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Abstract: Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrother-
mal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of
the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron
spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution
transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spher-
ical structure and overall diameters ranging from 1–4 nm, and their surface comprises specific
functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and
fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs
synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation
wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may
impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence
quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but
it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit
high sensitivity to Fe3+ ions, for Fe3+ ions would decrease the fluorescence intensity of N-CQDs by
99.6%, and the influence of Fe3+ ions on N-CQDs fluorescence quenching is slightly affected by other
metal ions. Moreover, the fluorescence quenching efficiency of Fe3+ ions displays an obvious linear
relationship to Fe3+ concentrations in a wide range of concentrations (up to 200 µM) and with a
detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence
sensor for detecting pH and Fe3+ ions.

Keywords: nitrogen-doped carbon quantum dots; fluorescence; pH value; Fe3+ ion; lactic acid

1. Introduction

Carbon quantum dots (CQDs) are regarded as a novel class of fluorescence nanoma-
terials. Meanwhile CQDs exhibit many unique advantages, compared with traditional
fluorescent nanomaterials, such as excellent biocompatibility [1], good solubility [2], low
toxicity [3,4], remarkable photostability [5], as well as their small size. Hence CQDs are
considered as one of the most attractive alternative to traditional fluorescent materials,
and have been used in drug delivery carriers [6,7], biological imaging [8,9], fluorescent
probes [10,11], photovoltaic devices [12,13], and so on.

CQDs were originally founded by Xu et al. [14] in 2004, who utilized an electrophoretic
separation and purification technique for the purification of single-walled carbon nanotubes
generated from arc-discharge soot, and named as carbon quantum dots by Su et al. [15]
in 2006. Over the past decade, many synthetic methods of CQDs have been reported,
such as arc-discharge [14], laser ablation [16], electrochemical oxidation [17], microwave
method [18], and hydrothermal treatment [19]. These synthetic methods have two main
purposes: one purpose is to crack different carbon source materials, and the other is the
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carbonization of small molecules or polymers [20]. Meanwhile, a variety of carbon-sources
materials, including graphite [21], citric acid [22,23], watermelon peel [24], saccharum
officinarum juice [25], scindapsus leaves [26], and others, have been developed for the
preparation of CQDs. Therefore, various synthesis methods and carbon sources may obtain
CQDs with various sizes, structures and excitation wavelengths, which will have an obvious
impact on the fluorescence emission intensity of CQDs. The two disadvantages including
low yield of CQDs and a small amount of functional groups on CQD surface limit the
fluorescence performance and application of CQDs [27]. When CQDs are doped by nitrogen,
sulfur, and other elements, their spectral properties and applications may be improved.
Thus N-doped carbon quantum dots (N-CQDs) and S-doped carbon dots (S-CQDs) can be
obtained, while the doping of N and S elements may change the electron density, structure,
and composition of the doped CQDs, leading to the increase of fluorescence intensity of
N-CQDs and S-CQDs [28,29], which will boost CQDs performance and broaden CQDs
application. Recently, much research has reported on the N-doped and N/other atom
co-doped CQDs. The N-doped CQDs are widely used in the field of probes, especially for
metal ions detection by probes. Either in nature or in animals, iron is an important element,
especially Fe3+ ions. Therefore, it is essential to detect Fe3+ ions. Qi et al. [30] utilized a
one-step hydrothermal approach to manufacture nitrogen-doped carbon quantum dots
N-CQDs with rice residue as carbon source and glycine as nitrogen source, respectively, and
then used N-CQDs as the probe to detect Fe3+ ions and tetracycline antibiotics. Du et al. [31]
adopted hydrothermal technique using ascorbic acid and thioglycolic acid to synthesize
sulfur-doped CQDs, which were used as the fluorescent probe to detect Fe2+ and Fe3+ ions
in oral ferrous gluconate samples. Chen et al. [32] synthesized N-CQDs by hydrothermal
method with p-phenylenediamine and ammonia, and the N-CQDs were considered as a
multi-functional fluorescence sensor for detecting pH and Fe3+ ions.

