

Review Article

The functions of gut microbiota-mediated bile acid metabolism in intestinal immunity

Yanmin He ^{a,b,c,d,e}, Weike Shaoyong ^{a,b,c,d,e}, Yanli Chen ^{a,b,c,d,e}, Menglin Li ^f, Yujie Gan ^{a,b,c,d,e}, Lu Sun ^{a,b,c,d,e}, Yalin Liu ^{a,b,c,d,e}, Yizhen Wang ^{a,b,c,d,e}, Mingliang Jin ^{a,b,c,d,e,*}

^a Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China

^b Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China

^c Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China

^d Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China


^e National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China

^f State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

HIGHLIGHTS

- This review provided a comprehensive overview of bile acid (BA) synthesis, transport and metabolism.
- This review summarized the signaling and regulatory mechanisms by which BAs engage with their receptors.
- The factors affecting BA metabolism were reviewed.
- BA-microbiota interactions modulate host physiology and disease progression.
- Manipulating BA signaling could provide novel strategies to restore the host's health and the gastrointestinal ecosystem.

GRAPHICAL ABSTRACT

Abbreviations: AKR1D1, Aldo-keto reductase family 1, member D1; ApoCII, Apolipoprotein C-II; ASBT, Apical sodium-dependent BA transporter; BA, Bile acid; BAAT, Bile acid-CoA: amino acid N-acyltransferase; BACS, Bile acyl-CoA synthetase; BSEP, Bile salt export pump; BSH, Bile salt hydrolase; CA, Cholic acid; CAR, Constitutive androstane receptor; CD, Crohn's disease; CDCA, Chenodeoxycholic acid; *C. difficile*, *Clostridium difficile*; CDI, *Clostridium difficile* infection; CRC, Colorectal cancer; *C. scindens*, *Clostridium scindens*; CYP7A1, Cholesterol-7 α -hydroxylase; CYP8B1, Sterol-12 α -hydroxylase; CYP27A1, Sterol-27-hydroxylase; CYP450, Cytochrome P450; DCA, Deoxycholic acid; DCs, Dendritic cells; DSS, Dextran sodium sulfate; *EcN*, *Escherichia coli* Nissle; EMCA, Galalpha-ethyl-23(S)-methyl-cholic acid; FDA, Food and Drug Administration; FGF15, Fibroblast growth factor 15; FGFR4, Fibroblast growth factor receptor 4; FMT, Fecal microbiota transplantation; FXR, Farnesoid X receptor; GCA, Glycocholic acid; GCDCA, Glycochenodeoxycholic acid; GLP-1, Glucagon-like peptide-1; GPCRs, G protein-coupled receptors; GUDCA, Glycine-amidated ursodeoxycholic acid; HCA, Hyocholic acid; HCC, Hepatocellular carcinoma; HDCA, Hyodeoxycholic acid; HFD, High-fat diet; HSDH, Hydroxysteroid dehydrogenase; IBABP, Ileal BA-binding protein; IBD, Inflammatory bowel diseases; IBS, Irritable bowel syndrome; ICP, Intrahepatic cholestasis of pregnancy; IL-2, Interleukin-2; ISCs, Intestinal stem cells; IsoDCA, 3 β -hydroxydeoxycholic acid; IUGR, Intrauterine growth restriction; LBW, Low-birth-weight; LCA, Lithocholic acid; LPL, Lipoprotein lipase; LPS, Lipopolysaccharide; MAFLD, Metabolic dysfunction-associated fatty liver disease; MCA, Muricholic acid; MCBAs, Microbially conjugated bile acids; MDR, Multidrug resistance; MRP3, Multidrug resistance-associated protein 3; NAFLD, Non-alcoholic fatty liver disease; NFAT, Nuclear factor of activated T; NKT, Natural killer T; NTCP, Sodium/taurocholate cotransporting polypeptide; NLRP3, NOD-like receptor protein 3; OA, Oleic acid; OATP2, Organic anion-transporting polypeptide 2; OCA, Obeticholic acid; OST, Organic solute transporter; PBA, Primary bile acid; PKA, Protein kinase A; PPAR α , Peroxisome proliferator-activated receptor α ; PXR, Pregnen X receptor; RXR, Retinoid X receptor; SBA, Secondary bile acid; SCFAs, Short-chain fatty acids; SHP, Small heterodimer partner; STAT1, Signal transducer and activator of transcription-1; SULTs, Sulfotransferases; T- α -MCA, Tauro- α -muricholic acid; TCA, Taurocholic acid; TCDCA, Taurochenodeoxycholic acid; TCPOBOP, 1,4-bis[2-(3,5-dichloropyridyl)] benzene; TG, Triglycerides; TGR5, G protein-coupled bile acid receptor 1; TUDCA, Taurine-amidated ursodeoxycholic acid; UC, Ulcerative colitis; UDCA, Ursodeoxycholic acid; UGTs, UDP-glucuronosyltransferases; VDR, Vitamin D₃ receptor; 1,25(OH)₂VD₃, 1 α ,25-dihydroxy vitamin D₃; 3-sucCA, 3-succinylated cholic acid; 7 α -HSDs, 7 α -hydroxysteroid dehydrogenases; 7-KLCA, 7-ketolithocholic acid; 12-KLCA, 12-ketolithocholic acid.

* Corresponding author at: College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.

E-mail address: mljin@zju.edu.cn (M. Jin).

ARTICLE INFO

Article history:
Received 14 February 2025
Revised 19 April 2025
Accepted 8 May 2025
Available online 10 May 2025

Keywords:
Bile acids
Gut microbiota
Intestinal immunity
Targeted therapy

ABSTRACT

Background: Bile acids, derived from cholesterol in the liver, consist a steroid core. Primary bile acids and secondary bile acids metabolized by the gut microbiota make up the bile acid pool, which modulate nuclear hormone receptors to regulate immunity. Disruptions in the crosstalk between bile acids and the gut flora are intimately associated with the development and course of gastrointestinal inflammation.

Aim of review: This review provides an extensive summary of bile acid production, transport and metabolism. It also delves into the impact of bile acid metabolism on the body and explores the involvement of bile acid-microbiota interactions in various disease states. Furthermore, the potential of targeting bile acid signaling as a means to prevent and treat inflammatory bowel disease is proposed.

Key scientific concepts of review: In this review, we primarily address the functions of bile acid-microbiota crosstalk in diseases. Firstly, we summarize bile acid signalling and the factors influencing bile acid metabolism, with highlighting the immune function of microbially conjugated bile acids and the unique roles of different receptors. Subsequently, we emphasize the vital role of bile acids in maintaining a healthy gut microbiota and regulating the intestinal barrier function, energy metabolism and immunity. Finally, we explore differences of bile acid metabolism in different disease states, offering new perspectives on restoring the host's health and the gastrointestinal ecosystem by targeting the gut microbiota-bile acid-bile acid receptor axis.

© 2025 The Author(s). Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Contents

Introduction	352
BAs and BA metabolism	353
BA synthesis, transport and metabolism	353
Signalling by BAs	355
Bas and FXR	355
BAs and TGR5	355
BAs, PXR and CAR	355
BAs and VDR	356
Factors influencing bile acid metabolism	356
Antibiotics	356
Exercise	357
Diet	358
Hepatobiliary system diseases and genetic factors	358
Effects of microbiota-BA interactions	358
Regulation of the intestinal barrier functions	359
Regulation of glycolipid-energy metabolism	360
Regulation of immune homeostasis	360
The role of microbiota and BAs in disease	361
Metabolic diseases	361
<i>Clostridium difficile</i> infection	361
Gastrointestinal inflammation	362
Therapeutics targeting BA signaling	363
Fecal microbiota transplantation	363
Probiotics	363
Administration of BAs and related drugs	364
Conclusions	364
Compliance with ethics requirement	364
CRediT authorship contribution statement	364
Funding	365
Declaration of competing interest	365
Acknowledgements	365
References	365

Introduction

Common metabolic diseases, such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and diabetes, have become a global health burden and are facing great challenges [1]. Although there have been meaningful progress in the pharmacologic treatments of metabolic diseases, such as dulaglutide, exenatide, and semaglutide, the prevalence of metabolic dis-

eases has increased in recent years, which reinforces the need for more effective treatments [2]. Notably, *Clostridium difficile* is an anaerobic toxigenic bacterium that can cause a severe infectious colitis [3]. Given the escalating global incidence and prevalence of *Clostridium difficile* infection (CDI) and inflammatory bowel diseases (IBD), there is a growing worldwide concern regarding their effective treatments [4]. Presently, IBD is primarily managed through immunosuppressive drug therapies. However, owing to

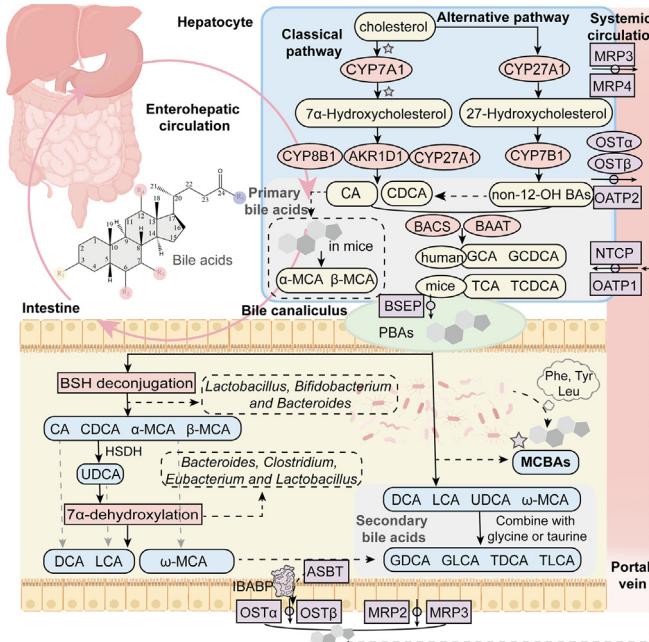
variations in individual responses to medications and the associated risks of infections and tumors, there is an urgent need for more universally applicable intervention strategies [5].

The human gut contains a wide variety of bacteria and microorganisms collectively referred to as the gut microbiota. This microbiota is pivotal for sustaining overall health and is also implicated in the pathogenesis of various diseases [6]. Despite the immense differences in pathologies of common metabolic disorders, they are related to the composition and function of the gut microbiota [7]. Notably, gut bacterial communities in stool specimens from individuals with IBD exhibit substantial variations compared to those of healthy controls [8]. Moreover, the combined influence of the host genome and its microbial community drives the synthesis of a diverse array of metabolic byproducts, such as bile acids (BAs), short-chain fatty acids (SCFAs), and compounds derived from tryptophan. These metabolites play a crucial role in immune regulation and intestinal homeostasis by facilitating interactions between the host and the gut bacteria.

Notably, BAs have garnered more attention than other metabolites that result from the co-metabolism of the host's intestinal flora owing to their distinctive immunomodulatory properties. Synthesized from cholesterol in the liver, BAs are subject to influence by the gut microbiota, which partakes in their synthesis and conversion, subsequently impacting microbiota composition [9]. BAs exert their effects through interacting with several nuclear hormone receptors, such as the farnesoid X receptor (FXR), G protein-coupled bile acid receptor 1 (TGR5), pregnane X receptor (PXR), vitamin D₃ receptor (VDR), and constitutive androstane receptor (CAR) [10]. The dynamic interactions among the gut microbiota, BAs, BA receptors and host significantly influences immune function and metabolic characteristics, establishing a critical link to the development of metabolic diseases and gastrointestinal inflammation.

The involvement of the BA-microbiota crosstalk in IBD has drawn more attention in recent years. This review delves into the metabolism of BAs, emphasizing the impact of BA-microbiota interactions and their involvement in disease. Furthermore, it is suggested that BA signaling may be targeted as a way to prevent and treat IBD.

