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High dimensionality and noise have made it difficult to detect related biomarkers in omics data. Through previous study,
penalized maximum trimmed likelihood estimation is effective in identifying mislabeled samples in high-dimensional data with
mislabeled error. However, the algorithm commonly used in these studies is the concentration step (C-step), and the C-step
algorithm that is applied to robust penalized regression does not ensure that the criterion function is gradually optimized
iteratively, because the regularized parameters change during the iteration. This makes the C-step algorithm runs very slowly,
especially when dealing with high-dimensional omics data. The AR-Cstep (C-step combined with an acceptance-rejection
scheme) algorithm is proposed. In simulation experiments, the AR-Cstep algorithm converged faster (the average computation
time was only 2% of that of the C-step algorithm) and was more accurate in terms of variable selection and outlier
identification than the C-step algorithm. The two algorithms were further compared on triple negative breast cancer (TNBC)
RNA-seq data. AR-Cstep can solve the problem of the C-step not converging and ensures that the iterative process is in the
direction that improves criterion function. As an improvement of the C-step algorithm, the AR-Cstep algorithm can be

extended to other robust models with regularized parameters.

1. Introduction

The first challenge presented by omics data is the high
dimension, which far exceeds the sample size. The second
challenge is the presence of noise in the omics data. This
noise may be caused by misdiagnosis, mislabelling, record-
ing errors, technical problems in the laboratory, or sample
heterogeneity [1, 2]. Penalized regression is a common
method to solve the problem of variable selection and
prediction for a high-dimensional dataset. It has been
applied to omics data such as gene expression (4), GWAS
[3], and DNA methylation [4]. However, the outliers in the
data make the estimation of penalized regression inaccurate,
so biomarkers cannot be properly screened. Additionally,
the identification and further investigation of these outliers
can correct the errors during the experiment or investiga-
tion. Therefore, it is very important to develop robust statis-
tical methods for penalized regression.

A robust estimation method, least trimmed square
(LTS), was proposed by Rousseeuw [5]. LTS is highly robust
to outliers in both the response and predictors. It is effective
for identifying outliers and can solve the problem of the
masking phenomenon caused by the coexistence of multiple
outliers [5, 6]. Alfons et al. [6] applied LTS to LASSO-type
penalized linear regression to solve the problem of robust
high-dimensional variable selection when the dependent
variable is quantitative data. Kurnaz et al. [7] applied LTS
to elastic net- (EN-) type penalized linear and logistic regres-
sion to solve the problem of robust high-dimensional vari-
able selection when the dependent variable is quantitative
and binary data (enetLTS).

Both studies adopted the concentration step (C-step) in
the FAST-LTS algorithm proposed by Rousseeuw and Van
Driessen [8]. The basic ideas were an inequality involving
order statistics and sums of squared residuals. This inequality
guarantees that the criterion function declines monotonically
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as the iteration progresses. However, when it is applied to
penalized regression based on trimming, the inequality does
not necessarily hold due to the change of the regularized
parameters. Thus, the criterion function cannot be guaran-
teed to decrease. Through our previous simulation study
[9], we have found that enetLTS is effective in identifying
mislabeled samples in high-dimensional data with mislabeled
error. However, it is also found that for a dataset with n = 500,
P =1,000, and an outlier ratio of 10%, it takes nearly 2 hours
(Intel Core i7-6500U @2.50GHz) to run enetLTS once. For
the omics data in real data analysis with =924 and p=
19690, enetLTS running time is about 77.8 hours (Intel Xeon
Silver 4112 @2.60GHZ), which obviously does not meet the
requirements for efficient data processing.

Therefore, the C-step algorithm needs to be improved to
adapt to high-dimensional data. In this study, the AR-Cstep
algorithm is proposed to solve the estimation of robust
penalized regression based on trimming, which combines
the C-step algorithm with the acceptance-rejection algo-
rithm proposed by Chakraborty and Chaudhuri [10] . Two
algorithms are compared in terms of variable selection and
outlier identification accuracy and computation speed in
simulation study. An RNA-seq dataset for triple negative
breast cancer (TNBC) [1] that contains 28 samples with
discordant labels obtained from different tests (immunohis-
tochemical (IHC) method or fluorescence in situ hybridi-
zation (FISH)) is used to illustrate the application of
the two algorithms.

The structure of this paper is as follows: In results
section, simulation experiments are described that compare
the MTL-EN (elastic net-type maximum trimmed likeli-
hood) estimation using the AR-Cstep algorithm with
enetLTS. The results of enetLTS and MTL-EN applied to a
triple negative breast cancer (INBC) RNA-seq dataset are
compared. Then, the results are discussed and concluded.

In this article, a robust penalized logistic regression
model based on trimming is introduced in Section 2. And
the AR-Cstep algorithm is proposed and described in
Section 3. In Section 4, simulation experiments are described
that compare the MTL-EN (elastic net-type maximum
trimmed likelihood) estimation using the AR-Cstep algo-
rithm with enetLTS. The results of enetLTS and MTL-EN
applied to a triple negative breast cancer (TNBC) RNA-seq
dataset are compared in Section 5. We conclude with a
discussion in Section 6 and a conclusion in Section 7.