L-lactic acid is a widely used bio-based chemical containing hydroxyl and carboxyl
groups, while ethylenediamine contains amino groups, which may be good candidates for
preparing N-CQDs. In this work, we used a one-step hydrothermal technique to create
N-CQDs utilizing L-lactic acid as carbon source and ethylenediamine as nitrogen source,
respectively. The obtained N-CQDs featuring surface functional groups present excellent
water solubility and fluorescence. The N-CQDs were investigated in terms of their morphol-
ogy, surface structure, and optical properties. Those N-CQDs have been synthesized that
were spherical particles with overall diameters ranging from 1–4 nm. When irradiated by
ultraviolet light with the wavelength of 365 nm, N-CQDs would emit blue light, and their
emission wavelength reaches to the maximum of 414 nm during the excitation wavelength
of ultraviolet light being 310 nm, which indicates that the optical characteristics of N-CQDs
depend on the excitation wavelength. Meanwhile, the fluorescence of N-CQDs also reveals
a pH-dependent dependency. Furthermore, the obtained N-CQDs showed better specificity
and sensitivity to Fe3+ ions, suggesting that they might be exploited as fluorescent probe of
Fe3+ ions. The research of N-CQDs prepared from lactic acid would expand the scope of
application of lactic acid.

2. Materials and Methods
2.1. Materials

L-lactic acid (A.R., 90%) was purchased from Musashino Chemical (Yichun, China)
Corporation. Ethylenediamine (A.R.), hydrochloric acid (A.R.), NaOH (A.R.), FeCl3 (A.R.),
FeCl2·4H2O (A.R.), CuCl2·2H2O (A.R.), MgCl2·6H2O (A.R.), NiCl2·6H2O (A.R.), CaCl2
(A.R.), SnCl2 (A.R.), KCl (A.R.), CoCl2·6H2O (A.R.), and LiCl·2H2O (A.R.) were all bought
from Nanjing Chemical Reagent Company (Nanjing, China). A dialysis bag with a molecular
weight cut-off of 1000 Da was purchased from Shanghai Yuanye Bio-Technology Co., Ltd.
(Shanghai, China). The deionized water was purified using an Ulupure system (Nanjing
Youpu Environmental Protection Equipment Co., Ltd, Nanjing, China) throughout all the ex-
periments. All reagents used were available commercially and did not involve purification.
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2.2. Synthesis of Nitrogen-Doped Carbon Quantum Dots

We synthesized N-CQDs through one-step hydrothermal method employing L-lactic
acid as carbon source and ethylenediamine as nitrogen source [26,33] (Scheme 1). 30.0 g
L-lactic acid and 2 mL ethylenediamine were mixed with 30 mL deionized water in a
100 mL three-necked flask, then the solution was heated up to 150 ◦C and reacted for 12 h.
The reaction solution was then allowed to cool naturally before even being centrifuged for
10 min at 10,000 rpm, The supernatant was collected and transferred to a dialysis bag with
a molecular weight cut-off of 1000 Da, then dialyzed for 72 h with deionized water in the
glass flume. In the end, the dialyzed supernatant was freeze-dried in vacuum freeze dryer
to yield solid N-CQDs.

Materials 2022, 15, x FOR PEER REVIEW 3 of 14 
 

 

Ulupure system (Nanjing Youpu Environmental Protection Equipment Co., Ltd, Nanjing, 
China) throughout all the experiments. All reagents used were available commercially 
and did not involve purification. 

2.2. Synthesis of Nitrogen-Doped Carbon Quantum Dots 
We synthesized N-CQDs through one-step hydrothermal method employing 

L-lactic acid as carbon source and ethylenediamine as nitrogen source [26,33] (Scheme 1). 
30.0 g L-lactic acid and 2 mL ethylenediamine were mixed with 30 mL deionized water in 
a 100 mL three-necked flask, then the solution was heated up to 150 °C and reacted for 12 
h. The reaction solution was then allowed to cool naturally before even being centrifuged 
for 10 min at 10,000 rpm, The supernatant was collected and transferred to a dialysis bag 
with a molecular weight cut-off of 1000 Da, then dialyzed for 72 h with deionized water 
in the glass flume. In the end, the dialyzed supernatant was freeze-dried in vacuum 
freeze dryer to yield solid N-CQDs. 

In this section, the LG16-A high-speed centrifuge (Lab Centrifuge, Beijing, China) 
was used to centrifuge the sample to eliminate big particles of contaminants, while the 
FD-1A-50 freeze drier (Boyikang Experimental Instrument Co., Ltd., Beijing, China) was 
used for freeze drying to create N-CQDs solids. 

 
Scheme 1. Schematic illustration of one-step manufacturing for N-CQDs and the detection of Fe3+ 
using N-CQDs. 

