y+\frac{1}{2}, z$; (iii) $x-1,-y+\frac{3}{2}$, z; (iv) $-x, y-\frac{1}{2},-z$.
concurrence of both parallel $\pi-\pi$ stacking and T-shaped $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions in crystal structures is known in the literature, but primarily among systems of discrete aromatic molecules (Tiekink \& Zuckerman-Schpector, 2012). We are aware of only one other example of a coordination polymer exhibiting this feature (Felloni et al., 2010). In the $\mathrm{C}-\mathrm{H} \cdots \pi$ configuration of the title structure, the centroid-to-centroid distance between pyridine and pyrazine is 4.8389 (2) \AA, which includes the pyridine $\mathrm{C} 4-\mathrm{H} 4$ bond length of $0.95 \AA$ and a distance of 2.53310 (12) A from the pyridine H 4 atom to the centroid of the pyrazine ring. Although the title structure is a coordination polymer, these distances are in good agreement with results of computational studies performed on discrete aromatic molecules (Mishra \& Sathyamurthy, 2005; Hohenstein \& Sherrill, 2009; Huber et al., 2014).

In contrast to the $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions forming the interior of the double-chains, the exterior of the double-chains is mainly occupied by polar DMSO molecules

Figure 3
Crystal packing of the title compound, showing hydrogen-bonding interactions as dashed lines.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\begin{aligned} & {\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)-\right.} \\ & \left.\quad\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right] \end{aligned}$
$M_{\text {r }}$	382.03
Crystal system, space group	Monoclinic, $P 2_{1} / m$
Temperature (K)	100
$a, b, c(\AA)$	$\begin{aligned} & 10.5631(7), 7.0296(4) \\ & 20.3710(13) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	90.6447 (11)
$V\left(\AA^{3}\right)$	1512.54 (16)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.45
Crystal size (mm)	$0.37 \times 0.15 \times 0.05$
Data collection	
Diffractometer	Bruker APEXII DUO CCD
Absorption correction	Analytical based on measured indexed crystal faces; XPREP (Bruker, 2014)
$T_{\text {min }}, T_{\text {max }}$	0.730, 0.965
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	56634, 3756, 3549
$R_{\text {int }}$	0.026
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.650
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.020, 0.055, 1.07
No. of reflections	3756
No. of parameters	256
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.43,-0.31$

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP (Bruker, 2014) and publCIF (Westrip, 2010).
and carboxylate groups. As a result, a network of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds exists in the space between the double-chains (Fig. 3), linking double-chains to form a three dimensional network. Double-chains of molecule B are linked by $\mathrm{C} 21 B-$ $\mathrm{H} 21 A \cdots \mathrm{O} 2 B^{\mathrm{ii}}$ to form sheets parallel to (001). Double-chains of molecule A are linked by $\mathrm{C} 21 A-\mathrm{H} 21 E \cdots \mathrm{O} 2 A^{\mathrm{i} / \mathrm{iv}}, \mathrm{C} 12 A-$ $\mathrm{H} 12 A \cdots \mathrm{O} 1 A^{\mathrm{i}}, \quad \mathrm{C} 21 A-\mathrm{H} 21 D \cdots \mathrm{O} 4 A^{\mathrm{iii}}$, and $\mathrm{C} 22 A-$ $\mathrm{H} 22 \mathrm{D} \cdots \mathrm{O} 4 A^{\mathrm{iii}}$ hydrogen bonds to form sheets extending along the same direction. Thus, alternating sheets with an $A B A B$ pattern can be observed. Two neighboring sheets are connected via $\mathrm{C} 11 A-\mathrm{H} 11 A \cdots \mathrm{O} 5 B$ and $\mathrm{C} 11 B-\mathrm{H} 11 B \cdots \mathrm{O} 5 A$ hydrogen bonds to form a three-dimensional network. The hydrogen-bond lengths and angles are summarized in Table 1.