2. Robust Penalized Logistic Regression Model
Based on Trimming

Kurnaz et al. [7] proposed an EN-type penalized logistic
regression based on trimming.

h
ﬁ/\enetLTS — argminp ; d(yil’ x;’ﬁ> + hAch(B)’ (1)

where d(y; xi»l[}) <d(y;» xﬁz[i) < ---Sd(yin,x;n[i), ie{1,2,
--,n},where d(y,,x;B)is the ordered deviance. h=|dn]
k k
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(|.] means rounding down to the nearest integer) and «
€[0.5,1], where 1 -4 is the trimmed portion. Compared
with EN, enetLTS only retains / observations with the
smallest deviances, whereas n-h least likely observations
under the given model are excluded.

Robust penalized logistic regression model based on
trimming was denoted as enetLTS (robust EN based on the
LTS), and C-step algorithm was adopted. We denote it as
BATS in this paper. The estimate of the same model
obtained by the AR-Cstep algorithm is recorded as the EN-

type maximum trimmed likelihood estimate AMTE7EN,

3. Algorithm

3.1. C-Step Algorithm. Kurnaz et al. [7] adopted the C-step
algorithm in enetLTS. This algorithm was described below.

Let Q(H;B) be the criterion function of the penalized
logistic regression based on the subsample H € {1,2,---,n},
where |H| = h. Thus,

o;B)= Yd(s,x8) +n Y ABl @
j=1

ieH

Additionally, /[3  represents /[; y=arg nllsinQ(H ,B)-

When the regularized parameters A =\, and « =, are
fixed, at the kth step of the iteration, H is the current subset
with h observations, and B, is the solution of the penalized

logistic regression based on H,. The negative log-likelihood
functions corresponding to n observations can be derived

from EHk. The subsample H,,; consists of the h smallest
negative log-likelihood observations, that is,

Hyy :{il’iz"Uih}’ (3)

'R Ay ' .
where d(y; ,x; By ) <d(y;,,x; Bp,) < ---<d(y; . x; By, )> i1 €
{1,2,---,n}.

Thus, Q(Hy,;; BHk) < Q(Hy; ﬁHk)
H,,, is the subset that minimizes the criterion function

can be obtained.

under the solution E n,- Then, penalized logistic regression
is applied to subset Hy, ;. If A = A, and & = «; are unchanged,
we get the solution E 1,,, Which minimize the solution of cri-
terion function under the regularization parameters A, and
a;. Thus Q(Hy,, s BHM) < Q(Hyy, ;EHk) holds. Therefore,
when A = A, is fixed,

Q(Hk ; B\Hk> > Q(Hk+1 ;B\Hk) 2 Q(Hk+1 ;/B\Hkﬂ). (4)

The definition of H,, makes the first equation hold. The
definition of B, ~makes the second inequality hold.

For the C-step algorithm, the candidate subset H;,, is
constructed by sorting out h samples with the smallest

negative log-likelihood contribution to Q(H,,,; P H,,)-
Then, the C-step algorithm continues until Q,, =Q,,_;-
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Therefore, when A = A, and & = a; remain unchanged, as
the number of iterations k increases, the criterion function
decreases. Because the criterion function is nonnegative
and the number of subsets with sample size h is limited,
the C-step algorithm must converge to the subset with the
smallest criterion function after a limited number of steps.

The C-step algorithm is described in Algorithm 1, where
“continueCstep” is set so that the absolute value of the differ-
ence between the likelihood functions of two iterations is less
than some small value.

However, when penalized regression is performed on the
subset Hy,,, the regularized parameters A and « are not
fixed. The regularized parameters are usually determined
by data, such as by cross-validation. The regularized param-
eters determined for penalized regression performed on two
different subsets are often different, which leads to the
second inequality of [11] not necessarily being true.

A way to solve the problem is to set all A and « values
firstly. For a certain combination of A and «, perform the
C-step algorithm until convergence. Then, compare the con-
vergent subsets under different regularized parameters, and
select the subset that minimizes the criterion function. If
the number of A values is 40 and that of « values is 20, there
are 800 parameter combinations. This means running the C-
step algorithm 800 times, which will undoubtedly make the
algorithm very slow.

3.2. AR-Cstep Algorithm. In this study, the AR-Cstep
algorithm is proposed to solve the estimation of the
robust penalized regression based on trimming, which
combines the C-step algorithm with the acceptance-
rejection algorithm, which was proposed by Chakraborty
and Chaudhuri [10].

3.2.1. Acceptance-Rejection Algorithm. The acceptance-
rejection algorithm is similar to that of Metropolise-
Hastings in MCMC. Let H, represent the subset at the kth
step of the iteration. Then, a randomly selected sample
outside of H; replaces one of the samples in H; to form
H_,.q- The corresponding likelihood function is obtained
after penalized regression is performed on H, 4. If the crite-
rion function corresponding to H., is better than that
corresponding to the current subset H;, then H_,4 is
accepted as Hy,, with probability one, and H , = H_,.q.
Otherwise, H,,4 is accepted as H,,; with a probability of p
< 1, so that the algorithm can escape the local optimal value.
In the acceptance-rejection algorithm, the candidate
sample at each step is randomly selected from the remaining
samples other than the current subset H,. Thus, whether the
candidate subset can improve the criterion function better is
completely random, which leads to the slower convergence
of the iteration. The advantage of this algorithm is that,
whether the criterion function corresponding to the candidate
subset is better than that of the current subset is examined at
each step. Moreover, the subset with the optimal criterion
function up to the current step is recorded at each step.