2.3. Characterization Methods 
The UV-vis spectrophotometer UV-2450 (Shimadzu, Kyoto Japan) was applied to 

detect UV-vis spectra. 0.05 mg/mL N-CQDs aqueous solution prepared by dispersing 
the solid N-CQDs in deionized water was used for both UV-vis and fluorescence spectra 
below. Fourier-transformed infrared spectroscopy (FTIR) was measured with the 
FTIR-360 (PerkinElmer, Waltham, MA,  USA). The scanning range for the FTIR spectra 
was 450–4500 cm−1, and the KBr tablet was being used as a carrier. The microstructures 
of N-CQDs were examined using JEM-2100 (JEOL, Tokyo, Japan) High-resolution 
transmission electron microscopy (HRTEM). To determine the elemental composition, 
X-ray photoelectron spectroscopy (XPS) using an Al Kα monochromatized source was 
studied on AXIS UltraDLD (Kratos, Kyoto, United Kingdom). Fluorescence spectra were 

Scheme 1. Schematic illustration of one-step manufacturing for N-CQDs and the detection of Fe3+

using N-CQDs.

In this section, the LG16-A high-speed centrifuge (Lab Centrifuge, Beijing, China)
was used to centrifuge the sample to eliminate big particles of contaminants, while the
FD-1A-50 freeze drier (Boyikang Experimental Instrument Co., Ltd., Beijing, China) was
used for freeze drying to create N-CQDs solids.

2.3. Characterization Methods

The UV-vis spectrophotometer UV-2450 (Shimadzu, Kyoto Japan) was applied to detect
UV-vis spectra. 0.05 mg/mL N-CQDs aqueous solution prepared by dispersing the solid N-
CQDs in deionized water was used for both UV-vis and fluorescence spectra below. Fourier-
transformed infrared spectroscopy (FTIR) was measured with the FTIR-360 (PerkinElmer,
Waltham, MA, USA). The scanning range for the FTIR spectra was 450–4500 cm−1, and the
KBr tablet was being used as a carrier. The microstructures of N-CQDs were examined
using JEM-2100 (JEOL, Tokyo, Japan) High-resolution transmission electron microscopy
(HRTEM). To determine the elemental composition, X-ray photoelectron spectroscopy (XPS)
using an Al Kα monochromatized source was studied on AXIS UltraDLD (Kratos, Kyoto,
United Kingdom). Fluorescence spectra were recorded on Perkinelmer Fluorescent FL6500
(PerkinElmer, Waltham, Massachusetts, USA). All fluorescence spectra were measured with
the excitation slit being 5 nm, the emission slit being 10 nm, and the scanning speed being
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1200 nm/min. Zetasizer Nano-ZS (Malvern instruments, Malvern, UK) was being used to
evaluate the size and distribution of N-CQDs nanoparticles.

2.4. Quantum Yield of Nitrogen-Doped Carbon Quantum Dots

Quinine sulfate dissolved in 0.1 M sulfuric acid is used as the standard sample, and its
quantum yield (QS) is 0.54. The quantum yield of N-CQDs (QN) is calculated that used the
following equation [34,35].

QN = QS
IN
IS

AS
AN

ϕ2
N

ϕ2
S

(1)

where Q stands for the quantum yield and I for the integrated area of fluorescence intensity,
while A for the absorbance and ϕ for the refractive index of the solvent (being 1.33). The
standard sample and N-CQDs are denoted by the subscripts S and N, respectively.

2.5. Effect of pH Value on the Fluorescence Intensity of N-CQDs

A certain amount of N-CQDs solid was dissolved in deionized water to yield 0.05 mg/mL
N-CQDs solution. Aqueous solutions with pH values being from 1 to 14 were prepared
with hydrochloric acid and sodium hydroxide, respectively. 1 mL of N-CQDs solution and
1 mL hydrochloric solution (or NaOH solution) with different pH values were added to
a quartz cuvette and mixed for 1 min, and then the fluorescence test was performed at
ambient temperature. All fluorescence spectra were recorded at 310 nm for excitation, and
414 nm for emission.