In summary, a separation of dissimilar interactions can be observed between the non-covalent lipophilic $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in the interior of the double-chains and the polar hydrogen bonds in the exterior of the doublechains, further stabilizing the crystal structure.

4. Synthesis and crystallization

Anhydrous $\mathrm{NiCO}_{3}(0.67 \mathrm{mmol}, 79.15 \mathrm{mg}), ~ 2,6-$ pyridine dicarboxylic acid $(0.67 \mathrm{mmol}, 111.41 \mathrm{mg})$, and pyrazine $(1.00 \mathrm{mmol}, 80.09 \mathrm{mg})$ were dissolved in 10 ml dimethyl sulfoxide. The resulting mixture was transferred into a stainless steel autoclave which was heated at 373 K for 24 h and cooled to room temperature at a cooling rate of 0.1 K per minute.

Green needle-like crystals of the title compound were collected by filtration. Selected IR bands ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1640.6 $(\mathrm{C}=\mathrm{O}), 1367.9(\mathrm{C}-\mathrm{O}), 950.9(\mathrm{~S}=\mathrm{O}), 480.6$ (bridging pyrazine).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 / 1.00 \AA)$ and allowed to ride with $U_{\text {iso }}(\mathrm{H})=1.2 / 1.5 U_{\text {eq }}(\mathrm{C})$. Methyl H atoms were allowed to rotate around the corresponding $\mathrm{C}-\mathrm{C}$ bond. There are two disordered parts, both of which are in molecule A. The carboxylate atom $\mathrm{O} 2 A$ sits just outside of the mirror plane (occupancy 0.5) and one of the DMSO methyl groups is disordered over two positions in a ratio of 0.54 (2):0.46 (2). The C atom of this group was refined with isotropic displacement parameters.

Acknowledgements

CL wishes to acknowledge financial support for this work from the Research \& Development Corporation of Newfoundland and Labrador. KAA wishes to acknowledge the National

Science Foundation and the University of Florida for funding the purchase of the X-ray equipment.

References

Bruker (2014). APEX2, SAINT, XPREP and $X P$. Bruker Inc., Madison, Wisconsin, USA.
Felloni, M., Blake, A. J., Hubberstey, P., Teat, S. J., Wilson, C. \& Schröder, M. (2010). CrystEngComm, 12, 1576-1589.
Hohenstein, E. G. \& Sherrill, C. D. (2009). J. Phys. Chem. A, 113, 878886.

Huber, R. G., Margreiter, M. A., Fuchs, J. E., von Grafenstein, S., Tautermann, C. S., Liedl, K. R. \& Fox, T. (2014). J. Chem. Inf. Model. 54, 1371-1379.
Liu, C., Čižmár, E., Park, J. H., Abboud, K. A., Meisel, M. W. \& Talham, D. R. (2011). Polyhedron, 30, 1420-1424.
Mishra, B. K. \& Sathyamurthy, N. (2005). J. Phys. Chem. A, 109, 6-8. Nawrot, I., Machura, B. \& Kruszynski, R. (2015). CrystEngComm, 17, 830-845.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Tiekink, E. R. T. \& Zuckerman-Schpector, J. (2012). Editors. Importance of Pi-interaction in Crystal Engineering: Frontiers in Crystal Engineering, 2nd ed., pp. 111-112. London: Wiley.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zheng, Y. Q., Sun, J. \& Lin, J. L. (2000). Z. Anorg. Allg. Chem. 626, 1501-1504.

supporting information

Crystal structure of catena-poly[[(dimethyl sulfoxide- κ O)(pyridine-2,6-di-carboxylato- $\kappa^{3} O, N, O^{\prime}$) nickel(II)]- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$

Chen Liu, Annaliese E. Thuijs, Ashley C. Felts, Hamza F. Ballouk and Khalil A. Abboud