3.2.2. AR-Cstep Algorithm. The changes of the regularized
parameters A and « make the C-step algorithm hardly grad-

ually converge to the subset with the smallest criterion func-
tion. Suppose the current subset is H, and we obtain f; ,
and corresponding criterion function Q(Hy; By, ;A1 o)

after the penalized regression is performed on H;. The h
smallest negative log-likelihood observations constitute the

subset H,,4, so that Q(Hcand;ﬁHk 3AL o) SQ(Hk;BHk;
Ay, a;) holds. Then, penalized regression is performed on
H_ 4 EHmd is obtained, and the corresponding regularized
parameters changed to A, and «,. The corresponding crite-
cand 3 ﬁHmd 5 Ay ) of H
sarily less than Q(H_,4; B m, A ap). The AR-Cstep

algorithm adds the step of comparing the criterion function
of the candidate subset H_, 4 with that of the current subset

Hp. If Q(Heuna's Bi,., 5 A0 0y) > Q(Hy 5 By, sApay), to
avoid falling into a local optimum, U is a random number

rion function Q(H 4 1s not neces-

can

that follows the Bernoulli distribution with p, where p =
or(log LBy, Heana)~log €BAm HY)) ¢ 17 = 1, then H,,, = H_, 4.
If U =0, then H,, = H;, that is, no replacement. The crite-
rion function corresponding to the initial subset is recorded

as the optimal subset, that is, Q(H oy ; B\Hopt) =Q(Hy; EHO),
and H,, = H,. At each step of the iteration, the criterion
function Q(H,; B p,) is compared with Q(H; EHopt)’ If
Q(Hy s Bry,) < Q(Hops Bry,)» then Q(Hops By, ) = Q(Hys
[ n,) and H

To make the proportion of samples with y =1 in the can-

didate subset H_, 4 consistent with that in the full set, the

can
samples constituting the candidate subset H_, 4 are selected

in the following manner. H_, 4 consists of h, observations

opt = Hi- Hopy in the last step is the solution.

cant
with the smallest d(y,, xir[; p,) among observations with y =
1 (set a total of n, observations), and h, observations with
the smallest d(y,, xi'i; p,) among observations with y =0 (set
a total of n, observations), where h; = |[(n; + 1)], and |.]
means round down. 1 -y is the trimming ratio and h,=h
—hy. In comparison with the acceptance-rejection algo-
rithm, for which H_, 4 consists of samples selected randomly
from the complementary set, H_ 4 of AR-Cstep is com-
posed of observations with the smallest deviance; that is,
each sample of H_, 4 contains information that improves
the criterion function; hence, the algorithm converges to
the subset with the optimal criterion function faster. The
AR-Cstep algorithm is described in Algorithm 2.

The acceptance probability p=
7108 LB Hoana) o8 EBN Hi)) Tt s inversely proportional
to the absolute value of the difference between the two like-
lihood functions log e(B n,Hyi) and log o(p #., Heana)- The
acceptance probability p is also related to 7;. According to
7). :=1log (k + 1)/D, the acceptance probability p is inversely
proportional to k, which is the kth step of the iteration. Sim-
ilar to the study of Farcomeni and Viviani [12], D:=0.1n(1
—1), and the acceptance probability p is inversely propor-
tional to the sample size h of the subset. When other features
remain unchanged, the larger the sample size h of the subset,

cany
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While (continueCstep)
do

By, =arg n}gax{log (B, Hy) - ”AZ§:1 11}

end

Penalized logisitic regression is applied on the current subset H,, and get

Forie{1,2,---n}, d (y,., x,T ) of every observation is got and observations are sorted according to their deviances.
! ! ! .
d(y;»x; B) <d(y;,x; B) <--<d(y; ,x; B)»i; € {1,2,--n}.

The h observations with smallest negative log-likelihood function are retained to form a subset Hy,;.

ArgoriTHM 1: Description of C-step algorithm.

While (k<=kmax & r<=2)
do

Q(Hys BHk) = Zilerd(yi,’ x:ﬁHk))

hy=[(ny+1)n), hy=h—h;,n=ny+n, -

ﬂHcami =argming Zilemei

Q(Hr:and 5 ﬁHmm{) = Zi,eH

ca N cnndd(yil’x:lﬁH
If Q(Hmnd 5 ﬂH. ) < Q(Hk 5 ﬂH,‘) then

cand

cand

If Q(Hcand ; ﬂHmm,) > Q(Hk ; ﬁHk) Kthen
p= otr(log UBAy, \ Heona)-log LBy, Hy))

if U=1 then

k represents the kth iteration, and r represents that the current subset has not been replaced after r iterations.