BA s and BA metabolism


BA synthesis, transport and metabolism

BAs consist a steroid core comprising three six-membered and one five-membered carbon ring [11]. This unique structure facilitates their solubility in water, crucial for fat digestion, absorption, and the removal of excessive cholesterol from the body. The hepatic production of BAs from cholesterol is coordinated by cytochrome P450 (CYPs) enzymes, involving two synthetic pathways: the classical and alternative pathways [12]. In the primary pathway, cholesterol-7 α -hydroxylase (CYP7A1) initiates the process by converting cholesterol to 7 α -hydroxyl cholesterol, a pivotal step in the entire reaction chain. Subsequent modification of the steroid ring involves sterol-12 α -hydroxylase (CYP8B1) and aldo-keto reductase family 1, member D1 (AKR1D1), followed by sterol-27-hydroxylase (CYP27A1)-mediated side chain oxidation, ultimately yielding cholic acid (CA) and chenodeoxycholic acid (CDCA). The secondary pathway involves the CYP27A1-catalyzed 27-hydroxylation of cholesterol, followed by further hydroxylation by CYP7B1, culminating in the synthesis of non-12-OH BAs, predominantly CDCA [13].

BAs can be broadly classified into primary bile acids (PBAs) and secondary bile acids (SBAs). PBAs are synthesized directly by hepatocytes and stored in bile, representing its predominant con-

stituents, mainly including CA, CDCA, and their conjugates by combining with glycine (mainly in humans) or taurine (predominantly in mice) to generate glycocholic acid (GCA), glycochenodeoxycholic acid (GCDCA), taurocholic acid (TCA) and taurochenodeoxycholic acid (TCDCA). Upon secretion into the gut, PBAs are metabolized by the gut microbiota to produce SBAs, including deoxycholic acid (DCA), lithocholic acid (LCA) and their conjugates by combining with glycine or taurine [10]. Notably, the composition of BAs are species-specific, with humans predominantly featuring CA and CDCA, while rodents primarily exhibit CA and muricholic acid (MCA) [14,15]. α -MCA and β -MCA are formed by hydroxylation at C6, which are scarce in humans, though not absent [16]. CDCA, the main PBA in humans, is a potent agonist of the FXR [17]. In contrast, the mouse β -MCA derivative tauro- β -MCA is an FXR antagonist [18]. The ratio of PBAs to SBAs is lower in humans than in mice, largely due to the expression of CYP2A12 in mice, an enzyme that converts SBAs into PBAs [19]. Consequently, the different FXR responses from human and mouse BA pools have profound effects on signaling pathways and metabolic outcomes.

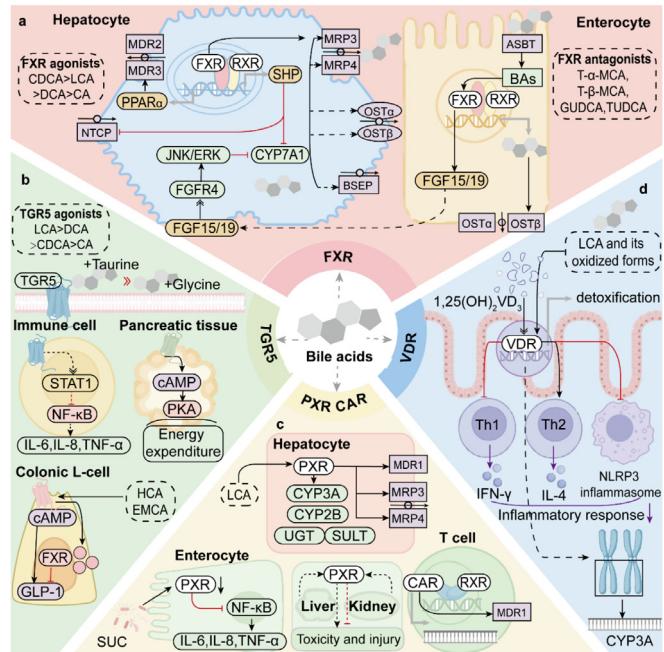

Advancements of untargeted metabolomics have led to the discovery of microbially conjugated bile acids (MCBAs), a class of compounds formed by gut microbiota through the combination of BAs with non-traditional amino acids (such as those other than glycine or taurine) or other molecules via specific enzymes [20]. Some studies suggest that the bacterium *Enterocloster bolteae* is primarily responsible for their production [16]. These conjugates are found in high concentrations in the cecal and colonic contents of mice, as well as in their feces, where a significant presence of gut microbiota is observed [21]. They have also been shown to be accessible to the enterohepatic circulation. Quantitative studies of MCBAs in human fecal samples have revealed their concentrations to be equal to or higher than those of PBAs and SBAs. Furthermore, these concentrations were found to decrease after bariatric surgery, underscoring the significance of MCBAs as a pivotal component of BA pool, responsive to changes in gastrointestinal physiology [22]. Traditional BAs are typically conjugated with glycine or taurine at the C24 carboxyl site, while MCBAs include conjugation with other amino acids or esters at different positions, such as hydroxyls of the sterol backbone [23]. The exact mechanism of this microbially mediated conjugation has not been elucidated, but the addition of unique amino acid reactions alters the physicochemical and biological properties of BAs. Specifically, phenylalanine and leucine are hydrophobic amino acids, leading to an increase in the hydrophobicity of the BA itself, which may prevent binding to the receptors [16]. Recent studies suggest MCBAs can influence immune cell development and function. For example, in early-life cohorts, altered MCBA profiles were associated with the risk of developing islet autoimmunity and type 1 diabetes. These MCBAAs were enriched in patients with inflammatory bowel disease or obesity [20]. Researchers are increasingly looking into how modulating gut microbiota could shape the MCBA pool and influence host health. Meanwhile, recent studies have demonstrated the existence of more BA modifications than previously recognized, with the discovery of polyamine biosynthesis pathway-derived metabolites that are amidated to BAs [24]. Studies have indicated that bile salt hydrolase (BSH) serves a dual function in the metabolism of BAs. Not only can it deconjugate amines from BAs, but it also acts as a bacterial N-acyltransferase, catalyzing the formation of amine-conjugated BAs with unconjugated BAs as the substrate [25]. Furthermore, the synthesis and modification of 3-O-acylated BAs have been revealed, especially 3-O-succinylated cholic acid (3-sucCA) and 3-acetylated cholic acid (3-acetyCA), modified by the gut microbiota *Bacteroides uniformis* and *Christensenella minuta*, respectively [26–28]. However, the 3-acylated BAs are limited to

Fig. 1. Enterohepatic circulation of bile acids. The general structure of bile acids (BAs) consists a steroid core. R_1-R_4 are sites of dehydroxylation, oxidation or amidation. Sites of esterification, amidation or deconjugation are indicated as R_5 . BAs are produced via both the classical and alternative pathways [12]. The primary pathway, mainly mediated by cholesterol-7 α -hydroxylase (CYP7A1), which serves as the pivotal step, also involves sterol-12 α -hydroxylase (CYP8B1), aldo-keto reductase family 1, member D1 (AKR1D1), and sterol-27-hydroxylase (CYP27A1) to produce cholic acid (CA) and chenodeoxycholic acid (CDCA) [13]. The secondary pathway, mediated by CYP27A1, leads to the generation of non-12-OH BAs, predominantly CDCA, through the action of CYP7B1 [13]. CA, α -muricholic acid (α -MCA) and β -MCA are dominant in rodents [15]. CA and CDCA are conjugated to glycine or taurine by bile acyl-CoA synthetase (BACS) and bile acid-CoA:amino acid N-acyltransferase (BAAT), forming the primary bile acid (PBA) pool [29]. Excessive hepatic BAs are transported into the systemic circulation via multidrug resistance-associated protein 3 (MRP3), MRP4, and the organic solute transporter subunit alpha-beta (OST α -OST β) complex [10,31]. In the intestine, gut microbiota metabolizes PBAs to SBAs using its own enzymes. Specifically, *Lactobacillus*, *Bifidobacterium* and *Bacteroides* deconjugates conjugated PBAs via BSH and anaerobic bacteria from the genera like *Bacteroides*, *Clostridium*, *Eubacterium* and *Lactobacillus* transform unconjugated PBAs into corresponding SBAs through 7 α -dehydroxylation [34,141,142]. CDCA is converted into ursodeoxycholic acid (UDCA) via the hydroxysteroid dehydrogenase (HSDH) [263]. In addition, phenylalanine-, tyrosine- and leucine-conjugated CA derivatives, referred to as microbially conjugated bile acids (MCBAs), are generated in response to gut microbiota activity [20]. In the distal ileum, both conjugated and unconjugated BAs are reabsorbed via the apical sodium-dependent BA transporter (ASBT), bound to the ileal BA-binding protein (IBABP), and then delivered to the portal vein via transport proteins such as OST α , OST β , MRP2 and MRP3 [31,38,39]. In the liver, ileal BAs are taken up by hepatocytes via the sodium/taurocholate cotransporting polypeptide (NTCP) and OATP1, completing the enterohepatic circulation [29]. \star indicates a key rate-limiting process and highlights a novel discovery. Solid black arrows indicate stepwise reaction processes, while dashed arrows represent cyclic processes. (Referenced from Jia W, et al. Nat Rev Gastroenterol Hepatol, 2018).

monocarboxylic acid, and the mechanism of their biosynthesis is unknown [27].

CA and CDCA are produced from cholesterol in hepatocytes and subsequently conjugated with glycine or taurine by bile acyl-CoA synthetase (BACS) and bile acid-CoA: amino acid N-acyltransferase (BAAT), after which they are stored in the gallbladder [29,30]. In the postprandial state, PBAs are released from the liver into the bile canaliculus via the canalicular bile salt export pump (BSEP) [6]. Elevated levels of hepatic BAs and bilirubin are transported into the systemic circulation via multidrug resistance-associated protein 3 (MRP3), MRP4, organic anion-transporting polypeptide 2 (OATP2), and the organic solute transporter subunit alpha-beta (OST α -OST β) complex, eventually enter-