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Bruker, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).
catena-Poly[[(dimethyl sulfoxide- κO)(pyridine-2,6-dicarboxylato- $\left.\kappa^{3} O, N, O^{\prime}\right)$ nickel(II)]- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$
$M_{r}=382.03$
Monoclinic, $P 2_{1} / m$
$a=10.5631$ (7) \AA
$b=7.0296$ (4) \AA
$c=20.3710(13) \AA$
$\beta=90.6447(11)^{\circ}$
$V=1512.54(16) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII DUO CCD
diffractometer
Radiation source: fine-focus sealed tube
phi and ω scans
Absorption correction: analytical
based on measured indexed crystal faces;
XPREP (Bruker, 2014)
$T_{\min }=0.730, T_{\text {max }}=0.965$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.055$
$S=1.07$
3756 reflections
256 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
F(000)=784
$$

$D_{\mathrm{x}}=1.678 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9922 reflections
$\theta=2.0-28.0^{\circ}$
$\mu=1.45 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, green
$0.37 \times 0.15 \times 0.05 \mathrm{~mm}$

56634 measured reflections
3756 independent reflections
3549 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=1.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-9 \rightarrow 9$
$l=-26 \rightarrow 26$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0274 P)^{2}+1.0377 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.43 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Ni1A	0.19703 (2)	0.7500	0.11633 (2)	0.00831 (6)	
Ni1B	0.27491 (2)	0.2500	0.36354 (2)	0.00767 (6)	
S1B	0.54518 (4)	0.2500	0.28209 (2)	0.01208 (9)	
S1A	-0.08847 (4)	0.7500	0.16036 (2)	0.01425 (10)	
O1B	0.10195 (12)	0.2500	0.30920 (6)	0.0113 (2)	
O1A	0.11570 (12)	0.7500	0.02161 (6)	0.0132 (3)	
O2B	-0.10902 (13)	0.2500	0.32425 (7)	0.0233 (3)	
O2A	0.17059 (18)	0.7205 (10)	-0.08458 (9)	0.0253 (15)	0.5
O3B	0.39180 (12)	0.2500	0.44805 (6)	0.0111 (2)	
O3A	0.34526 (12)	0.7500	0.18730 (6)	0.0120 (3)	
O4A	0.55732 (14)	0.7500	0.19630 (8)	0.0263 (4)	
O4B	0.38006 (13)	0.2500	0.55830 (7)	0.0182 (3)	
O5B	0.40109 (12)	0.2500	0.28824 (6)	0.0121 (3)	
O5A	0.05126 (12)	0.7500	0.18052 (6)	0.0133 (3)	
N1B	0.14803 (14)	0.2500	0.43438 (7)	0.0096 (3)	
N1A	0.34951 (14)	0.7500	0.06078 (8)	0.0115 (3)	
N2B	0.27691 (9)	0.55104 (16)	0.36044 (5)	0.0099 (2)	
N2A	0.18744 (9)	0.44903 (16)	0.11862 (5)	0.0106 (2)	
C1A	0.19489 (19)	0.7500	-0.02550 (10)	0.0191 (4)	
C1B	0.33304 (17)	0.2500	0.50290 (9)	0.0116 (3)	
C2B	0.18885 (17)	0.2500	0.49647 (9)	0.0114 (3)	
C2A	0.33379 (18)	0.7500	-0.00413 (9)	0.0145 (4)	
C3B	0.10332 (18)	0.2500	0.54760 (9)	0.0156 (4)	
H3BA	0.1317	0.2500	0.5920	0.019*	
C3A	0.4378 (2)	0.7500	-0.04533 (10)	0.0186 (4)	
H3AA	0.4274	0.7500	-0.0917	0.022*	
C4B	-0.02551 (19)	0.2500	0.53191 (10)	0.0178 (4)	
H4BA	-0.0861	0.2500	0.5660	0.021*	
C4A	0.55810 (19)	0.7500	-0.01630 (11)	0.0206 (4)	
H4AA	0.6310	0.7500	-0.0432	0.025*	
C5B	-0.06604 (18)	0.2500	0.46662 (10)	0.0157 (4)	
H5BA	-0.1537	0.2500	0.4556	0.019*	
C5A	0.57227 (18)	0.7500	0.05169 (11)	0.0183 (4)	
H5AA	0.6540	0.7500	0.0717	0.022*	
C6B	0.02532 (17)	0.2500	0.41808 (9)	0.0114 (3)	
C6A	0.46371 (17)	0.7500	0.08948 (9)	0.0135 (4)	
C7B	0.00208 (17)	0.2500	0.34383 (9)	0.0127 (3)	
C7A	0.45721 (17)	0.7500	0.16448 (9)	0.0141 (4)	
C11B	0.21031 (11)	0.65089 (18)	0.31586 (6)	0.0107 (2)	