B, = i ! P
By, = argmmﬁZi,erd()’i,’ x,B) +hAY;, ‘ﬁj|
Under By ,d (yi,xirﬁ n,) corresponding to each sample is derived. The current criterion function is

Candidate subset H,,g = {i}, iy> i), } U{j}> jp»»jy, }» where
d(l,x;ﬁHk) < d(l,x;ziin) < ~--Sd(1,x’in BHk), it is the index of individuals with y = 1.
d(o, x;ﬁHk) <d(0, x;ﬁHk) <---<d(0, x;noﬁHk), ji is the index of individuals with y = 0.

d(y;x,B) + WAX, |B;]

Under By, d(y; xi? 1,,,) corresponding to each sample is derived. The corresponding criterion function is

)

U is a random number that obeys the Bernoulli distribution with the parameter p.

ALGoriTHM 2: Description of AR-Cstep algorithm.

the smaller the probability of being accepted. Additionally, if
the current subset is not replaced after r iterations, the
iteration process is stopped.

To ensure that the initial subset does not contain out-
liers, the sample size should be smaller. The initial subset
consisted of six observations, three of which were randomly
selected from groups y = 1 and y = 0, respectively. In order to
make the algorithm reach the global optimal value, multiple
initial subsets were selected.

First, the two-step iteration of AR-Cstep was performed
on 500 initial subsets, and 500 updated subsets were
obtained. Then, the 10 subsets with the smallest criterion
function were retained. Then, AR-Cstep was performed on

these 10 subsets until convergence. Among the 10 conver-
gent subsets, the subset with the smallest criterion function
was selected, denoted byH,,. The penalized regression

was performed on H_,, and Eopt was obtained.

opt?
3.2.3. Reweighted Step. In this article, we choose the subset of
size h = |nn) where #=0.75. So 1 — 77 is the initial guess that
less than 25% of outliers contained in the data. This is a
rather conservative estimation of proportion of outliers.
There may not be so many outliers in the data. Therefore,

reweighted step is considered to detect outliers via Bopt.
Then, these outliers are excluded, and a new subset H,,, is
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obtained. Then, EN-type penalized logistic regression is
applied to H,,, to get the solution B, ,. Usually, the size
of H,, is larger than h, such that more samples can

improve the performance of Brwt compared to E We

opt*
called B,,, reweighted MTL-EN (Rwt MTL-EN). To distin-
guish them, the unweighted f

opt 18 called Raw MTL-EN.
3.24. Choice of the Regularized Parameters and
Standardization of Predictors. We select A over a grid of
values in the interval (0, A, ] as discussed by Breheny and
Huang [13].

>)

max

1~
Xy, 5
je{lll,lz?}f,p}n ¥ ®)

where y is the dependent variable and X; is the jth indepen-
dent variable. In iteration step of AR-Cstep, we take a grid

with steps of size 0.05 Xmax and o =0.5 to reduce the com-
putational burden. In the reweighted step, we take a grid

with steps of size 0.01 Xmax of A to derive the solution E

and Brwt' The choice of «a is selected by cross-validation in
the interval [0.1,1] with a step size of 0.1.

It would be better to standardize predictors before apply-
ing the penalized regression. Standardization mainly is
aimed at eliminating the influence of dimension and quan-
tity of a predictor. However, the mean and standard devia-
tion computed from all sample are not robust with
outliers. In the algorithm described above, penalized regres-
sion is applied to the subset in every iteration step of AR-
Cstep. So we firstly, respectively, compute mean and
standard deviation from subsamples. Then, we standardize
all samples with this mean and standard deviation before
applying penalized regression.

opt

4. Simulation Study

4.1. Comparison of MTL-EN and enetLTS on Outlier
Detection and Variable Selection. Simulation settings were
the same as Sun et al. [9]. The parameter / of both enetLTS
and MTL-EN was both set to |0.75x], which meant the
trimmed rate is 25%. The parameters in Ensemble followed
Lopes et al. [1].

In the simulation experiment, we compared the two
methods enetLTS and MTL-EN using C-step and AR-
Cstep algorithms, respectively. Through our previous
research [9] and subsequent simulation experiments, we
can see that enetLTS is good at identifying outliers. How-
ever, the FDR of its variable selection is high, and many
unrelated variables are identified. When encountering misla-
beled omics data, we can combine enetLTS with Ensemble.
Running Ensemble on a subset of data after removing the
outliers identified by enetLTS improved the variable selec-
tion accuracy. Then, we added the third method Ensemble
to the simulation experiment. A detailed description of
Ensemble is provided in our previous study [9].

The performances of the three methods are summarized
in Figure 1.

The outlier detection accuracy of the three methods is
shown in Figure 1. Here, we used two indicators Sn (sensitiv-
ity) and FPR (False Positive Rate) [14]. Sn represents the
proportion of true misclassified individuals identified as mis-
classified ones among all true misclassified observations.
FPR represents the proportion of individuals with correct
labels that are wrongly categorized as misclassified ones.

The outliers identified by MTL-EN had the higher Sn
than enetLTS. When the proportion of outliers were 10%
and 15%, the gap between them further widened. MTL-EN
FPRs were close to enetLTS. Ensemble has the lowest Sn
and FPRs among the three methods. Therefore, MTL-EN
had the best accuracy in identifying outliers.