2.6. Fluorescence Detection of Fe3+ Ions

The above-mentioned aqueous solution of N-CQDs had a concentration of 0.05 mg/mL.
The chlorides containing various metal ions (including Li+, Ca2+, Co2+, Cu2+, Fe3+, Mg2+,
Fe2+, Ni2+, Sn2+ and K+) were, respectively, dissolved in deionized water to prepare various
chloride solutions with the concentration of 1 mM. To investigate the selectivity of N-CQDs
aqueous solution to various metal ions, 0.5 mL chloride solution containing different metal
ions and N-CQDs aqueous solution with a volume of 2 mL were added to a quartz cuvette
and mixed at ambient temperature for 1 min before even being detected. To evaluate the
detection range of Fe3+ ions and the sensitivity of N-CQDs to Fe3+ ions, 0.5 mL of Fe3+

solutions with their concentrations varying from 0 µM to 200 µM were mixed with N-CQDs
aqueous solution with a volume of 2 mL at ambient temperature for 2 min, and then the
mixed solutions were detected. 0.5 mL FeCl3 solution and 0.5 mL other chloride solution
were mixed with N-CQDs aqueous solution with a volume of 2 mL, and then the mixture
solutions were detected to determine the fluorescence quenching of N-CQDs triggered by
Fe3+ together with other metal ions.

3. Results
3.1. The Morphology and Surface Composition of N-CQDs

The N-CQDs were characterized using HRTEM to determine their morphology and
surface functional groups. The HRTEM images of N-CQDs (Figure 1a) display that N-CQDs
are spherical in morphology with diameters ranging from 1–4 nm (Figure 1b), which is
consistent with prior literatures [36].
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Figure 1. (a) HRTEM images of N-CQDs, (b) Histogram of N-CQDs size distribution, (c) FTIR
spectrum of N-CQDs.

An FTIR test was conducted to analyze the functional groups on the surface of N-
CQDs. The FTIR spectrum of N-CQDs in Figure 1c demonstrates a peak at 1447 cm−1

corresponding to the stretching vibration band of the amine C–N bond [37], and the peak
at 3292 cm−1 owing to the stretching vibration bands of O–H and N–H [38], indicating
the existence of amino functional groups. Meanwhile, the stretching vibration of C=C is
associated with the peak at 1540 cm−1 [39,40]. Stretching C–H of alkyl groups results in the
two peaks at 2942 and 2985 cm−1 [35,41]. The peak at 1744 cm−1 owing to carboxyl C=O
bonds indicates carbonyl groups in N-CQDs [42], whereas the peak at 1655 cm−1 due to
amide C=O indicates the amide groups of N-CQDs [37]. the stretching vibration of C–O of
carbonyl groups causes the peak at 1127 cm−1 [43]. The FTIR results clearly illustrate that
nitrogen was effectively doped into the CQDs and are consistent with those of XPS below.

The surface chemical composition and element status of N-CQDs were investigated
further utilizing X-ray photoelectron spectroscopy (XPS). The XPS spectrum of N-CQD
in Figure 2a shows three peaks at 532.3 eV, 286 eV and 400.4 eV, corresponding to O1s,
C1s and N1s, respectively [26,44,45], indicating that N-CQDs are mostly constituted of
carbon, nitrogen, and oxygen. The high resolution XPS spectrum of C1s in Figure 2b shows
five peaks at 284.6 eV, 285.5 eV, 286.4 eV, 287.1 eV and 288.3 eV that may be traced to
C=C, C–C, C–N, C–O and C=O bonding on the surface of N-CQDs [26,46]. In Figure 2c,
the high resolution XPS spectrum of N1s displays two peaks at 401.3eV and 399.8 eV
caused by C–N and N–H, respectively [32,47]. The high resolution XPS spectrum of O1s
in Figure 2d exhibits two peaks at 531.5 eV and 532.4 eV, which may be traced to C–O
and C=O, respectively [48,49]. The results of XPS, together with those of HRTEM and
FTIR show that N-CQDs were effectively fabricated. Moreover, N-CQDs samples possess
carboxyl, hydroxyl and amino groups, resulting in N-CQDs’ excellent water solubility.

3.2. Optical Performance of N-CQDs

The UV-Vis absorption spectrum was used to characterize the optical property of the
generated N-CQDs. The UV–Vis absorption spectrum of N-CQDs aqueous solution in
Figure 3a exhibits two absorbance bands severally centered at 220 nm and 320 nm. The
peak at 220 nm is ascribable to the π-π* transition for C=C bond [32], while the peak at
320 nm is owing to the n-π* transition of C=O bond or surface defects of N-CQDs [36]. As
seen in the inset in Figure 3b, the aqueous solution of N-CQDs was yellow in visible light
and emitted blue fluorescence with the wavelength of 365 nm in UV light.
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Figure 3c displays that the N-CQD samples prepared from L-lactic acid possess very
good fluorescence properties. Their fluorescence intensity will be affected by excitation
wavelength. Their fluorescence intensity steadily declines as the excitation wavelength in-
creases from 300 nm to 380 nm with each increment of 10 nm. The normalized fluorescence
spectra of N-CQDs given in Figure 3d show that the fluorescence emission peak of N-CQDs
would red-shift by 22 nm from 414 nm to 436 nm with the excitation wavelength changing
from 300 nm to 380 nm. This red shift may be caused by the varied sizes of N-CQDs as well
as the functional groups on the surface of the N-CQDs [36,50]. Moreover, N-CQDs possess
a maximal emission peak at 414 nm with an excitation wavelength of 310 nm. Meanwhile,
the quantum yield of N-CQDs is 46%, which is significantly higher than those of the CQDs
synthesized from biomass as carbon source in literatures shown in Table 1.