H11B	0.1620	0.5849	0.2835	0.013^{*}	
C11A	$0.25161(12)$	$0.34864(19)$	$0.16410(6)$	$0.0129(2)$	
H11A	0.2982	0.4144	0.1972	0.015^{*}	
C12B	$0.34543(11)$	$0.65142(18)$	$0.40430(6)$	$0.0115(2)$	
H12B	0.3951	0.5856	0.4361	0.014^{*}	
C12A	$0.11868(12)$	$0.34903(19)$	$0.07512(7)$	$0.0157(3)$	
H12A	0.0686	0.4149	0.0435	0.019^{*}	
C21B	$0.60288(13)$	$0.4416(2)$	$0.33098(7)$	$0.0209(3)$	
H21A	0.6954	0.4467	0.3284	0.031^{*}	$0.46(2)$
H21B	0.5669	0.5614	0.3148	0.031^{*}	$0.46(2)$
H21C	0.5781	0.4221	0.3767	0.031^{*}	$0.46(2)$
C21A	$-0.1608(4)$	$0.5556(5)$	$0.1942(4)$	$0.0179(12)^{*}$	$0.46(2)$
H21D	-0.2505	0.5546	0.1814	0.027^{*}	$0.54(2)$
H21E	-0.1201	0.4393	0.1783	0.027^{*}	$0.54(2)$
H21F	-0.1530	0.5616	0.2421	0.027^{*}	$0.54(2)$
C22A	$-0.1502(4)$	$0.5609(5)$	$0.2133(4)$	0.2051	$0.54(2)$
H22A	-0.2413	0.5458	0.2036	0.029^{*}	
H22B	-0.1068	0.4412	0.2594	0.029^{*}	
H22C	-0.1356	0.5949			