The variable selection accuracy of the three methods is
shown in Figure 1. PSR (Positive Selection Rate) indicates
the proportion of true disease-related biomarkers identified
in all true disease-related biomarkers. FDR (False Discovery
Rate) represents the proportion of biomarkers that are not
related to disease among all the screened biomarkers. A
comprehensive indicator GM [15, 16] for the accuracy of
variable selection was used, which is the geometric mean of
PSR and (1-FDR). High accuracy of variable selection is
indicated by a high GM.

MTL-EN variable selection accuracy was very similar to
enetLTS with high PSR and FDR. As also shown in our pre-
vious study [9], Ensemble had the highest variable selection
accuracy with much low FDR; however, Ensemble missed
some associated variables when the proportion of outliers
was 10% or 15%.

In terms of variable selection, when there were a small
proportion of outliers, Ensemble performed best. However,
its accuracy was greatly decreased when the proportion of
outliers was large. In terms of outlier detection, regardless
of the portion of outliers, MTL-EN had the highest outlier
detection accuracy among the three methods.

4.2. Combining with Ensemble to Improve the Accuracy of
Variable Selection. In our previous study [9], we considered
a two-step procedure when the proportion of outliers was
relatively large. We found that it improved the variable
selection accuracy by applying Ensemble on a subset with
outliers identified by enetLTS removed. In this study, we also
used MTL-EN to detect outliers and then applied Ensemble
on the subset with outliers removed. The results of MTL-EN
and enetLTS were compared by simulation, which is shown
in Table 1.

From Table 1, compared with the results in the original
data, the PSR of Ensemble raised from 0.533 to 0.644, and
the GM was improved from 0.714 to 0.786 for subset after
removing outliers identified by enetLTS. For subset with
outliers identified by MTL-EN removed, the results of
Ensemble were also improved with PSR increased from
0.533 to 0.708 and GM increased from 0.714 to 0.828. It
can be seen that after removing the outliers identified by
MTL-EN, the accuracy of Ensemble variable selection is
the highest.

4.3. The Computation Times of enetLTS and MTL-EN. From
Table 2, the computation time of enetLTS is 39 times that of
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FIGURE 1: Results of MTL-EN, enetLTS, and Ensemble when # =500 and p = 1000. Sn: sensitivity; FPR: False Positive Rate; PSR: Positive

Selection Rate; FDR: False Discovery Rate.

TaBLE 1: Results of Ensemble for the datasets with n =500, p =
1,000, and £ =0.15.

TaBLE 2: Computation times of MTL-EN and enetLTS for the

datasets with n =500, p = 1,000, and £=0.1.

Data Model size PSR FDR GM* Methods Mean(s)
Original data 16.06 0.533 0.003 0.714 enetLTS 6489.06
Subset* 19.79 0.644 0.022 0.786 MTL-EN 165.2
Subset** 21.75 0.708 0.021 0.828

*This subset is the original dataset after removing outliers identified by
enetLTS. **This subset is the original dataset after removing outliers

into account the regularized parameters that need to be
determined at each step of the iteration. The criterion func-
tion cannot be guaranteed to gradually decrease, which
makes the algorithm converge slowly. The AR-Cstep algo-
rithm adopted by MTL-EN solves this problem well, which
greatly improves the convergence speed.

identified by MTL-EN. #GM: the geometric mean of PSR and (1-FDR).

MTL-EN (Intel Core i7-6500U @2.50GHz); that is, the com-
putation time of MTL-EN was 2% of that of enetLTS. This is
because the C-step algorithm used by enetLTS does not take
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5. Case Study

In the previous study [9], we compared the application of
enetLTS, Ensemble, and Rlogreg on a TNBC dataset from
the TCGA-BRCA data collection. The results showed that
enetLTS identified 68 outliers, seven of which were individ-
uals with inconsistent labels. After removing the outliers
identified by enetLTS, the prediction accuracy of the three
Ensemble models was improved, and the number of associ-
ated genes identified increased from 5 to 9. In this study,
we applied MTL-EN to this TNBC dataset. The outliers
identified by MTL-EN were compared with those by
enetL TS, and we also compared the performances of Ensem-
ble after removing the outliers identified by MTL-EN and
enetLTS, respectively.

From Tables 3 and 4, among the 68 outliers identified by
enetLTS, 3 of them were labeled as TNBC, which were also
identified by MTL-EN; among them, 65 individuals with
non-TNBC labels included 35 non-TNBC patients identified
by MTL-EN. In other words, 38 of the 47 outliers with non-
TNBC labels identified by MTL-EN were also identified by
enetLTS. However, nine patients with TNBC labels were
not identified by enetLTS. These 9 TNBC patients were
highly expressed in one or more of the three genes, suggest-
ing that they were likely to be non-TNBC patients or
misclassified individuals. For example, TCGA-BH-A42U
(HER2 38.37), TCGA-E2-A1L7 (ER 29.61, PR 22.98),
TCGA-OL-A97C (PR 8.56), TCGA-A2-A1G6 (ER 23.90,
PR 21.45, HER2 29.74), TCGA-A2-AOEQ (ER 2.13, HER2
30.15), TCGA-EW-A10V (HER2 28.91), TCGA-OL-A5D6
(HER2 72.13), TCGA-C8-A26X (HER2 60.12), and TCGA-
LL-A740 (HER2 68.56), with high expression in one or more
of three receptors, were more likely not to be a TNBC
patients; that is, his/her labels were probably wrong. Seven
of the 47 outliers identified by MTL-EN were suspect indi-
viduals with inconsistent HER2 labels. Six of them were
labeled as non-TNBC, which were also detected by enetLTS.
The remaining one “TCGA-A2-AOEQ” was labeled as
TNBC, which was not detected by enetLTS.