Fig. 2. BAs signaling and its regulatory mechanisms. (a) Interaction between BAs and FXR. FXR is primarily found in the liver and intestine, where it is crucial in regulating BA biosynthesis. When FXR is activated in hepatocytes, it stimulates the expression of the small heterodimer partner (SHP), which in turn inhibits the transcription of CYP7A1, leading to a decrease in BA synthesis [42]. Additionally, FXR boosts the expression of peroxisome proliferator-activated receptor α (PPAR α) and its downstream genes, enhancing bile excretion through upregulation of the multidrug resistance protein 2 (MDR2) and MDR3 transporters [44]. (b) BAs and TGR5. BAs function as natural activators for TGR5, a receptor that mitigates the pro-inflammatory NF- κ B signaling pathway through the signal transducer and activator of transcription-1 (STAT1)-dependent mechanism, reducing the secretion of pro-inflammatory cytokines from immune cells [56,57]. However, this pathway is controversial (dashed arrow) [59]. In pancreatic tissue, stimulation of the TGR5-cAMP-protein kinase A (PKA) pathway by BAs regulates energy expenditure [56]. Additionally, hyocholic acid (HCA) can enhance the release of GLP-1 in the intestine by concurrently activating TGR5 and suppressing FXR [64]. Activation of TGR5 also promotes the regeneration of enterocytes [61]. (c) BAs, PXR and CAR. PXR can upregulate MDR1 and MRP to regulate BA excretion [70]. PXR also protects the host from microbial invasion by inducing the expression of CYP3A, CYP2B, sulfotransferases (SULTs), and UDP-glucuronosyltransferases (UGTs) [71,72]. PXR agonists suppressed the NF- κ B signaling pathway and decreased cytokine production [76]. However, the therapeutic effects of PXR are conflicting depending on the tissue or model used and the different states. In the liver, activation of PXR induced hepatotoxicity, whereas activation of PXR in the kidney prevented acute injury [80,81]. CAR interacts with RXR to form heterodimers, regulating gene transcription related to BAs metabolism and detoxification [85]. (d) BAs and VDR. VDR primarily binds to 1 α ,25-dihydroxy vitamin D3 (1,25(OH) $_2$ VD $_3$) [95]. Activation of VDR suppresses the inflammatory response by reducing Th1 cytokine production, and promoting Th2 cytokine production. It also inhibits the stimulation of NOD-like receptor protein 3 (NLRP3) inflammasome and other inflammation-related proteins [98–100]. Black single arrows indicate promotive processes, black double arrows represent binding interactions, red arrows denote inhibitory processes, and dashed arrows indicate controversial pathways. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ing the intestine through the bile together [31]. In the intestine, gut microbiota metabolizes PBAs to SBAs using its own enzymes. Specifically, the microbiota deconjugates conjugated PBAs via BSH and converts them into the predominant SBAs through 7 α -dehydroxylation [11]. BSH enzymes are represented in various microbial species in most phyla, with *Bacteroides* spp. playing a

major role in the deconjugation of PBAs [32]. Gram-positive bacteria are capable of deconjugating conjugated BAs, such as *Lactobacillus*, *Bifidobacterium*, *Enterococcus*, and *Clostridium*, which are similar to Gram-negatives, like *Brucella* and *Bacteroides* [16,33–36]. Subsequently, only a few species of intestinal anaerobic bacteria can accomplish BA 7 α -dehydroxylation, such as *Clostridium scindens*, *Clostridium hylemonae*, and *Peptacetobacter hiranonis* [32,37]. Both conjugated and unconjugated BAs are reabsorbed in the terminal ileum via the apical sodium-dependent BA transporter (ASBT), after which they attach to the ileal BA-binding protein (IBABP) and are carried to the basolateral membrane [38]. These conjugates are then delivered to the portal vein via OST α , OST β , MRP2 and MRP3, returning to the liver with the bloodstream [31,39]. In the liver, ileal BAs are recycled back to hepatocytes through the sodium/taurocholate cotransporting polypeptide (NTCP) and OATP1, where they are re-secreted into the bile canalculus by BSEP alongside newly generated BAs. The process is known as enterohepatic circulation, which occurs 4 to 12 times daily in humans (Fig. 1) [29,40].

Signalling by BAs

BAs act as signal molecules and can coordinate with various BA receptors to regulate metabolic and inflammatory processes, including FXR, PXR, CAR, VDR and TGR5 (Fig. 2) [13]. It is noteworthy that different BAs exhibit varying affinities for these receptors [41].

Bas and FXR

Farnesoid X receptor (FXR) plays a central role in regulating BA biosynthesis and intracellular homeostasis in both hepatic and intestinal tissues. Within hepatocytes, FXR triggers the expression of small heterodimer partner (SHP), consequently suppressing CYP7A1 transcription and thus BA production [42]. Additionally, FXR upregulates the expression of BSEP and other transporters such as MRP3, MRP4, OST α and OST β , while inhibiting NTCP through activated SHP, thereby enhancing hepatic BA efflux [43]. Notably, FXR also contributes to controlling the detoxification process of BAs. Reduced transcriptional level of FXR results in lower expression of peroxisome proliferator-activated receptor α (PPAR α) and its downstream genes, exacerbating cholestasis [44]. Apart from its direct impacts in the liver, FXR is triggered by BAs in the terminal ileum, leading to the induction of fibroblast growth factor 15 (FGF15) expression in mice and its equivalent FGF19 expression in humans [45]. Subsequently, FGF15/19 is transported to hepatic tissues and engages with fibroblast growth factor receptor 4 (FGFR4), activating the JNK 1/2 and ERK 1/2 signaling cascades, thereby inhibiting CYP7A1 transcription and BA synthesis [45,46]. Overall, FGF15/19 and SHP synergistically regulate BA synthesis in the enterohepatic circulation.

FXR's regulatory breadth is extensive, directly controlling more than 300 primary response genes and potentially thousands of additional ones through its interaction with the retinoid X receptor (RXR) [47]. Some studies indicate that BAs serve as endogenous FXR agonists, activating FXR at physiological concentrations [48]. The ability of BAs to activate FXR is ranked as CDCA, LCA, DCA and CA, with CDCA exhibiting the highest potential for activating FXR [48,49]. Notably, MCBAs show unique receptor affinities compared to traditional BAs, in which phenylalanocholic acid and tyrosocholic acid act as even stronger FXR agonists than CDCA (2-fold and 69-fold, respectively) [20,50]. Tauro- α -muricholic acid (T- α -MCA) and T- β -MCA are recognized as potent antagonists of FXR, while glycine-amidated ursodeoxycholic acid (GUDCA) and taurine-amidated ursodeoxycholic acid (TUDCA) have also been identified as FXR antagonists [18,51].

BAs and TGR5

BAs act as natural ligands for TGR5, which belongs to the rhodopsin-like subfamily of G protein-coupled receptors (GPCRs). TGR5 is widely expressed across various tissues, particularly in gallbladder epithelial cells, where it is most abundant [52]. The potency of unconjugated BAs in stimulating TGR5 follows this order: LCA, DCA, CDCA, CA [53]. Both conjugated and unconjugated BAs can activate TGR5, with taurine-conjugated BAs showing a stronger ability to activate TGR5 compared to glycine-conjugated BAs [54]. Notably, Leucine-conjugated chenodeoxycholic acid and Phenylalanine-conjugated chenodeoxycholic acid are able to act as activating ligands for TGR5 with similar efficacy as taurolithocholic acid, albeit with lower potency [55]. The activation of TGR5 leads to inhibition of the pro-inflammatory NF- κ B signalling pathway through the signal transducer and activator of transcription-1 (STAT1)-dependent mechanism, thereby reducing the secretion of pro-inflammatory cytokines such as IL-6, IL-8 and TNF- α in immune cells [56,57]. In a mouse model of mastitis caused by *Staphylococcus aureus*, DCA-mediated TGR5 activation alleviated symptoms by inhibiting the NF- κ B and NLRP3 pathways [58]. However, activation of TGR5 enhanced the LPS-induced NF- κ B signalling pathway and inflammatory responses in human monocytes, suggesting that TGR5 may have different regulatory roles in different cell types [59]. Overall, the anti-inflammation effects of TGR5 have been highlighted in past studies [60]. Moreover, the activation of TGR5 in intestinal stem cells aids in the regeneration of enterocytes [61]. BAs and their secondary metabolites can trigger the proliferation of intestinal organoids through TGR5, simultaneously increasing the number of cells that secrete glucagon-like peptide-1 (GLP-1) [62]. These studies emphasize the role of TGR5 in maintaining intestinal homeostasis, making it a critical mediator linking intestinal epithelial regeneration with metabolic regulation. Additionally, BAs can trigger the TGR5-cAMP-protein kinase A (PKA) pathway to modulate energy expenditure [56]. Cholic acid 7-sulfate, an apical activator of TGR5 expression specific to the gut, boosts the release of GLP-1, conferring anti-diabetic effects [61,63]. Hyocholic acid (HCA) enhances the production of GLP-1 in the intestine by concurrently stimulating TGR5 and suppressing FXR, thereby improving glucose regulation [64]. Furthermore, 6alpha-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777) has been recognized as a specific TGR5 agonist, capable of inducing GLP-1 release [65]. Collectively, BA-mediated TGR5 activation promotes GLP-1 secretion, serving as a promising pharmacological target for metabolic disorders.

BAs, PXR and CAR

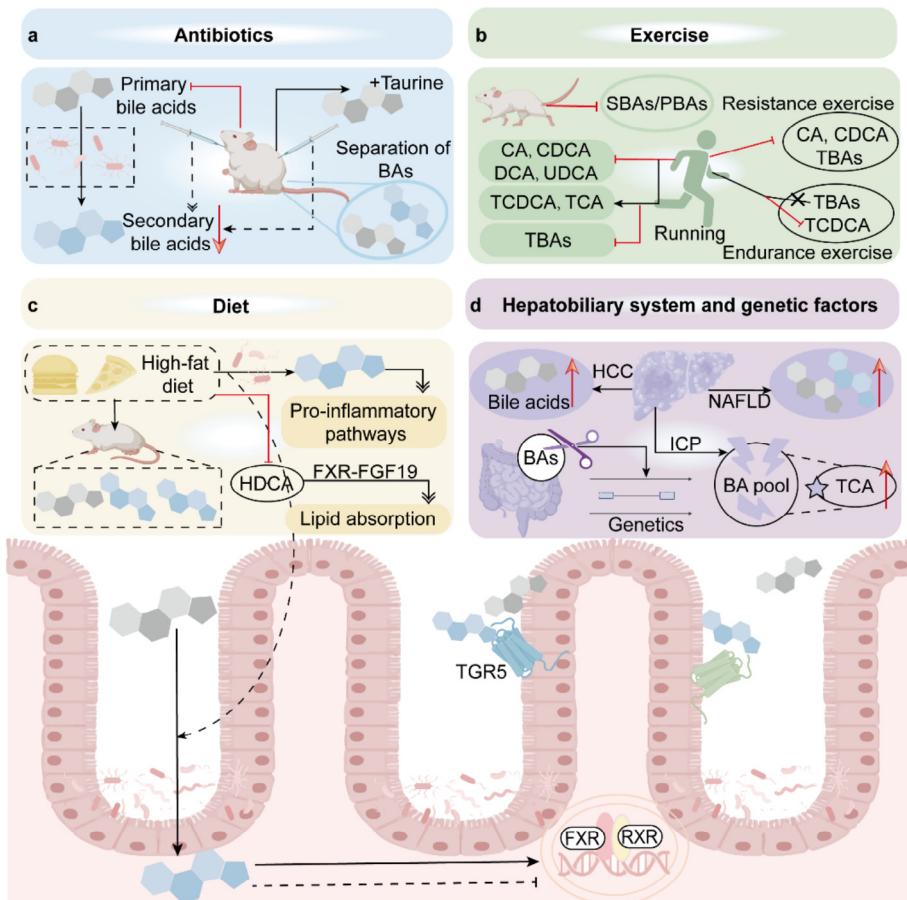
In addition to FXR and TGR5, nuclear receptors such as PXR, CAR, and VDR also play significant roles in BA-mediated immune regulation, although their contributions are less well characterized. Which BA receptor would be predominate in case of coexpression in a specific immune cell population remains unclear and might depend on the pathological context [66]. Specifically, FXR and TGR5 are activated at nonpathological concentrations, whereas PXR and CAR are also stimulated by BAs, but at higher concentrations [67].