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Ni1A	0.00710 (11)	0.00803 (11)	0.00981 (11)	0.000	-0.00020 (8)	0.000
Ni1B	0.00712 (11)	0.00684 (11)	0.00903 (11)	0.000	-0.00055 (8)	0.000
S1B	0.0106 (2)	0.0141 (2)	0.0116 (2)	0.000	0.00228 (15)	0.000
S1A	0.0095 (2)	0.0211 (2)	0.0121 (2)	0.000	0.00003 (15)	0.000
O1B	0.0099 (6)	0.0118 (6)	0.0122 (6)	0.000	-0.0019 (5)	0.000
O1A	0.0128 (6)	0.0142 (6)	0.0125 (6)	0.000	-0.0013 (5)	0.000
O2B	0.0098 (6)	0.0403 (9)	0.0198 (7)	0.000	-0.0042 (5)	0.000
O2A	0.0269 (9)	0.038 (5)	0.0115 (7)	-0.0012 (11)	-0.0023 (6)	-0.0008 (10)
O3B	0.0108 (6)	0.0104 (6)	0.0120 (6)	0.000	-0.0013 (5)	0.000
O3A	0.0105 (6)	0.0127 (6)	0.0129 (6)	0.000	-0.0007 (5)	0.000
O4A	0.0115 (7)	0.0433 (10)	0.0239 (8)	0.000	-0.0050 (6)	0.000
O4B	0.0181 (7)	0.0235 (7)	0.0129 (6)	0.000	-0.0057 (5)	0.000
O5B	0.0101 (6)	0.0158 (6)	0.0104 (6)	0.000	-0.0005 (5)	0.000
O5A	0.0079 (6)	0.0187 (7)	0.0133 (6)	0.000	0.0002 (5)	0.000
N1B	0.0100 (7)	0.0073 (7)	0.0116 (7)	0.000	-0.0001 (5)	0.000
N1A	0.0115 (7)	0.0093 (7)	0.0135 (7)	0.000	0.0014 (6)	0.000
N2B	0.0089 (5)	0.0089 (5)	0.0118 (5)	0.0000 (4)	0.0020 (4)	-0.0003 (4)
N2A	0.0091 (5)	0.0101 (5)	0.0128 (5)	0.0004 (4)	0.0015 (4)	-0.0001 (4)
C1A	0.0179 (9)	0.0238 (10)	0.0156 (9)	0.000	-0.0018 (7)	0.000
C1B	0.0131 (8)	0.0067 (8)	0.0151 (9)	0.000	-0.0019 (7)	0.000
C2B	0.0137 (8)	0.0083 (8)	0.0120 (8)	0.000	-0.0008 (7)	0.000
C2A	0.0166 (9)	0.0123 (8)	0.0145 (9)	0.000	0.0023 (7)	0.000
C3B	0.0195 (9)	0.0161 (9)	0.0113 (8)	0.000	0.0016 (7)	0.000
C3A	0.0233 (10)	0.0171 (9)	0.0155 (9)	0.000	0.0057 (8)	0.000
C4B	0.0169 (9)	0.0194 (10)	0.0172 (9)	0.000	0.0080 (7)	0.000

C4A	$0.0169(9)$	$0.0183(10)$	$0.0268(11)$	0.000	$0.0123(8)$	0.000
C5B	$0.0116(8)$	$0.0160(9)$	$0.0196(9)$	0.000	$0.0018(7)$	0.000
C5A	$0.0113(9)$	$0.0159(9)$	$0.0278(11)$	0.000	$0.0037(8)$	0.000
C6B	$0.0102(8)$	$0.0096(8)$	$0.0144(8)$	0.000	$-0.0002(7)$	0.000
C6A	$0.0118(8)$	$0.0098(8)$	$0.0190(9)$	0.000	$0.0010(7)$	0.000
C7B	$0.0119(8)$	$0.0114(8)$	$0.0149(9)$	0.000	$-0.0015(7)$	0.000
C7A	$0.0111(8)$	$0.0123(9)$	$0.0188(9)$	0.000	$-0.0011(7)$	0.000
C11B	$0.0119(5)$	$0.0108(6)$	$0.0094(5)$	$-0.0005(5)$	$0.0014(4)$	$-0.0009(5)$
C11A	$0.0169(6)$	$0.0122(6)$	$0.0095(5)$	$-0.0007(5)$	$0.0000(4)$	$-0.0009(5)$
C12B	$0.0095(5)$	$0.0106(6)$	$0.0144(6)$	$0.0004(5)$	$-0.0009(4)$	$0.0007(5)$
C12A	$0.0121(6)$	$0.0122(7)$	$0.0226(7)$	$0.0006(5)$	$-0.0067(5)$	$0.0009(5)$
C21B	$0.0136(6)$	$0.0194(7)$	$0.0295(7)$	$-0.0040(5)$	$0.0011(5)$	$-0.0080(6)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