A total of 213 genes were identified by MTL-EN, and 40
genes with the largest absolute value are listed in Table 5.
Among them, FOXA1l [17], ERBB2 [18], GRB7 [19],
KRT16 [20], CXXC5 [21], FOXCL1 [22], TFF3 [23], COL9A3
[24], FABP7 [25], CCNEL [26], GZMB [27], and MIEN1
[28] were reported to be related to TNBC.

In our previous study [9], we combined the advantages
of enetLTS and Ensemble and removed 68 outliers identified
by enetLTS, then ran Ensemble on a subset (856 samples), to
improve the accuracy of gene selection. In this study, we
removed 47 misclassification samples detected by MTL-EN
and then ran Ensemble in the remaining 877 samples. The
results are shown in Tables 6 and 7.

From Table 6, for the subset with outliers detected by
enetLTS removed, the prediction index MR of the three
models in Ensemble was much lower than that on the
original TNBC dataset; the MR of EN decreased from
0.012 to 0, the SPLS-DA MR reduced from 0.064 to
0.008, and the SGPLS MR reduced from 0.059 to 0.015.
When Ensemble was run on a subset of 47 outliers identi-

TaBLE 3: Number of misclassified observation that detected using
enetLTS and Ensemble.

Num of suspect

Method misIc(i:;]stilf?ceiion NEE;_";EBNEE/ TNBC/non-
TNBC**

enetLTS 68 3/65 0/7

MTL-

EN 47 12/35 1/6

*Number of identified misclassified observations with TNBC/non-TNBC
labels. **Number of identified suspect individuals with inconsistent labels.

fied by MTL-EN, the prediction accuracy MR of the three
models in Ensemble also decreased greatly, to 0.001, 0.014,
and 0.013, respectively.

For subset with 68 outliers detected by enetLTS
removed, the intersection of variables selected using the
three Ensemble models increased from five to nine genes,
namely, CA12 [29], GABRP [30], VGLLI [31], AGR2 [32],
GATA3 [17], FOXA1 [17], TFF3 [23], AGR3 [33], and
KRT16 [20], were reported to be related to TNBC.

From Table 7, for subset with 47 outliers detected by
MTL-EN removed, the intersection of variables selected
using the three Ensemble models was 12 genes. Among them,
ESR1, one of three key variables, and FOXC1 [22], AGR2
[32], FOXA1 [17], TFF3 [23], TFF1 [34], AGR3 [33], KRT6B
[35], and KRT16 [20] have been reported to be related to
TNBC. KLK6 [36], FDCSP [37], and PPP1R14C [38] have
been reported to be related to other types of tumors. Their
association with TNBC needs further study.

6. Discussion

Through our previous research [9], we have found that in
high-dimensional data with mislabeled error, robust
trimmed penalized regression is a recommended method
in identifying mislabeled samples. However, the C-step algo-
rithm to implement this method (enetLTS) is too slow to
meet the requirement of data analysis for high-dimensional
omics data. The reason is that for LTS without regularized
parameters, the inequality that guarantees the convergence
of the C-step algorithm is established. However, for the
robust trimmed penalized regression with regularized
parameters, the inequality does not necessarily hold due to
the change of the regularized parameters.