Pregnane X receptor (PXR), belonging to the nuclear receptor superfamily, is a transcription factor activated by ligands, with high levels in both the liver and intestine. It is essential for regulating BA metabolism and the detoxification of exogenous drugs [68]. LCA and its 3-keto metabolite are capable of activating PXR [69], and subsequently upregulate the expression of MDR1 and MRP to regulate BA excretion [70]. Additionally, PXR protects the host from invasion by inducing the expression of various enzymes, including CYP2B, CYP3A, sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) [71,72]. Oleanolic acid (OA) can

induce the expression of PXR target proteins, including CYP3A11, GSTM2, and UGT1A1, thereby promoting liver restoration [73]. Importantly, recent study has shown that macrophage PXR activation modulates macrophage polarization and attenuates endotoxin-induced liver injury [74]. Several reports have suggested a potential role for PXR in regulating intestinal inflammation, representing an interesting target in the IBD. Notably, in mice receiving severe ulcerative colitis-derived microbiota, the expression of PXR in the colon is reduced [75]. Studies have shown that PXR agonists alleviated experimental colitis induced by dextran sodium sulfate (DSS) by blocking the NF- κ B signaling pathway and decreasing cytokine production [76–78]. In a mouse model of necrotizing enterocolitis, the disease severity was significantly increased by PXR knockout, whereas low doses of LCA reduced the intestinal expression of IL-6 and attenuated intestinal proinflammatory responses [79]. However, the therapeutic effects of PXR are conflicting depending on the tissue or model used and the different states. Rifampicin and isoniazid have been shown to mediate hepatotoxicity through PXR activation, although another report showed that PXR activation in the kidney protected against acute kidney injury [80,81]. Besides, xenobiotic clearance of PXR is essential for the prevention of tumorigenesis [82]. However, CYP3A4, the maker of activated PXR, affects pharmacokinetic drug–drug interactions, leading to decreased efficacy of anticancer drugs [83]. Therefore, the treatment of PXR antagonists may enhance the therapeutic effect by inhibiting CYP3A4 [84]. These discoveries suggest that PXR may be a regulatory center for tumorigenesis.

Constitutive androstane receptor (CAR) is recognized to form heterodimers with retinoid X receptor (RXR), which is involved in regulating gene transcription [85]. CAR is regarded as an indirect receptor for BAs, as it does not directly bind to major BAs, and it has been recognized as a major xenosensor of xenobiotic metabolism and disposition [86,87]. CAR activates the expression of several hydrolytic, conjugative drug transporters, and drug-metabolizing enzymes, thus contributing to drug elimination and toxicological processes [88]. It controls the expression of MDR1 in T cells, thereby protecting mice from BA toxicity [86,89]. The use of transgenic mouse models revealed that CAR was able to induce the expression of sulfotransferase and 3'-phosphoadenosine-5'-phosphosulfate synthetase 2, conferring resistance to LCA-mediated hepatotoxicity [90]. Moreover, 1,4-bis[2-(3,5-dichloropyridyl)] benzene (TCPOBOP)-mediated CAR activation significantly alleviated obesity, diabetes and fatty liver in mice fed with HFD [87]. There are several similarities between PXR and CAR. First, both receptors can be activated by exogenous substances and induce the expression of drug-metabolizing enzymes and transporters, such as the CYP3A family [91]. Second, both receptors are capable of participating in BA homeostasis and other pathophysiological processes. In contrast to PXR, there is no experimental evidence to suggest that BAs are direct ligands of CAR [92]. Both PXR and CAR can regulate BA toxicity, each exerting different protective properties by regulating distinct BA detoxification enzymes and transporters [66,89]. PXR is thought to activate the CYP3A promoter, whereas CAR regulates the expression of CYP2B, which has a smaller role in drug metabolism than CYP3A [93]. In conclusion, PXR and CAR have overlapping but differential roles in pathophysiology, and the crosstalk between the two receptors should be of concern.

BA and VDR


In contrast to the anti-inflammatory functions of BA signaling through FXR and TGR5, BAs can damage cellular membranes and have potent cytotoxicity at high concentrations. Accordingly, the VDR acts as a low-affinity BA sensor to maintain homeostasis [92]. BAs can activate the VDR, which predominantly binds to

1 α ,25-dihydroxy vitamin D3 (1,25(OH)2VD3), the biologically active form of vitamin D. VDR is abundantly present in the gastrointestinal tract, where it exerts potent and specific immunomodulatory effects [94,95]. VDR binds to numerous genomic loci in a ligand-dependent fashion and regulates the expression of target genes by inducing local chromosome changes [96]. Apart from vitamin D and its analogues, LCA and its oxidized forms can also activate VDR [97]. VDR is recognized as an important regulator of both innate and adaptive immune cell function. Upon activation, VDR suppresses the inflammatory response by inhibiting the production of Th1 cytokine, promoting the production of Th2 cytokine, and reducing the expression of NOD-like receptor protein 3 (NLRP3) inflammasome and other inflammation-related proteins [98–100]. VDR can negatively regulate monocyte-derived macrophage activation, promote T_{reg} cell differentiation and inhibit pro-inflammatory Th1 and Th17 responses [101,102]. Furthermore, VDR activation induces the expression of CYP3A in vivo, thereby providing protection to the intestine from BA toxicity. Studies have shown 1,25(OH)₂VD₃ inhibits the NLRP3 inflammasome via VDR, thereby alleviating ulcerative colitis induced by DSS [103].

Factors influencing bile acid metabolism

Antibiotics

The type, duration, and route of administration of antibiotic treatment significantly affect BA composition by altering the gut microbiota. The use of antibiotics brings about significant alterations in both the composition and function of the gut microbiota [18,104–106]. Antibiotic-induced gut microbiota dysbiosis and regulation of the host transcriptome are closely linked to BA metabolism [107]. Specifically, broad-spectrum and narrow-spectrum antibiotics exhibit distinct effects. Broad-spectrum antibiotics, such as aminoglycosides and cephalosporins, dramatically reduce microbial diversity and deplete key anaerobic taxa like *Clostridium* spp., which are essential for the synthesis of SBAs via 7 α -dehydroxylation pathways [108]. As a result, levels of SBAs such as DCA and LCA decreased significantly following broad-spectrum antibiotic treatment, while PBAs accumulated [109]. In contrast, narrow-spectrum antibiotics exert a more targeted effect, preserving overall microbial diversity and thus maintaining more stable BA profiles [110]. However, even narrow-spectrum agents can selectively affect specific bacterial populations involved in BSH activity, subtly modulating the composition of the BA pool [111]. Moreover, the effect of the duration of antibiotic administration on the hepatic BA profile was variable, for example, the expression of CYP3A11 decreased to 11.4 % after the 5-day treatment with vancomycin and polymyxin B and to 7.01 % after the 25-day treatment [112]. This suggests that the impact of antibiotic treatment on BAs and hepatic metabolizing enzymes varies over time. Notably, the alterations in the BA pool induced by antibiotics are influenced by the administration routes (Fig. 3). For example, treatment of rats with oral roxithromycin and vancomycin led to a reduction in PBAs levels, whereas parenteral roxithromycin administration increased the taurine conjugates of PBAs ($p < 0.05$) [113]. Furthermore, the decreases of SBAs after oral antibiotics were usually stronger than after parenteral treatment [113]. Different antibiotic treatments exhibit diverse effects on the composition of BAs. For instance, in rats treated with vancomycin and sparfloxacin, the separation of BAs in feces was more noticeable than in plasma, suggesting that antibiotics have a more significant impact on the metabolite profile in feces [114]. Additionally, other drugs such as ketoconazole and rifampicin can also interfere with BA metabolism [115].

Fig. 3. Factors influencing bile acid metabolism. (a) Antibiotics. The administration of antibiotics changes the composition and function of the gut microbiota, leading to a reduction in SBAs. This change affects the makeup of BA pool, leading to rapid alterations within the gastrointestinal tract [18,104]. Notably, antibiotic-induced changes in the BA pool depend on the administration routes. For example, oral antibiotic treatment of rats reduced the levels of PBAs, while parenteral antibiotic administration increased the taurine conjugates of PBAs [113]. The decreases of SBAs after oral antibiotics were usually stronger than after parenteral treatment [113]. Additionally, the separation of BAs in stools was more evident than in plasma after antibiotic treatments [114]. (b) Exercise. Physical activity, such as wheel running in rats, has been shown to decrease the ratio of SBAs to PBAs in feces [117]. Significant reductions in serum levels of CA, DCA, CDCA, and UDCA have been observed following a moderate-distance running test in healthy, middle-aged recreational athletes, indicating that exercise might lead to a decrease in total BAs concentration [118]. Notably, various forms of exercises have distinct effects on BA composition. For example, resistance exercise decreased plasma concentration of total BA, CA and CDCA, while endurance exercise had no effect on total BA plasma concentration and decreased TCDCA [119]. (c) Diet. Dietary choices, particularly a high-fat diet (HFD), can markedly affect BA composition in the gastrointestinal tract. Consumption of HFDs resulted in the generation of SBAs by gut microbiota enriched with BSH, subsequently activating pro-inflammatory pathways in the host [126]. In mice fed a HFD, there is a notable decrease in the diversity of BA composition, accompanied by a substantial increase in the proportion of SBAs [127]. HFD led to reduced intestinal HDCA in the dyslipidemia mice and promoted lipid absorption via the intestinal FXR-FGF19 axis [129]. (d) Hepatobiliary system diseases and genetic factors. In individuals with hepatocellular carcinoma (HCC), a significant rise in BA levels has been closely linked to the advancement of the disease [132]. In patients with NAFLD, the serum levels of PBAs and SBAs were increased [133]. Additionally, genetic factors can influence BA metabolism, as evidenced by the loss of intestinal BAs in mice, which has been associated with specific genetic profiles [137]. Furthermore, an elevated percentage of TCA in total BAs emerges as a biomarker for predicting preterm delivery in Intrahepatic cholestasis of pregnancy (ICP) [136]. Black single arrows indicate positively induced processes, while red blunt arrows represent negatively inhibited processes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Exercise

Different types of exercise can affect BA levels in feces and blood, offering new insights into its therapeutic potential for metabolic and gastrointestinal diseases. Researches have indicated that exercise is essential in regulating the makeup of both the gut microbiota and BA pool in enterohepatic axis [116]. Physical exercise influences BAs levels in feces and blood. Research indicates that the proportion of SBAs to PBAs in feces decreased after wheel running exercise in rats, while the daily excretion of BA remained unchanged [117]. Studies on healthy, middle-aged recreational athletes undergoing a middle-distance running test revealed significant decreases in serum levels of CA, DCA, CDCA and UDCA, while the levels of TCDCA and TCA increased substantially (Fig. 3). This suggests that exercise, especially aerobic or endurance exercise, may reduce total BAs concentration, with potential implications for gastrointestinal cancers [118]. Interestingly, various

forms of exercises (i.e., resistance or endurance exercise) have different effects on BA composition. For example, resistance exercise decreased plasma concentration of total BA, CA and CDCA, while endurance exercise did not impact the total BA plasma concentration and decreased TCDCA [119]. Moreover, in non-alcoholic fatty liver disease (NAFLD) patients after 12 weeks of intensive interval training, glyco-conjugated BAs decreased in adipose tissue and urine, which has beneficial ameliorating effects on NAFLD disease [120]. Human clinical data summarized in the study found that regulating BAs through exercise may be a promising therapeutic strategy for NAFLD [116]. An analysis of BA levels in 735 colorectal adenoma formers obtained from participants in the phase III UDCA chemoprevention trial found that exercise may be responsible for reducing the incidence of colon cancer by reducing colonic BA exposure [121]. In summary, exercise-mediated BA signaling holds significant promise for improving metabolic disorders within the body [116,122].