Ni1A-N1A	1.9788 (15)	C1A-02A ${ }^{\text {i }}$	1.245 (3)
Ni1A-O5A	2.0313 (13)	C1A-C2A	1.526 (3)
Ni1A-O1A	2.1032 (13)	C1B-C2B	1.527 (2)
Ni1A-N2A ${ }^{\text {i }}$	2.1186 (11)	C2B-C3B	1.386 (3)
Ni1A-N2A	2.1186 (11)	C2A-C3A	1.390 (3)
Ni1A-O3A	2.1191 (13)	C3B-C4B	1.394 (3)
Ni1B-N1B	1.9804 (15)	C3B-H3BA	0.9500
Ni1B-O5B	2.0434 (13)	C3A-C4A	1.395 (3)
Ni1B-O3B	2.1073 (13)	C3A-H3AA	0.9500
Ni1B-N2B	2.1172 (11)	C4B-C5B	1.393 (3)
$\mathrm{Ni1B}-\mathrm{N} 2 \mathrm{~B}^{\text {ii }}$	2.1173 (11)	C4B-H4BA	0.9500
Ni1B-O1B	2.1255 (12)	C4A-C5A	1.391 (3)
S1B-O5B	1.5286 (13)	C4A-H4AA	0.9500
S1B-C21Bii	1.7786 (14)	C5B-C6B	1.389 (3)
S1B-C21B	1.7786 (14)	C5B-H5BA	0.9500
S1A-O5A	1.5276 (13)	C5A-C6A	1.388 (3)
S1A-C21A	1.713 (4)	C5A-H5AA	0.9500
S1A-C21A ${ }^{\text {i }}$	1.713 (4)	C6B-C7B	1.530 (3)
S1A-C22A	1.836 (4)	C6A-C7A	1.530 (3)
S1A-C22A ${ }^{\text {i }}$	1.836 (4)	C11B-C11B ${ }^{\text {i }}$	1.393 (3)
O1B-C7B	1.276 (2)	C11B-H11B	0.9500
O1A-C1A	1.280 (2)	C11A-C11A ${ }^{\text {ii }}$	1.387 (3)
O2B-C7B	1.235 (2)	C11A-H11A	0.9500
O2A-02A ${ }^{\text {i }}$	0.414 (15)	C12B-C12B ${ }^{\text {i }}$	1.386 (3)
O2A-C1A	1.245 (3)	C12B-H12B	0.9500
O3B-C1B	1.284 (2)	C12A-C12A ${ }^{\text {ii }}$	1.392 (3)
03A-C7A	1.276 (2)	C12A-H12A	0.9500
04A-C7A	1.234 (2)	C21B-H21A	0.9800
O4B-C1B	1.228 (2)	C21B-H21B	0.9800
N1B-C2B	1.332 (2)	C21B-H21C	0.9800
N1B-C6B	1.334 (2)	C21A-H21D	0.9800
N1A-C2A	1.331 (2)	C21A-H21E	0.9800
N1A-C6A	1.335 (2)	C21A-H21F	0.9800