Table 1. The quantum yield of CQDs synthesized from biomass as a carbon source.

Carbon Source Method Quantum Yield Reference

Tomato juices hydrothermal 3.38% [40]
Magnolia flower hydrothermal 4.29% [47]

Pine wood hydrothermal 4.69% [51]
Lemon juices hydrothermal 5% [40]

Adenosine hydrothermal 11.3% [52]
Prunus avium fruit hydrothermal 13% [53]

Garlic hydrothermal 13% [54]
Pigeon feathers pyrolysis 24.87% [55]

Banana juice hydrothermal 32% [35]
Ascorbic acid hydrothermal 32.07% [31]

Black soya beans pyrolysis 38.7 ± 0.64% [56]
L-lactic acid hydrothermal 46% This work

3.3. The Effect of pH on N-CQDs Fluorescence Intensity

The surface of the obtained N-CQDs includes amino, hydroxyl and carboxyl functional
groups, as can be seen by XPS and FTIR. We may utilize these functional groups to detect
the effect of pH values on N-CQDs fluorescence intensity. The fluorescence intensities of
N-CQDs with different pH values at the excitation wavelength of 310 nm were given in
Figure 4a,b, which clearly show the apparent effects of pH on N-CQDs fluorescence inten-
sity. As shown in Figure 4c,d, when pH value increases from 1 to 7, N-CQDs fluorescence
intensity gradually increases and reaches to the maximum as pH value being 7. Then the
N-CQD fluorescence intensity decreases with rising pH values from 8 to 14 and reaches
a minimum as pH value being 14. N-CQDs fluorescence intensity slightly vary as pH
values from 3 to 12, but they are much lower under strong acid (pH being 1 or 2) or alkali
conditions (pH being 13 or 14). In Figure 4c, N-CQDs fluorescence intensity is quenched
under acidic conditions while the emission peak of N-CQDs does not change, which may
be due to the protonation of amino groups on N-CQDs surface [32]. In Figure 4d, both
fluorescence intensity and emission peak of N-CQDs diminish as pH increases, which may
be attribute to the protonation of carboxyl groups on the surface of N-CQDs [43,57].

In short, the pH-dependent fluorescent behavior of N-CQDs might be ascribed to
functional groups on the surface of N-CQDs. When the surface functional groups of N-
CQDs are protonated, fluorescence quenching occurs mainly due to the agglomeration of
N-CQDs particles [58]. Therefore, N-CQDs can be developed for the use in the field of pH
probes based on its sensitivity to pH.
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spectrum of PH from 1 to 7 N-CQDs, (d) The fluorescence spectrum of PH from 8 to 14 N-CQDs.

3.4. Detection and Selection of Fe3+ Ions by N-CQDs

The hydroxyl, carboxyl and amino surface functional groups of N-CQDs can form
complexes with metal ions [59]. As the number of functional groups on the surface of the
N-CQDs decreases, its fluorescence intensity would also gradually weaken. Therefore, it
may be utilized as a probe to detect metal ions. In this work, to investigate specificity and
sensitivity of the obtained N-CQDs to various metal ions, we measured the fluorescence
intensities of N-CQDs aqueous solution complexed by different metal ions with the con-
centration of 1 mM under the same condition. Figure 5a,b demonstrated the influence of
metal ions on N-CQDs fluorescence intensity at 310 nm excitation wavelength. Although
each metal ion has different effect on N-CQDs fluorescence intensity, this can lessen its
fluorescence intensity. The fluorescence quenching performance of Fe3+ ions for N-CQDs is
obviously superior to that of other metal ions, as N-CQDs fluorescence intensity would
decrease by about 99.6% due to Fe3+ ions, indicating that they have quite an excellent
selectivity for Fe3+. To detect the fluorescence quenching of N-CQDs induced by Fe3+ in
combination with other metal ions, a mixture of Fe3+ ions with other metal ions was added
to an aqueous solution of N-CQDs, and then the mixed solutions were detected. Figure 5c
exhibited that the effect of Fe3+ ions on N-CQD fluorescence quenching is little affected by
other metal ions. These findings suggest that they have a specific recognition effect on Fe3+