In the AR-Cstep algorithm, penalized regression is
repeatedly performed on the subset at each step to concen-
trate on the individuals who fit the model best gradually; that
is, the idea of the C-step algorithm is still adopted. However,
AR-Cstep can solve the problem of the C-step algorithm not
converging because the regularized parameters change
during the iteration. A comparison of the likelihood func-
tion of the current subset and that of the candidate subset
is used to determine whether to replace the current subset
with the candidate subset in AR-Cstep, thereby ensuring that
the iterative process is in the direction that improves the
criterion function. To avoid falling into a local optimum,
the Metropolis-type probabilistic acceptance-rejection
algorithm is combined.
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TaBLE 4: Forty-seven misclassified observations detected using MTL-EN for the TNBC dataset”.
ID ESR PGR HER2 HER2_level HER2_status HER2_FISH y Perres
TCGA-E9-A22G 0.44 (-) 0.02 (-) 15.32 + Non-TNBC 32.54
TCGA-A2-A3Y0 2.18 (+) 0.03 (-) 11.34 1+ . Non-TNBC  29.71
TCGA-A2-A04U 0.02 (-) 0.02 (-) 9.64 1+ - + Non-TNBC 22.86
TCGA-BH-A1EW 2998 (-) 1890 (-) 4247 . TNBC 18.89
TCGA-GM-A2DI 2349 (1) 1205()  20.30 . TNBC 14.73
TCGA-S3-AA0Z 16.67 (+) 0.07 (+) 33.07 1+ Equiv - Non-TNBC 14.58
TCGA-AN-AOF] 0.08 (+) 0.04 (-) 14.28 1+ + Non-TNBC  14.03
TCGA-BH-A51Z 512 (+) 0.03 (-) 28.08 - - Non-TNBC  13.87
TCGA-OL-A5S0 0.09 (+) 0.06 (-) 31.92 + Non-TNBC 1345
TCGA-E9-AIND 1.44 (-) 0.05 (-) 13.05 + Non-TNBC 13.05
TCGA-B6-A0I] L18 (+) 046 (+) 11.12 Non-TNBC  11.92
TCGA-AR-A251 1.57 (+) 0.10 (-) 14.02 2+ Equiv - Non-TNBC 10.70
TCGA-D8-A1JM 5.00 (+) 0.01 (-) 21.85 1+ - Non-TNBC 10.52
TCGA-E2-A11l 0.14 (-) 0.19 (+) 10.73 1+ . Non-TNBC  10.51
TCGA-A2-A1G6* 2390 (1)  2145(-)  29.74 1+ - TNBC 9.62
TCGA-A2-A0Y] 0.09 (+) 003 (1) 24024 0 . Non-TNBC  9.52
TCGA-LL-A5YP 0.16 (+) 0.05 (-) 15.10 1+ - + Non-TNBC 923
TCGA-E9-AINC 0.11 () 0.07 (+) 15.91 + Non-TNBC 898
TCGA-AC-A62X 0.19 (+) 0.02 (-) 28.53 Non-TNBC  8.93
TCGA-A7-A13E 0.82 (+) 0.06 (-) 46.08 2+ Equiv - Non-TNBC 877
TCGA-C8-A3M7 427 (-) 0.76 (-) 25.47 - TNBC 8.71
TCGA-AR-A1A]J 147 (+) 0.07 (-) 9.74 . Non-TNBC 8.3
TCGA-BH-AODL 6.99 (+) 0.04 (-) 9.92 - Non-TNBC 7.85
TCGA-E2-A1L7* 2961 () 2298 (-) 1033 . TNBC 7.35
TCGA-AR-A1AH 0.03 (+) 0.03 () 34.12 - Non-TNBC 731
TCGA-E2-A14Y 0.67 (+) 0.03 (+) 487.90 2+ Equiv + Non-TNBC 7.11
TCGA-LL-ASF5 1.08 (+) 0.04 (-) 11.86 1+ . Non-TNBC  6.96
TCGA-OL-A97C* 1625(-)  856()  24.04 - TNBC 6.86
TCGA-A7-A13D 0.52 (-) 0.81 (+) 42.28 2+ Equiv - Non-TNBC 6.73
TCGA-AR-AOTP 0.04 (+) 0.03 (-) 13.39 . Non-TNBC  6.53
TCGA-LL-A6FR 0.33 (-) 0.04 (+) 32.13 2+ Equiv + Non-TNBC 6.19
TCGA-A2-A25F 0.62 (-) 023 (+) 5.19 . Non-TNBC  5.86
TCGA-AO-AOJL 0.63 (-) 0.08 (-) 63.60 1+ . Non-TNBC  5.45
TCGA-A2-A1G1 0.53 (-) 0.17 (-) 819.76 2+ Equiv Non-TNBC 5.28
TCGA-BH-A42U* 9.19 (-) 183 () 3837 - TNBC 4.99
TCGA-AN-AOFX 1.13 () 0.64 (-) 24.02 1+ + Non-TNBC 475
TCGA-D8-AIXW 032 (-) 0.11 (+)  21.03 1+ - Non-TNBC 457
TCGA-AR-A24Q 1.00 (+) 0.36 (-) 20.67 - Non-TNBC ~ 4.52
TCGA-A1-A0SB 3.16 (+) 0.03 () 32.35 . Non-TNBC 447
TCGA-A2-A4RX 0.68 (+) 0.93 (+) 26.64 1+ - Non-TNBC 3.18
TCGA-AN-AOFL 0.09 (-) 1.07 (-) 15.07 1+ Non-TNBC 3.1
TCGA-A2-AOEQ* 2.13 () 004 ()  30.15 3+ - TNBC 2.63
TCGA-EW-AIOV* 023 (-) 003 () 2891 - - TNBC 1.83
TCGA-OL-A5D6* 035 (-) 0.20 (-) 72.13 - TNBC 1.69
TCGA-C8-A26X* 0.42 (-) 0.13 () 60.12 1+ - TNBC 1.62
TCGA-LL-A740" 030(-)  0I12() 6856 2+ Equiv - TNBC 1.48
TCGA-BH-A6R9 0.59 (-) 025 (+) 8.18 - Non-TNBC  0.99

#Including the expression values, IHC, and FISH tests of ER, PR, and HER2 (individuals highlighted in bold are suspect individuals). *Outliers detected by
MTL-EN but not by enetLTS. **Perres: the abstract value of Pearson residual.
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TaBLE 5: Top 40 genes selected by MTL-EN for the TNBC dataset.