N2B-C11B	1.3408 (16)
N2B-C12B	1.3438 (16)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	1.3388 (17)
N2A-C11A	1.3423 (16)
N1A-Ni1A-O5A	174.81 (6)
N1A-Ni1A-O1A	78.58 (6)
O5A-Ni1A-O1A	106.61 (5)
N1A-Ni1A-N2A ${ }^{\text {i }}$	92.98 (3)
O5A-Ni1A-N2A ${ }^{\text {i }}$	87.08 (3)
O1A-Ni1A-N2A ${ }^{\text {i }}$	90.06 (3)
N1A-Ni1A-N2A	92.98 (3)
O5A-Ni1A-N2A	87.08 (3)
O1A-Ni1A-N2A	90.06 (3)
N2A ${ }^{\text {i }}$ - Ni1A-N2A	173.95 (6)
N1A-Ni1A-O3A	77.89 (6)
O5A-Ni1A-O3A	96.92 (5)
O1A-Ni1A-O3A	156.48 (5)
N2A ${ }^{\text {i }}$-Ni1A-O3A	91.15 (3)
N2A-Ni1A-O3A	91.15 (3)
N1B-Ni1B-O5B	178.13 (6)
N1B-Ni1B-O3B	78.45 (6)
O5B-Ni1B-O3B	103.42 (5)
N1B-Ni1B-N2B	91.65 (3)
O5B-Ni1B-N2B	88.32 (3)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{Ni1B}-\mathrm{N} 2 \mathrm{~B}$	91.06 (3)
N1B-Ni1B-N2B ${ }^{\text {ii }}$	91.65 (3)
$\mathrm{O} 5 \mathrm{~B}-\mathrm{Ni} 11 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\text {ii }}$	88.32 (3)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{Ni} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\text {ii }}$	91.06 (3)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Ni} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\text {ii }}$	176.38 (6)
N1B-Ni1B-O1B	78.15 (6)
O5B-Ni1B-O1B	99.97 (5)
O3B-Ni1B-O1B	156.61 (5)
N2B-Ni1B-O1B	89.61 (3)
$\mathrm{N} 2 \mathrm{Bi}-\mathrm{Ni} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}$	89.61 (3)
O5B-S1B-C21B ${ }^{\text {ii }}$	106.82 (6)
O5B-S1B-C21B	106.82 (6)
C21B ${ }^{\text {ii }}$-S1B-C21B	98.42 (11)
O5A-S1A-C21A	109.0 (2)
O5A-S1A-C21A ${ }^{\text {i }}$	109.0 (2)
C21A-S1A-C21A ${ }^{\text {i }}$	105.8 (3)
O5A-S1A-C22A	101.00 (18)
O5A-S1A-C22A ${ }^{\text {i }}$	101.00 (18)
$\mathrm{C} 22 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}^{\mathrm{i}}$	92.8 (3)
C7B-O1B-Ni1B	115.04 (11)
C1A-O1A-Ni1A	115.10 (12)
$\mathrm{O} 2 \mathrm{~A}^{\mathrm{i}}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	80.4 (3)
C1B-O3B-Ni1B	115.23 (11)

$\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~A}$	0.9800
$\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~B}$	0.9800
$\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{C}$	0.9800

120.45 (17)
113.16 (15)
126.39 (17)
120.61 (18)
113.10 (16)
126.30 (18)
118.06 (17)
121.0
121.0
117.80 (18)
121.1
121.1
120.50 (17)
119.8
119.8
120.61 (18)
119.7
119.7
118.12 (17)
120.9
120.9
118.14 (18)
120.9
120.9
120.23 (17)
112.99 (15)
126.78 (16)
120.34 (18)
112.76 (16)
126.89 (17)
127.59 (18)
117.43 (16)
114.98 (15)
126.94 (18)
118.47 (17)
114.59 (16)
121.57 (7)
119.2
119.2
121.72 (7)
119.1
119.1
121.67 (7)

C7A-O3A-Ni1A	$115.61(12)$
S1B-O5B-Ni1B	$136.06(8)$
S1A-O5A-Ni1A	$124.34(8)$
C2B-N1B-C6B	$122.64(16)$
C2B-N1B-Ni1B	$118.53(12)$
C6B-N1B-Ni1B	$118.83(12)$
C2A-N1A-C6A	$122.50(16)$
C2A-N1A-Ni1A	$118.36(13)$
C6A-N1A-Ni1A	$119.14(13)$
C11B-N2B-C12B	$116.75(11)$
C11B-N2B-Ni1B	$122.56(8)$
C12B-N2B-Ni1B	$120.69(8)$
C12A-N2A-C11A	$116.53(12)$
C12A-N2A-Ni1A	$122.38(9)$
C11A-N2A-Ni1A	$121.09(9)$
O2A-C1A-O2A	$19.2(7)$
O2A-C1A-O1A	$126.5(2)$
O2A $-\mathrm{C} 1 A-\mathrm{O} 1 A$	$126.5(2)$
O2A-C1A-C2A	$117.57(19)$
O2A $-\mathrm{C} 1 A-\mathrm{C} 2 A$	$117.57(19)$
O1A-C1A-C2A	$114.86(17)$
O4B-C1B-O3B	$127.24(17)$
O4B-C1B-C2B	$118.13(16)$
O3B-C1B-C2B	$114.63(15)$