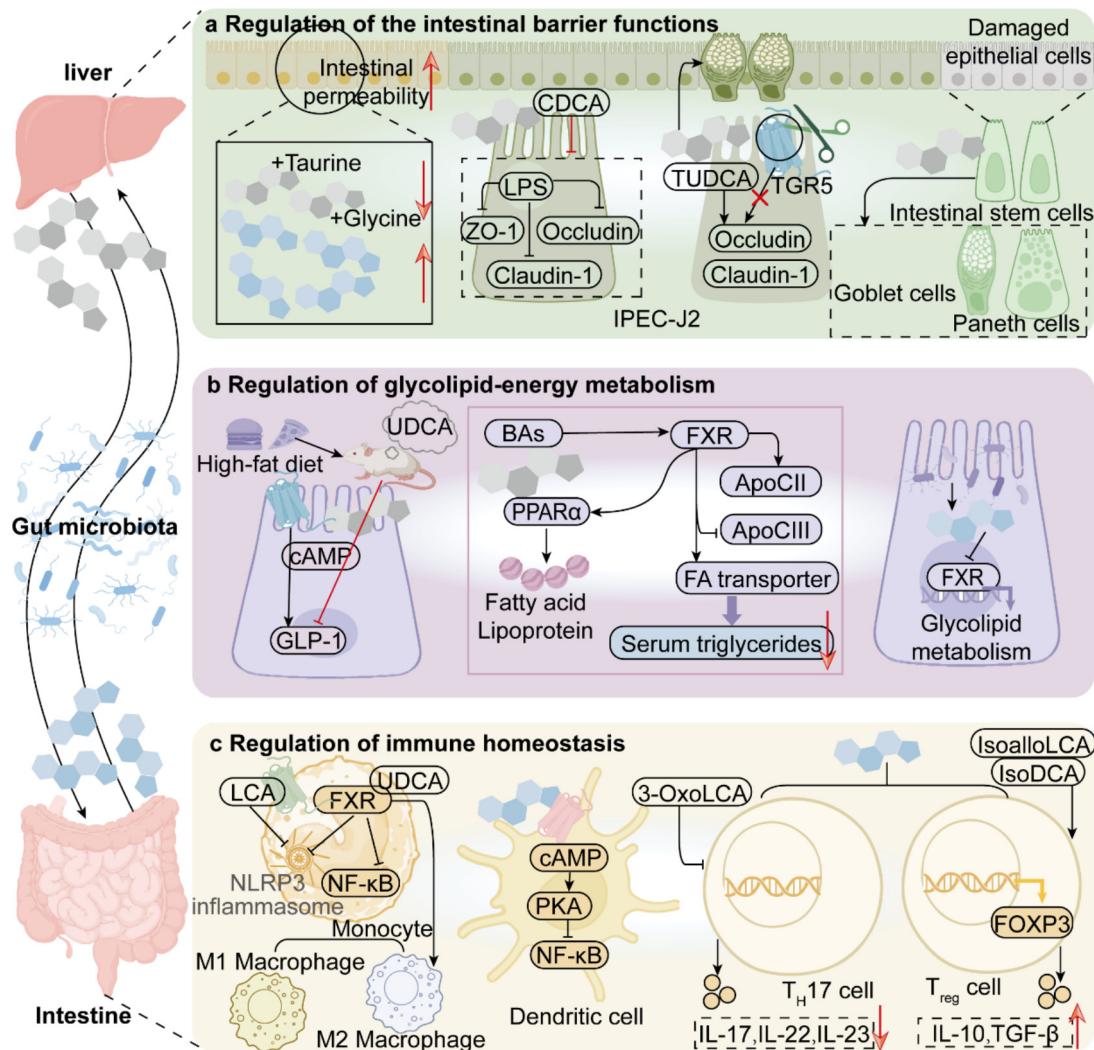
Table 1

Intestinal microbiota, bile acids and their crosstalk.

Microbes	Bile acids	Functions	References
<i>Bacteroides, Clostridium, Eubacterium and Lactobacillus</i>	DCA, LCA, ω -MCA, HDCA	– Increases intestinal permeability; – Reduces macrophage recruitment and inhibits NF- κ B activation.	[142,148,149,171,172]
<i>Bacteroides spp.</i>	CDCA	– Increases expression levels of tight junction proteins.	[32,150]
<i>Akkermansia</i>	TUDCA	– Increases the number of goblet cells and the expression levels of Occludin and Claudin-1.	[151,152]
<i>Clostridium AP sp000509125, Bacteroides ovatus, Eubacterium limosum</i>	UDCA, LCA	– Inhibits epithelial cells apoptosis.	[156,222]
<i>Clostridium scindens</i>	UDCA	– Ameliorates metabolic disruptions and regulates energy metabolism; – Inhibits NF- κ B activation and promotes M2 macrophage polarization	[159,170]
<i>Christensenella minuta</i>	3-O-acyl-CA	– Inhibits intestinal FXR and alleviates abnormal host glycolipid metabolism.	[28]
<i>Dubosiella, Colidextribacter</i>	CA, α -MCA, β -MCA	– Ameliorates glycolipid metabolism disorders.	[261]
<i>Bacteroides vulgatus</i>	GUDCA	– Activates TGR5 and attenuates diabetes.	[165]
<i>Bacteroides fragilis, Eggerthella lenta</i>	3-oxoLCA	– Curtails Th17 cell differentiation and restores colonic ROR γ^+ T _{reg} counts.	[50,175,176]
<i>Clostridium scindens, Clostridium hiranonis, and Bacteroides</i>	isoalloLCA, isoDCA	– Bolsters the induction of T _{reg} cells.	[177,262]

Diet

Dietary patterns have a major impact on modifying gut microbiota and BA metabolism, with different dietary patterns eliciting distinct alterations in BA profiles and associated host physiological responses (Fig. 3). Compared to African children eating a traditional rural diet (rich in starch and fiber), European children eating a typical Western diet had significantly higher concentrations of intestinal BAs [123]. Notably, significant reductions in faecal BAs occurred in overweight and obese subjects intervened with mediterranean diet compared with the regular diets [124]. Bacteria involved in 6 α -hydroxylated BA production were enriched in mice fed with oligofructose [125]. Ingestion of lactose in rats has been shown to decrease SBAs-to-PBAs ratio and inhibit the production of hyodeoxycholic acid (HDCA) in feces [117]. The intake of high-fat diets (HFDs) leads to the formation of SBAs by gut microbiota abundant in BSH, which triggers the host pro-inflammatory pathways and increases risk of cancer incidence [126]. Research conducted on mice has shown that a HFD decreased the diversity of BA composition in the gut and substantially elevates the proportion of BAs modified by gut microbiota [127]. In mice fed a HFD, the intestinal levels of DCA were found to markedly elevated [128]. HFD led to reduced intestinal HDCA in the dyslipidemia mice and promoted lipid absorption via the intestinal FXR-FGF19 axis [129]. Healthy male volunteers who consumed a hypercaloric high fat diet had decreased circulating levels of each individual species of unconjugated BAs and increased levels of tauro- and glyco-conjugated BAs, which was associated with their healthy or unhealthy metabolic phenotypes [130]. Moreover, a recent study also found that a transient HFD disrupted BA tolerance, accelerating the process of colitis [131]. Human dietary studies have shown that animal-based diets resulted in elevated levels of faecal DCA and a reduction in Gram-positive Firmicutes [50], suggesting that diet is fundamental to driving variations in microbial and BA metabolism of mice. However, investigations of these mechanisms in the human host remain limited, underscoring the need for further human-centered research to validate and extend current findings.


Hepatobiliary system diseases and genetic factors

Both pathological conditions of the hepatobiliary system and host genetic variations play critical roles in shaping BA metabolism and influencing disease susceptibility. Hepatobiliary system disorders, including fatty liver disease and gallbladder disease, can impact the generation and metabolism of BAs. It was found that

intrahepatic BA metabolic fractions in patients with hepatocellular carcinoma (HCC) were significantly different compared to healthy individuals. Notably, abnormally high levels of BA were closely linked to the development of HCC [132]. Additionally, patients with NAFLD exhibited higher serum levels of PBAs and SBAs [133]. In mice with cholestatic liver disease induced by bile duct ligation, a significant rise in both hepatic BA level and the overall BA pool size was observed ($p < 0.05$), while hepatic CDCA levels were decreased ($p < 0.01$) [134]. Furthermore, elevated maternal serum total BA concentrations were linked to a higher risk of low birth weight and intrauterine growth restriction (IUGR) [135]. Intrahepatic cholestasis of pregnancy (ICP) is marked by disturbed BA metabolism, with an elevated percentage of TCA in total BAs emerging as a biomarker for predicting preterm delivery in ICP [136]. Research has demonstrated a relationship between the loss of intestinal BAs in mice and host genetics [137]. In humans, genetic variations in NTCP result in abnormally increased serum BA concentrations, while the overall BA levels tend to decline with advancing age [138]. CYP7A1 is the rate-limiting enzyme of the classical BA synthesis pathway, and polymorphisms of its gene significantly affect the rate of BA generation. It has been shown that the alternative BA pathway was upregulated by a homozygous deletion mutation in CYP7A1, which resulted in hyperlipidemia [139]. Similarly, BSEP deficiency led to several different genetic forms of cholestasis [140]. These illustrate that host genetic variations significantly affect BA metabolism and disease susceptibility by regulating key enzymes and transporters involved in the BA circulation.

Effects of microbiota-BA interactions

Within the gut, the microbiota is instrumental in the metabolism of BA. Bacterial species possessing bile salt hydrolase (BSH) activity, like *Lactobacillus*, *Bifidobacterium* and *Bacteroides*, deconjugates conjugated PBAs into unconjugated forms [34,141]. Subsequently, anaerobic bacteria including *Bacteroides*, *Clostridium*, *Eubacterium*, and *Lactobacillus* transform the unconjugated PBAs into corresponding SBAs through 7 α -dehydroxylation [142]. Additionally, the gut microbiota generates phenylalanine-, tyrosine- and leucine-conjugated CA derivatives, serving as FXR agonists [20]. The microbial processing of BAs not only diversifies the BA pool but also increases its hydrophobicity, thereby facilitating the excretion of BAs. Notably, the host metabolite BA-methylcysteamine is regulated by microbiota-derived free BA levels and, in turn, functions as an FXR antagonist to feedback-

Fig. 4. Effects of microbiota-BA interactions. (a) Regulation of the intestinal barrier functions. The enhanced intestinal permeability was linked to reduced levels of host-produced conjugated BAs and elevated levels of SBAs in the large intestine in mice and rats fed a high fat diet [148,149]. Treatment with CDCA restored the levels of tight junction proteins, which were reduced by lipopolysaccharide (LPS) in IPEC-J2 porcine intestinal epithelial cells [150]. Similarly, supplementation of TUDCA increased the count of goblet cells and the expression levels of Occludin and Claudin-1 in jejunum and ileum of weaned piglets, while the knockout of TGR5 eliminated the ameliorative effect of TUDCA on IPEC-J2 [151]. BAs also promoted the proliferation of Lgr5⁺ intestinal stem cells (ISCs) to replenish damaged epithelial cells [155]. (b) Regulation of glycolipid-energy metabolism. The dysregulation of BA profiles in HFD-fed obese mice was accompanied by reduced GLP-1 levels, and treatment with UDCA ameliorated these metabolic disruptions [159]. BAs influenced fatty acid and lipoprotein metabolism by triggering the expression of PPAR α by activating FXR [160]. FXR reduced serum TG by promoting the expression of ApoCII, an activator of lipoprotein lipase (LPL), and inhibiting the expression of the LPL inhibitor ApoCIII [161–163]. The gut commensal bacteria regulated host glycolipid metabolism by producing SBAs that specifically inhibited intestinal FXR [28]. (c) Regulation of immune homeostasis. FXR in macrophages functions as a negative regulator of the NLRP3 inflammasome [168]. UDCA combined with FXR to inhibit NF- κ B activation and promote M2 macrophage polarization [170]. It has been shown that LCA inhibited NLRP3 inflammasome activation via the TGR5-cAMP-PKA axis [167]. In dendritic cells, SBAs inhibited NF- κ B activation through the TGR5-cAMP-PKA pathway [172]. BAs directly modulate host immunity through regulating the balance of Th17 and T_{reg} cells [174,175]. Specifically, 3-oxoLCA curtails Th17 cell differentiation, while isoalloLCA and 3- β -hydroxydeoxycholic acid (isoDCA) bolster the induction of T_{reg} cells [176,177].

regulate the BA biosynthetic pathway [143]. The relationship between BAs and gut microbiota is reciprocal. Gut microbiota also suppresses BA synthesis in the liver by reducing the suppression of FXR in the ileum [18]. In turn, BAs can influence the makeup and functional capacity of the microbiota [11]. BAs promote or inhibit the growth and multiplication of intestinal bacteria. BAs are commonly used as antimicrobial compounds that disrupt bacterial membranes, cause oxidative damage to DNA, and modulate the expression of genes involved in host immunity [144]. BAs can alter membrane lipid composition and disrupt membranes in a dose-dependent manner [145]. Similarly, BAs act as detergents in the gut, leading to increased membrane permeability [16]. In addition to membrane damage, BAs pose an adaptive challenge to gut microbes by interfering with RNA secondary structures and chelating metal ions such as calcium and magnesium, which are required

for cellular life activities [109]. In the distal ileum, BAs exert their antimicrobial effects indirectly by inducing the production of antimicrobial peptides mainly through FXR [146]. However, bacterial species adapted to the mammalian gut are able to tolerate the antimicrobial activity of BAs through a variety of physiological adjustments, including activation of the stress response and remodeling of the cell envelope [144]. These interactions between BAs and the microbiota are essential for regulating gut barrier function, glycolipid-energy metabolism, and immune homeostasis (refer to Table 1 and Fig. 4).