and a strong anti-interference ability.
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In order to make sure the sensitivity of N-CQDs to Fe3+ ions, the effect of Fe3+ ions
concentrations on N-CQDs fluorescence intensity at 310 nm excitation wavelength was
shown in Figure 5d. Its fluorescence intensity steadily declines with Fe3+ concentration
increasing from 0 µM to 200 µM. Figure 5e displays a good linearity between the quenching
efficiency (i.e., the difference (F0 − F)) and Fe3+ concentrations ranging from 25 to 175 µM
with the correlation coefficient of 0.99602. Thus, the concentration of Fe3+ ions could be
computed using the equation below.

F0 − F = 470.657C + 100297.143

where F and F0 denote the fluorescence intensities of N-CQDs in the presence and the
absence of Fe3+, respectively. The concentration of Fe3+ ions is represented by C. According
to the above equation, the limit of detection is calculated to be 1.89 µM based on three
times the standard deviation rule (3δ/k, where δ represents standard deviation of the
blank N-CQDs and k is the slope of the calibration curve, n = 6), and it is far below the
requirement that Fe3+ ion concentration in drinking water is less than 5.4 µM. Table 2
compares the detection capability of the obtained N-CQDs for Fe3+ to that of CQDs for Fe3+

reported in other literatures, in which the linear range of Fe3+ detection was ordered from
small to large range. The obtained N-CQDs have quite a broad linear detection range and
are far more sensitive to Fe3+ ions.

The complexation of Fe3+ with the carboxyl group, amino group and hydroxyl group
on the surface of N-CQDs may be responsible for the fluorescence quenching caused by
Fe3+ [26,60]. Meanwhile, the N atom has a large electronegativity, which is conducive
to enhancing the electron density distribution on N-CQDs surface and promoting the
complexation of Fe3+ with N-CQDs surface functional groups [61]. The complexation will
facilitate the rapid movement of electrons between Fe3+ ions and N-CQDs, and lead to
the formation of a non-radiative electron/hole recombination [47]. Therefore, Fe3+ ions
significantly quench the fluorescence of N-CQDs. Furthermore, the particle size of N-CQDs
significantly increases with the addition of Fe3+ ions, for the diameter distributing of N-
CQDs increases from 2.6 nm to 62.3 nm (in Figure 5f), and the green curve in Figure 5f is
obtained by fitting Gaussian function to the particle size of N-CQDs solution after adding
Fe3+, which proves that Fe3+ ions complexed with the surface functional groups of N-CQDs.
All results show high selectivity and sensitivity of the obtained N-CQDs to Fe3+ ions.

Table 2. Comparison on CQDs for determination of Fe3+ ions.

Materials Method Linear Range (µM) Limit of Detection
(µM) Reference

Sulfanilic acid solvothermal 0.025–0.4 2.549 [62]
Isoleucine and citric acid hydrothermal 0–20 - [60]

Roasted chickpea Microwave 11.25–37.5 2.74 [63]
Rice residue and lysine hydrothermal 3.32–32.26 0.7462 [64]

Citric acid and Tris hydrothermal 2–50 1.3 [65]
L-glutamic acid and

ethylenediamie microwave 8–80 3.8 [33]

Wheat straw hydrothermal 0–250 1.95 [66]
Lactic acid and ethylenediamie hydrothermal 25–175 1.89 This work

4. Conclusions

In summary, we had been using a one-step hydrothermal technique to create N-
CQDs utilizing L-lactic acid as a carbon source and ethylenediamine as a nitrogen source,
respectively. The N-CQDs created are nanospheres with outstanding fluorescence and
good solubility in water, while the quantum yields of N-CQDs (being 46%) are significantly
higher than that of the CQDs reported in literatures. Furthermore, the emission intensity of
N-CQDs exhibits excitation wavelength dependence. Their fluorescence intensity steadily
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decreases as the excitation wavelength increases from 310 to 380 nm. Meanwhile, the
fluorescence intensity of N-CQDs shows sensitivity to pH values. In comparison to other
metal ions, N-CQDs have quite a high specificity and sensitivity for Fe3+ ions in a wide
range of concentrations with the low detection limit of 1.89 µM. Therefore, the N-CQDs
created might be employed as fluorescent probe for pH and Fe3+ ions.
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