$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 12 \mathrm{~B}$	119.2
$\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 12 \mathrm{~B}$	119.2
$\mathrm{~N} 2 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}^{\mathrm{ii}}$	$121.68(7)$
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	119.2
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	119.2
$\mathrm{~S} 1 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{H} 21 \mathrm{~A}$	109.5
$\mathrm{~S} 1 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{H} 21 \mathrm{~B}$	109.5
$\mathrm{H} 21 \mathrm{~A}-\mathrm{C} 21 \mathrm{~B}-\mathrm{H} 21 \mathrm{~B}$	109.5
$\mathrm{~S} 1 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{H} 21 \mathrm{C}$	109.5
$\mathrm{H} 21 \mathrm{~A}-\mathrm{C} 21 \mathrm{~B}-\mathrm{H} 21 \mathrm{C}$	109.5
$\mathrm{H} 21 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{H} 21 \mathrm{C}$	109.5
$\mathrm{~S} 1 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}-\mathrm{H} 21 \mathrm{D}$	109.5
$\mathrm{~S} 1 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}-\mathrm{H} 21 \mathrm{E}$	109.5
$\mathrm{H} 21 \mathrm{D}-\mathrm{C} 21 \mathrm{~A}-\mathrm{H} 21 \mathrm{E}$	109.5
$\mathrm{~S} 1 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}-\mathrm{H} 21 \mathrm{~F}$	109.5
$\mathrm{H} 21 \mathrm{D}-\mathrm{C} 21 \mathrm{~A}-\mathrm{H} 21 \mathrm{~F}$	109.5
H21E-C21A-H21F	109.5
$\mathrm{~S} 1 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~A}$	109.5
$\mathrm{~S} 1 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~B}$	109.5
$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~B}$	109.5
S1A-C22A-H22C	109.5
H22A-C22A-H22C	109.5
H22B-C22A-H22C	109.5

Symmetry codes: (i) $x,-y+3 / 2, z$; (ii) $x,-y+1 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 B-\mathrm{H} 11 B \cdots \mathrm{O} 1 B$	0.95	2.50	3.0442 (13)	117
$\mathrm{C} 11 B-\mathrm{H} 11 B \cdots \mathrm{O} A$	0.95	2.66	3.2871 (18)	124
$\mathrm{C} 11 A-\mathrm{H} 11 A \cdots \mathrm{O} 3 A$	0.95	2.42	3.0252 (14)	121
$\mathrm{C} 11 A-\mathrm{H} 11 A \cdots \mathrm{O} 5 B$	0.95	2.43	3.0462 (17)	122
$\mathrm{C} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 3 B$	0.95	2.37	2.9978 (13)	123
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 1 A$	0.95	2.45	3.0221 (14)	119
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 1 A^{\text {iii }}$	0.95	2.61	3.2230 (18)	122
$\mathrm{C} 21 B-\mathrm{H} 21 A \cdots \mathrm{O} 2 B^{\text {iv }}$	0.98	2.49	3.3321 (19)	144
$\mathrm{C} 21 A-\mathrm{H} 21 D^{\cdots} \mathrm{O} 4 A^{\text {v }}$	0.98	2.47	3.277 (4)	139
$\mathrm{C} 21 A-\mathrm{H} 21 E \cdots \mathrm{O} 2 A^{\text {iii }}$	0.98	2.27	2.959 (9)	126
$\mathrm{C} 21 A-\mathrm{H} 21 E \cdots \mathrm{O} 2 A^{\text {vi }}$	0.98	2.50	3.246 (9)	132
$\mathrm{C} 22 A-\mathrm{H} 22 A \cdots \mathrm{O} 4 A^{\vee}$	0.98	2.57	3.377 (4)	140

[^0]
[^0]: Symmetry codes: (iii) $-x,-y+1,-z$; (iv) $x+1,-y+1 / 2, z$; (v) $x-1,-y+3 / 2, z$; (vi) $-x, y-1 / 2,-z$.