COX7B2 (0.14), LBP (0.12), SLC15A1 (0.11), B3GNTS5 (0.10), A2ML1 (0.10), FOXCI (0.09), COL9A3 (0.09), KRT16

Upregulated

(0.09), EDCSP (0.09), FABP7 (0.09), AADAT (0.09), VSNL1 (0.09), KLK6 (0.09), PPP1R14C (0.08), GZMB (0.07), CCNE1

(0.07), FAM171A1 (0.07)
AGR3 (-0.24), CA12 (-0.20), AGR2 (-0.19), MLPH (-0.17), ESRI (-0.15), TBC1D9 (-0.13), FOXA1 (-0.12), TFF1 (-0.12),
Downregulted ERBB2 (-0.11), GRB7 (-0.10), STARD3 (-0.10), PGAP3 (-0.10), TFF3 (-0.10), CXXC5 (-0.10), GATA3 (-0.10), ACOX2
(-0.09), ASPN (-0.09), MIENT (-0.08), SPDEF (-0.08), CHAD (-0.08), EEF1A2 (-0.08), CMBL (-0.08), SRARP (-0.07)

TaBLE 6: Results of Ensemble three models for the original TNBC data and subset with outliers removed.

Dataset . EN , . SPLS-DA . SGPLS

Model size** MR Model size MR Model size MR
Original data 175 0.012 22 0.064 33 0.059
Subset* 83 0.000 87 0.008 16 0.015
Subset™ 49 0.001 38 0.014 55 0.013

*This subset is the original dataset after removing 68 outliers identified by enetLTS. ##This subset is the original dataset after removing 47 outliers identified

by MTL-EN. **Model size: number of variables; #MR: misclassification rate.

TaBLE 7: Genes selected by Ensemble for the TNBC subset®.

FOXCI1, ESR1, AGR2, FOXA1, TFF3, TFF1, KLK6, AGR3,
FDCSP, KRT6B, KRT16, PPP1R14C

*This subset is the original dataset after removing 47 outliers identified by
MTL-EN.

Through simulation experiments, it is found that MTL-
EN using AR-Cstep algorithm was more accurate than
enetLTS using C-step algorithm in outlier identification. In
particular, the accuracy of Ensemble variable selection on
the subset after removing outliers identified by MTL-EN
was higher than the result of Ensemble running on the
subset after removing outliers identified by enetLTS. The
AR-Cstep algorithm adopted by MTL-EN greatly improved
the convergence speed; that is, the computation time of
MTL-EN was 2% of that of enetLTS.

If a misclassified sample identified by a certain method is
labeled as non-TNBC, it means that the expression of the
key genes ER, PR, or HER2 is false positive in this patient.
Similarly, if a misclassified sample identified is labeled as
TNBGC, it implies that the expression of ER, PR, or HER2
is a false negative in the patient. In the analysis of the TNBC
dataset, there are 153 individuals labeled as TNBC in this
TNBC dataset. There are 3 samples identified by enetLTS
that were labeled as TNBC patients with false negative rate
2% (3/153). Twelve individuals labeled as TNBC patients
were identified as mislabeled samples by MTL-EN with false
negative rate 7.8% (12/153). In the TNBC dataset, IHC test
of ER and PR was adopted for all patients. For HER2 detec-
tion, the results of IHC were for 507 patients. According to
previous studies, the false negative rates of IHC test for ER,
PR, and HER2 were not low, 15.1% ~21.8% for ER [39],
6.8% (4/58) for PR [40], and 6.2% (4/65) for HER2 [41],
respectively. Therefore, the false negative misclassified sam-
ples identified by MTL-EN were more likely to be close to
the reality than enetLTS.

A large class of computational problems in robust statis-
tics can be formulated as the selection of the optimal subset
of data based on some criterion function [10]. AR-Cstep
algorithm, as the improvement of C-step algorithm, can be
extended to other robust models with regularized parame-
ters. It is an effective algorithm for finding the most suitable
subset of regularized models, such as robust Adaptive
LASSO, Group LASSO, SCAD, and MCP. The AR-Cstep
algorithm can be extended to other generalized linear
models, such as penalized multiclass logistic regression and
penalized Poisson regression.

7. Conclusion

AR-Cstep can solve the problem of the C-step algorithm not
converging because the regularized parameters change dur-
ing the iteration. It provides an idea for developing the effi-
cient algorithm of robust penalized regression based on
trimming. The AR-Cstep algorithm can be extended to other
robust models with regularized parameters. In practice,
MTL-EN using AR-Cstep algorithm is the recommended
method for mislabeled sample identification in omics data
because of its high accuracy and high operation speed. When
the proportion of mislabeled samples is relatively low and
<5%, Ensemble can be used for variable selection. When
the proportion of mislabeled samples is >5%, Ensemble
can be used for variable selection on a subset of data after
removing mislabeled samples identified by MTL-EN.

Data Availability

Code is available on Github (https://github.com/hwsun2000/
AR-Cstep). The BRCA RNA-Seq FPKM dataset was imported
using the “brca.data® R package (https:/github.com/
averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar

.82).


https://github.com/hwsun2000/AR-Cstep
https://github.com/hwsun2000/AR-Cstep
https://github.com/averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz
https://github.com/averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz
https://github.com/averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz
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