Regulation of the intestinal barrier functions

BAs are regarded as crucial compounds in preserving the integrity of the intestinal barrier. Different BAs exert varying impacts on

the intestinal barrier. Unconjugated BAs, except for LCA, have been found to interfere with or have no impact on gut barrier function, as demonstrated in both vivo models of intestinal inflammation and vitro studies of intestinal epithelial cells [147]. Studies in mice and rats fed a HFD have associated increased intestinal permeability with reduced abundance of host-produced conjugated BAs and elevated levels of SBAs in the large intestine [148,149]. These SBAs like DCA and LCA can be cytotoxic, disrupt epithelial cell membranes, and further compromise barrier function. Treatment with CDCA restored the levels of tight junction proteins, including ZO-1, Occludin, and Claudin-1, which were reduced by lipopolysaccharide (LPS) treatment in IPEC-J2 porcine intestinal epithelial cells [150]. Similarly, supplementation of TUDCA resulted in an elevation in the number of goblet cells and elevated the expression levels of Occludin and Claudin-1 in jejunum and ileum of weaned piglets, while the knockout of TGR5 eliminated the ameliorative effect of TUDCA on IPEC-J2 [151]. Another study has indicated that TUDCA influenced the dysbiosis in mice with colitis, particularly leading to a significant increase in *Akkermansia*, thereby protecting intestinal barrier integrity [152]. These findings suggest that specific BAs, such as CDCA and TUDCA, enhance barrier function by upregulating the expression of tight junction proteins through distinct receptors, or increasing the abundance of beneficial gut microbiota. Consistent with this, intestinal FXR deactivation has been associated with increased intestinal permeability in a rat model of cholestatic liver damage [153]. Conversely, obeticholic acid (OCA), a potent FXR agonist, improved intestinal barrier function by reducing intestinal inflammation [153]. These findings underscore the pivotal role of intestinal FXR signaling in maintaining epithelial barrier integrity. Additionally, BAs have been found to regulate the formation of the intestinal mucus layer [154]. Lgr5⁺ intestinal stem cells (ISCs) replenished injured epithelial cells and generated progenitors of goblet and Paneth cells, thereby preserving the integrity of the intestinal mucus layer [155]. UDCA and LCA inhibited epithelial cells apoptosis to protect against intestinal inflammation [156]. These observations reveal that BAs contribute to intestinal homeostasis by modulating the mucus layer and stem cell stemness. Overall, BAs regulate intestinal barrier function by activating receptors, mitigating inflammation, and enhancing tight junctions.

Regulation of glycolipid-energy metabolism

BAs could regulate glycolipid and energy metabolism through their interactions with specific receptors. BAs and their secondary metabolites are able to enhance GLP-1 secretion by activating TGR5, thereby improving insulin resistance [62,64,157]. Furthermore, hepatic BA-FXR signaling controls glucose levels by reducing gluconeogenesis and influencing glycogen synthesis [158]. It has been reported that the disturbances in BA profiles in HFD-fed obese mice led to reduced GLP-1 levels and energy expenditure, and treatment with UDCA and *Clostridium scindens* (*C. scindens*) ameliorated these metabolic disruptions [159]. Interestingly, *C. scindens* exhibited a strong positive correlation with UDCA. Additionally, BAs facilitate the breakdown of fat globules into finer particles via emulsification, increasing their surface area for interaction with digestive enzymes and thus enhancing fat digestion efficiency [61]. BAs are also known to decrease serum triglycerides (TG) and affect lipogenesis through various mechanisms [41]. It has been shown that BAs influenced fatty acid and lipoprotein metabolism via inducing the expression of peroxisome proliferator-activated receptor alpha (PPAR α) through FXR activation [160]. FXR further regulated the expression of key genes associated with TG metabolism, such as microsomal triglyceride transfer protein, very low density lipoprotein receptor, FA transporter, apolipoprotein C-II (ApoCII) and ApoCIII. Here, FXR reduced

serum TG by promoting the expression of ApoCII, which activates lipoprotein lipase (LPL), while inhibiting the expression of ApoCIII, an LPL inhibitor [161–163]. Moreover, T- β -MCA, an inhibitor of intestinal FXR, contributes to reducing hepatic steatosis [164]. Administration of TGR5 agonists to HFD mice has been found to enhance energy expenditure and reduce steatosis [65]. The gut commensal *Christensenella minuta* could alleviate abnormal host glycolipid metabolism by producing a novel group of SBAs with 3-O-acylation substitutions, which specifically inhibited intestinal FXR [28]. It has been shown that GUDCA resulted in elevated abundance of *Bacteroides vulgatus* and activation of TGR5 to attenuate diabetes [165]. In general, BAs are integral in regulating their own synthesis, along with metabolism of glucose, fatty acids, lipids, and lipoproteins, underscoring their pivotal roles in metabolic process [13].

Regulation of immune homeostasis

BAs modulate both innate and adaptive immunity through interacting with various immune cells and cytokines. BAs and their receptors, particularly TGR5 and FXR, have emerged as pivotal regulators of innate immunity through their modulation of the NLRP3 inflammasome. Deubiquitination of NLRP3 is required for NLRP3 inflammasome activation [166]. It has been shown that LCA induced NLRP3 ubiquitination and inhibited NLRP3 inflammasome activation via the TGR5-cAMP-PKA axis [167]. BAs are capable of activating the NLRP3 inflammasome in inflammatory macrophages, while FXR within macrophages acts as an inhibitor of the NLRP3 inflammasome, significantly impacting the management of cholestasis [168]. Similarly, FXR inhibited NLRP3 activity by suppressing phosphorylation of NLRP3, and knockdown of NLRP3 may alleviate the onset of hepatic fibrosis [169]. In low-birth-weight (LBW) piglets, UDCA preserved intestinal immune homeostasis by collaborating with FXR to inhibit NF- κ B activation, diminish inflammatory cytokine production, and promote M2 macrophage polarization [170]. Similarly, SBAs such as LCA and DCA might also ameliorate colitis by reducing macrophage recruitment [171]. It has been demonstrated that SBAs inhibited NF- κ B activation in dendritic cells (DCs) via the TGR5-cAMP-PKA signaling pathway [172]. Additionally, gut microbiota-mediated BA metabolism contributes to the accumulation of natural killer T (NKT) cells through the regulation of CXCL16 expression in liver sinusoidal endothelial cells [173]. Beyond macrophages, DCs, and innate T lymphocytes, BAs influence the stability of the intestinal immune barrier by regulating effector T cells. BAs directly modulate host immunity through influencing the balance between Th17 and regulatory T (T_{reg}) cells, as well as regulating intestinal ROR γ^+ T_{reg} cells [174,175]. Specifically, 3-oxoLCA curtails Th17 cell differentiation, evidenced by decreased levels of the pro-inflammatory cytokines such as IL-17, IL-22, and IL-23 [176,177]. Conversely, isoalloLCA and 3 β -hydroxydeoxycholic acid (isoDCA) bolster the induction of T_{reg} cells, enhancing the levels of Foxp3 and the anti-inflammatory cytokines IL-10 and TGF- β [61,176,177]. Notably, isoDCA could influence DCs, leading to a reduction in their immunostimulatory properties [176]. Further studies found that the addition of isoDCA produced a higher frequency of Foxp3 $^+$ T_{reg} cells at baseline in DCs lacking FXR, suggesting that isoDCA acts on DCs via FXR to enhance the T_{reg} cells induction [176]. Similarly, transplantation of *Bacteroides* species into germ-free mice induced colonic ROR γ^+ T_{reg} cells by VDR and FXR [175]. These results suggest that BA receptors mediate the regulatory effects of BAs on T_{reg} cell populations. Studies have shown that the numbers of colonic ROR γ^+ T_{reg} cells and total Foxp3 $^+$ T_{reg} cells remained unaffected by isolated administration of either individual primary or secondary BAs. However, combinations of specific murine PBAs, along with a blend of LCA/3-oxoLCA, were found to restore the counts of

Table 2

Gut microbes, bile acids, and their involvement in disease.

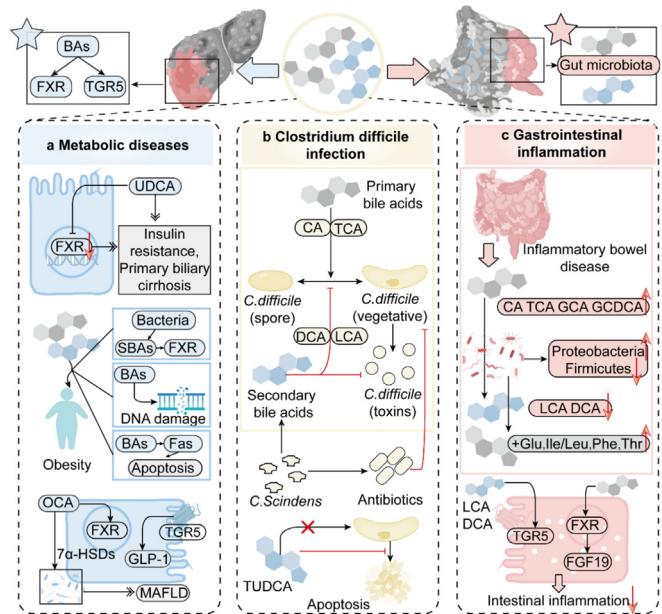
Microbes	Bile acids	Roles in Disease	References
<i>Parabacteroides distasonis</i>	LCA, UDCA	Alleviates obesity and metabolic dysfunction by activating the FXR pathway and repairing gut barrier integrity	[188]
<i>Salmonella typhimurium</i>	CDCA	Exerts anti-infective effects by inhibiting the function of Hild and preventing invasion of epithelial cells	[189]
<i>Akkermansia muciniphila</i> , <i>Bifidobacterium</i> spp.	OCA, 3-sucCA	Alleviates MAFLD by promoting the growth of <i>Akkermansia muciniphila</i> or enriching bacteria encoding 7alpha-hydroxysteroid dehydrogenase	[27,195]
<i>Bacteroides vulgaris</i>	GUDCA	Attenuates diabetes via elevating TLCA levels and regulating the composition of the gut microbiota	[165]
<i>Clostridium scindens</i>	DCA, LCA	Enhances resistance to CDI in an SBA-dependent manner	[202]
<i>Bacteroides, Clostridium</i> , and <i>Eubacterium</i>	LCA, DCA	Enhances gut-barrier integrity via TGR5 activation to mitigate IBD	[208,222]
<i>Bacteroides, Alistipes</i>	12-KLCA	Prevents acute exacerbation of UC via suppressing the secretion of IL-17A by colonic group 3 innate lymphoid cells	[75]
<i>Parabacteroides goldsteinii</i>	7-KLCA	Lessens intestinal injury by promoting Wnt signaling and self-renewal of intestinal stem cells	[224]

colonic RORY⁺ T_{reg} cells [175]. This increase was seen in germ-free murine models mono-associated with either *Bacteroides thetaiotaomicron* or *Bacteroides fragilis*. Conversely, animals colonized with *Bacteroides* lacking BSH demonstrated marked depletion of colonic RORY⁺ T_{reg} cells, implicating the significance of microbial BSH activity in regulating colonic T_{reg} cells [50,175]. Moreover, SBAs enhanced the activation of CD8⁺ T cells through the TGR5, mTOR, and oxidative phosphorylation pathways, while DCA suppressed CD8⁺ T cell responses by blocking Ca²⁺-nuclear factor of activated T cells (NFAT) 2 signaling in patients with colorectal cancer (CRC) [178,179].

The role of microbiota and BAs in disease

Metabolic diseases

BAs coordinate regulate metabolic diseases like obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and diabetes through BA receptors [180]. Notably, mice with gut-specific FXR knockout exhibited resistance to obesity, insulin resistance, and NAFLD induced by a HFD, highlighting the critical function of intestinal FXR in these metabolic disorders [181]. In line with this, UDCA, an FXR antagonist that has received approval from the Food and Drug Administration (FDA), is used in the therapy of primary biliary cirrhosis and NAFLD [182,183]. However, studies suggest that levels of LCA might increase during UDCA administration, potentially limiting its therapeutic benefits [109,184]. In addition, the gut microbiota plays a crucial role in metabolic diseases. Elevated levels of the genera *Lactobacillus* and increased BSH activity in the HFD-induced mouse model led to reduced levels of tauro-β-MCA, which resulted in exacerbated adverse metabolic phenotypes [181]. In patients with metabolic dysfunction-associated steatotic liver disease, the abundance of the phylum Bacteroidetes and *Bifidobacterium* increased with the progression of liver disease [185,186].


BAs are typically elevated in the fasting circulation of obese individuals, while their post-prandial increase appears to be minimal [187]. BAs modulate obesity and associated metabolic disorders via three main pathways: 1) Bacteria related BA receptor signaling. In HFD-fed mice, *Parabacteroides distasonis* alleviated obesity and metabolic dysfunction by producing SBAs and activating the FXR pathway [188]. 2) Antibacterial action of BAs on the intestinal microbiota. Beyond modulating host immunity, BAs function as molecular messengers that maintain homeostasis within the gut microbiota. Evidence from studies suggests that BAs can cause bacterial DNA damage [145]. Additionally, the anti-infective effects of CDCA against *Salmonella typhimurium* have been demonstrated to occur through molecular targeting of the *Hild* transcriptional regulator, effectively suppressing its

virulence-associated gene expression [189]. 3) Hydrophobic toxicity BAs. Hydrophobic BAs exhibit cytotoxic, triggering apoptotic cascades in hepatic parenchymal cells by activating Fas-associated death signaling in a ligand-dependent manner [190]. Together, these distinct yet interconnected pathways illustrate the multifaceted role of BAs in metabolic regulation. Microbiota-mediated BA receptor signaling not only modulates host metabolism directly but also influences the microbial community composition, thereby indirectly shaping downstream immune and metabolic responses [45,191]. Concurrently, the antimicrobial properties of BAs help maintain intestinal microbiota balance, which is essential for preserving gut barrier integrity [192]. Moreover, while the cytotoxic potential of hydrophobic BAs may appear detrimental, it may serve as a mechanism for removing dysfunctional cells in controlled contexts, thereby contributing to tissue remodeling during metabolic stress [193]. Collectively, these mechanisms highlight a complex network in which BAs function as metabolic integrators at the interface of host, microbiota, and immune system, underscoring their central role in the pathogenesis and potential treatment of obesity and related metabolic disorders.

Among semi-synthetic BA derivatives, OCA is the first drug approved as an FXR agonist for clinical application, specifically targeting primary biliary cholangitis [194]. Furthermore, studies have revealed that OCA can alleviate NAFLD in mice by enhancing the growth of bacteria encoding 7α-hydroxysteroid dehydrogenases (7α-HSDs) [195]. NAFLD, a liver manifestation of metabolic dysfunction, has been addressed using HDCA, which alleviate NAFLD by inhibiting intestinal FXR [196]. Reflecting the complexity of the etiology and diagnostic criteria, the American Gastroenterological Association endorsed renaming NAFLD to MAFLD [197]. Similarly, it has been demonstrated that microbially derived 3-succinylated cholic acid (3-sucCA) can alleviate MAFLD via selective enrichment of *Akkermansia muciniphila* [27]. In addition, clinical observations have shown that plasma levels of HCA were reduced in diabetic patients, which was associated with suppressed GLP-1 secretion and elevated blood glucose levels [64]. GUDCA modulated BA levels via activating TGR5, thereby attenuating diabetes [165]. In summary, BAs are considered a prospective therapeutic target for mitigating the risk of metabolic diseases (refer to Table 2).

Clostridium difficile infection

Clostridium difficile is an anaerobic, spore-producing intestinal pathogen that triggers severe diarrhea and has the potential to be fatal [198]. *Clostridium difficile* infection (CDI) ranks among the most prevalent infectious diseases globally [3]. The severity of CDI depends on the virulence of the strain, the makeup and action

Fig. 5. The role of microbiota and BAs in disease. (a) Metabolic diseases. UDCA, an FXR antagonist, is utilized to treat primary biliary cirrhosis [182]. BAs modulate obesity and associated metabolic disorders via three main pathways: 1) Bacteria related BA receptor signaling [188]. 2) BAs could induce bacterial DNA damage [145]. 3) Hydrophobic toxicity BAs induce hepatocyte apoptosis by activation of Fas-associated death signaling in a ligand-dependent manner [190]. OCA alleviated MAFLD by activating FXR and enriching bacteria encoding 7α-hydroxysteroid dehydrogenases (7α-HSDs) [195]. (b) *Clostridium difficile* infection. *Clostridium difficile* is an anaerobic intestinal pathogen that produces spores [198]. PBAs can promote the proliferation of *C. difficile* and produce toxins, whereas SBAs inhibit the growth of *C. difficile* [198,201]. *C. scindens* could secrete antibiotics that inhibit *C. difficile*, acting synergistically with SBAs produced through its metabolism [203]. TUDCA could inhibit *C. difficile* toxin-induced apoptosis without affecting the growth of the bacteria itself [205]. (c) Gastrointestinal inflammation. In patients with active IBD, PBAs such as CA, TCA and GCA were significantly elevated, while SBAs like LCA and DCA were markedly reduced [208]. Other conjugated BAs were also associated with IBD, with increased levels of CA conjugated with amino acids such as glutamate, isoleucine/leucine, phenylalanine [210]. Microbial composition was typically manifested as a rise in Proteobacteria and a decline in Firmicutes [214]. BAs alleviate intestinal inflammation through activating the receptors [218,219]. Black single arrows indicate inductive processes, red blunt arrows represent inhibitory processes, and black double arrows indicate the resulting outcomes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of gut microbiota, and the immune response of the host [199]. The gut microbiota influences the growth of *C. difficile* through BA metabolism (Fig. 5). Notably, exposure of *C. difficile* to PBAs in the gut, coupled with a lack of colonization resistance from the usual microbiota, leads to the germination, colonization of the colon, and toxin produced by this bacterium [198]. CA and TCA are primary germinators of *C. difficile* spores [200]. In contrast, SBAs such as DCA, LCA, UDCA and HDCA can inhibit the growth of *C. difficile* [201]. Research has revealed that *C. scindens*, a BA 7α-dehydroxylating intestinal bacterium, enhanced resistance to CDI in an SBA-dependent manner [202]. *C. scindens* could also secrete antibiotics that inhibit *C. difficile*, acting synergistically with SBAs produced through its metabolism [203]. Moreover, researches have shown that administration of UDCA can suppress the growth of *C. difficile* and may modulate the innate immune response by stimulating FXR and TGR5 [204]. TUDCA has been found to block *C. difficile* toxin-induced apoptosis without affecting the growth of the bacteria itself [205]. In summary, targeting BAs presents a multifaceted approach to combatting CDI through various mechanisms (refer to Table 2).

Gastrointestinal inflammation

Inflammatory bowel disease (IBD) encompasses a set of non-specific chronic inflammatory conditions of the gastrointestinal tract, which includes Crohn's disease (CD) and ulcerative colitis (UC) [206]. CD can affect both the small intestine and the colon, whereas UC only affects the colon [11]. IBD is driven by both the gut microbiome and the immune system within the intestines, with BAs serving as a crucial signaling factor. Recent researches have highlighted a link between IBD and BAs, proposing that BAs could serve as both a signature predictor and a potential therapeutic target for IBD (Fig. 5). It has been demonstrated that BA metabolism was disturbed in IBD, with significantly elevated levels of CA detected in individuals with active IBD as well as in colitis mouse models [207]. Pathologically high concentrations of CA were shown to inhibit the proliferation of Lgr5⁺ ISCs, potentially exacerbating intestinal epithelial injury [207]. In addition to CA, PBAs such as TCA, GCA and GCDCA were notably higher in CD patients [208]. Conversely, SBAs like LCA and DCA were markedly reduced, indicating a decrease in SBA-producing bacteria populations in IBD patients [208]. A similar trend in BA alterations has also been observed in the feces of patients with UC [209]. Concurrently, the colonic mucosa of UC patients exhibited elevated expression of TGR5 and downregulated expression of the VDR [209]. Other conjugated BAs have also been linked to IBD, with increased levels of CA conjugated with amino acids such as glutamate, isoleucine/leucine, phenylalanine, threonine, tryptophan, or tyrosine observed in CD patients [210]. These alterations may affect the disease process by modulating PXR signaling. In addition, recent studies suggest that changes in the BA pool may also be associated with therapeutic response. Specifically, CD patients who responded to anti-TNF therapy had higher serum SBA levels ($p < 0.05$), whereas those who did not respond had higher levels of serum unconjugated PBAs ($p < 0.01$) [211]. Pre-clinical studies have shown that supplementation with UDCA and TUDCA reduced inflammation in mouse models of colitis, indicating potential therapeutic significance in this setting [212,213]. Furthermore, in patients with IBD, abnormal microbial compositions have been observed, typically marked by an elevation in Proteobacteria and a decline in Firmicutes [214]. Since most BSH-expressing bacteria belong to Firmicutes phylum, changes of microbial composition can impact BA metabolism, contributing to the pathogenesis of IBD [215]. Previous clinical studies have demonstrated the numbers of *Bifidobacterium* and *Lactobacillus* reduced in the gut microbiota of IBD patients [216]. However, there is still much controversy regarding reports on changes in the abundance of *Bifidobacterium* and *Lactobacillus* in patients with IBD. One study illustrated that the levels of *Bifidobacterium* and *Lactobacillus* were significantly elevated in the biopsy specimens of active UC patients by quantitative real-time PCR targeting the 16S rRNA gene [217]. These seemingly contradictory results may be attributed to individual differences and variations in disease stages.

BAs not only serve as predictors for the onset of IBD through their interactions with ISCs and BA receptors, but also mitigate the disease's impact by activating these receptors and modulating metabolism processes. It has been demonstrated that stimulating FXR can alleviate intestinal inflammation and lower the release of pro-inflammatory cytokines, thereby helping to maintain intestinal barrier function [218]. For example, in colitis mice, treatment with the potent semi-synthetic FXR ligand OCA reversed the severity of colitis, but not in FXR^{-/-} mice [219]. In the presence of FXR, the downstream factor FGF19 has been shown to lessen intestinal inflammation in a mouse model of colitis, aligning with the observed decrease in FGF19 levels in patients with CD [220]. Conversely, the removal of FXR and TGR5 receptors triggers inflammatory polarization of

intestinal T cells and macrophages [219]. Although FXR deficiency has been associated with an increased susceptibility to inflammation in both mice and humans, its therapeutic potential in clinical settings remains underexplored [221]. The administration of UDCA, DCA, and LCA has been proven to enhance gut-barrier integrity via TGR5 activation, thus alleviating symptoms of colitis [213,222,223]. Additionally, a metabolite produced by gut microbiota, 12-ketolithocholic acid (12-KLCA), has been found to suppress the secretion of IL-17A by colonic group 3 innate lymphoid cells, preventing acute worsening of UC [75]. Moreover, *Parabacteroides goldsteinii* and its metabolite 7-ketolithocholic acid (7-KLCA) had demonstrated a protective effect against intestinal damage induced by aspirin [224]. The use of rifaximin in clinical settings has successfully treated human IBD through local activation of PXR in the gut, providing a clinical proof-of-concept for targeting BA signaling in the intestine [225,226]. This highlights the therapeutic potential of targeting BA pathways and microbiota-derived metabolites in managing and potentially preventing complications in IBD (refer to Table 2).

Therapeutics targeting BA signaling

The metabolic and immunological properties of BAs present novel opportunities for restoring host and gastrointestinal ecosystem health by modulating the gut microbiota-BA-host axis in various disease states.

Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is an innovative therapeutic strategy aimed at treating intestinal microbiota dysbiosis. This procedure involves the effective transfer of functional microorganisms from the processed stool of a healthy donor to the recipient individual. Successful outcomes from FMT have been linked to greater biodiversity of the microbiome and the presence of bacteria that produce short-chain fatty acid in the donor's gut microbiome [227]. Gut dysbiosis is a prominent suspected trigger of IBD [44]. FMT has been demonstrated to increase the α -diversity of gut microbiota in patients with CD, leading to disease remission [228,229]. It has been reported that FMT effectively managed experimentally induced UC by correcting imbalances between Th1/Th2 and Th17/T_{reg} via the modulation of gut microbiota [230]. Notably, the effectiveness of FMT in treating IBD has shown variability, largely because of the lack of standardized procedures and specificity in its application. Nevertheless, it is evident that the success of FMT is often associated with the production of SBAs, particularly dehydrolithocholate [231]. Additionally, FMT has been effective in mitigating intestinal inflammatory diarrhea by reducing the levels of gut microbiota-derived lipopolysaccharide [232]. This underscores the potential of FMT not only as a means to rebalance gut microbiota but also as an essential intervention in managing gastrointestinal inflammatory conditions. However, its broader application in BA-related metabolic and inflammatory diseases remains limited due to several key challenges. Along with the success of FMT, several adverse events have been reported with FMT. Most commonly, patients develop mild symptoms such as abdominal pain, constipation, and nausea after FMT [233]. In addition, improper standardization of donor screening, like donor colonization with Shiga toxin-producing *Escherichia coli*, can lead to adverse events in FMT [234]. Specifically, the significant inter-individual variability of the microbiome, its temporal dynamics, and the lack of a clear definition of a "healthy microbiome" make FMT particularly challenging [235]. In the future, the availability

of standardized microbiome-based therapies will help to reduce the risks of FMT.

Probiotics

While FMT presents promising therapeutic outcomes, it also carries potential drawbacks, such as the risk of transferring antibiotic resistance functions [222]. As an alternative, the strategic selection of probiotics offers an effective means to address ecological dysbiosis. *Bifidobacterium bifidum* has been found to ameliorate colitis induced by DSS through targeting alterations in the gut microbiota [236]. *Christensenella minuta* administration has demonstrated potential in alleviating lipometabolic disorders and reducing inflammation in both the liver and colon of obese mice via acylated SBAs [28]. Multispecies probiotics complexes, including strains of *Lactobacillus*, *Bifidobacterium*, and *Streptococcus*, have improved BAs and gut microbiota metabolism status [237]. A combination consisting of *Clostridium AP* sp000509125, *Eubacterium limosum*, and *Bacteroides ovatus*, attenuated colitis by normalizing dysregulated BA metabolism [222]. The VSL#3 probiotic mixtures has shown effectiveness in delaying the progression of diseases such as colitis and amyotrophic lateral sclerosis [238,239]. In studies involving patients with irritable bowel syndrome (IBS), both probiotics and FMT have been shown to effectively alleviate overall IBS symptoms [240]. In network meta-analyses, probiotics, particularly *Bifidobacterium* and *Lactobacillus*, have demonstrated the most favorable therapeutic outcomes. However, due to the heterogeneity between the gut microbiota of donors, the feasibility of personalized FMT strategies require further evaluation [241]. Notably, despite their promising therapeutic potential, the widespread clinical application of probiotics in diseases faces several critical challenges. A major limitation is the poor colonization capacity of many probiotic strains within the gastrointestinal tract, especially under conditions of antibiotic exposure, bile salt stress, or microbial competition [242]. Host-specific factors, including individual microbiota composition and immune status, further complicate the standardization of probiotic therapy [243]. Therefore, there is an urgent need for large-scale clinical data to validate the efficacy and safety of probiotic interventions, taking into account not only differences in disease states but also inter-individual variations in BA metabolism.

Meanwhile, the development of genetically engineered probiotics marks a new frontier in therapeutic strategies. For instance, the oral probiotic *Escherichia coli* Nissle 1917 (EcN) has been genetically modified to produce and secrete interleukin-2 (IL-2), offering a novel approach to treating IBD [244]. To overcome the challenge of limited intestinal colonization of probiotics, it has established a bacteria-microalgae symbiosis system (EcN-SP) as a natural carrier for EcN, effectively treating IBD by regulating gut microbiota balance [245]. Microencapsulation methods have also been employed to boost the bioavailability and intestinal colonization of probiotics, further optimizing their therapeutic potential [246]. Recent studies have also investigated the synergistic effects of engineered probiotics and BA metabolism on immune modulation. It has been shown that the development of engineered *Bacteroides* strain can produce isoDCA and further increase the number of colonic T_{reg} cells [176]. Koh et al. designed a sialic acid-sensing BSH Cbh gene circuit by using engineered probiotics, which hydrolyzed taurocholate into free BAs, thereby restoring intestinal BA metabolism disrupted by antibiotic treatment [247]. Currently, BSH-active bacteria in probiotic preparations are also being aggressively researched for the treatment of IBD [248]. These studies highlight the therapeutic potential of engineered bacteria in treating IBD, but further clinical trials are needed to validate their safety.

Administration of BAs and related drugs

In various disease states, abnormal BA metabolism is often observed, and the direct administration of BAs has shown promise in delaying disease progression. It has been demonstrated the potential of targeting CDCA and its receptor FXR for treating pancreatic necrosis through BA metabolomics [249]. UDCA has received FDA approval for treating cholesterol cholelithiasis and hepatobiliary diseases [250,251]. Although LCA has demonstrated efficacy in preventing colitis, the associated weight loss is a concern and is related to BA's ability to increase energy expenditure [213,252,253]. This highlights the need to take into account the dual impact of BAs on metabolism and inflammation when developing therapeutic agents for IBD. Therefore, targeted colonic or rectal delivery of BAs, which prevent systemic metabolic effects, may be the optimal approach for IBD treatments. Additionally, it has been shown that derivatives of DCA and LCA can effectively prevent the progression of cancer [254]. Recent studies have found that 3-sucCA attenuated MASH by promoting the growth of *Akkermansia muciniphila* [27]. Similarly, 3-O-acyl-cholic acids modulated the characterization of metabolic diseases in HFD-induced obese mice by inhibiting the intestinal FXR [28].

The development of FXR agonists is beneficial for reducing liver and serum triglyceride levels in disorders like metabolic syndrome, while also preventing intestinal bacteria overgrowth [10]. Both UDCA and LCA, acting as FXR agonists, help to alleviate metabolic syndrome via the FXR-FGF15 signaling pathway [11]. Despite promising preclinical outcomes, clinical trials targeting FXR agonists have faced significant setbacks due to adverse effects and limited efficacy in humans. For example, OCA, a potent FXR agonist, has been demonstrated therapeutic potential for primary biliary cholangitis and NAFLD [195,255]. However, long-term trials revealed notable side effects such as pruritus, dyslipidemia, and even hepatotoxicity at higher doses [256–258]. Notably, almost all currently available synthetic FXR ligands cause pruritus in a dose-dependent manner [259]. TGR5 agonists, such as INT-777, hold potential for treating diabetes and IBD, but to date, no clinical trials have been initiated to assess its safety and efficacy in humans [260]. This limitation restricts its immediate clinical applicability and underscores the need for further research to translate preclinical results into clinical settings. Furthermore, any alteration in the activity of any molecule within the BA signaling pathway can impact the immune response of the host. Intriguingly, inhibitors of the ASBT, which inhibit the reabsorption of BAs in the ileum and increase BA synthesis, have been used to achieve cholesterol-lowering effect [10]. These studies underscore the therapeutic potential of targeting BA receptors in disease treatment; however, species-specific differences in BA receptor biology must also be carefully considered. Rodents and humans differ in BA composition, FXR ligand specificity, and receptor distribution. For instance, tauro- β -MCA in mice acts as an FXR antagonist, while CDCA is a potent agonist in humans [17,18]. Furthermore, variations in downstream signaling pathways and microbiota-dependent BA metabolism complicate the extrapolation of findings from animal models to human disease. Therefore, there is an urgent need for human-centered approaches in the development of BA-targeted therapeutics, including the incorporation of human organoid systems and stratified clinical trial designs that account for interindividual variability in BA profiles and receptor expression.

Conclusions

Past research has illuminated how BA-microbiota crosstalk sustains host gut health through various BA receptors and cell signaling pathways. However, the immunological functions of MCBAs,

the differential receptor interactions, recently discovered metabolic pathways *in vivo*, and precise mechanisms underlying novel therapeutic strategies remain to be elucidated. This review summarizes the generation and transport of BAs, highlighting the significant role of newly identified MCBAs within BA pool. BAs engage with signaling receptors such as FXR, PXR, CAR, VDR, and TGR5 to regulate metabolic and inflammatory processes, with each receptor playing a distinct and non-redundant role. However, factors like medications, exercise, diet, or other adverse biological states can interfere with BA metabolism. This disruption impacts the ability of BAs to regulate the intestinal barrier, glycolipid-energy metabolism, and immune homeostasis. Additionally, BAs play roles in metabolic diseases, *Clostridium difficile* infection, and gastrointestinal inflammation, which have inspired a variety of therapeutic approaches including FMT, the administration of probiotics, and direct BAs treatment. These strategies underscore the potential of BAs and their receptors as therapeutic targets. Building on these insights, several critical challenges remain in the field of BA-microbiota crosstalk. Firstly, the precise mechanisms by which specific BAs and microbial metabolites interact to influence host receptors and downstream signaling pathways are not fully understood. The functional roles of newly identified BA derivatives, such as MCBAs, require further clarification, particularly in human systems. Secondly, the variability of gut microbiota composition among individuals presents a major obstacle in translating microbiota-targeted therapies into consistent clinical outcomes. Thirdly, while therapeutic strategies such as FMT, probiotics, and BA receptor agonists show promise, their long-term safety, specificity, and efficacy need rigorous validation in clinical trials. Future research should prioritize integrative approaches that combine metagenomics, metabolomics, and host transcriptomics to unravel host-microbiota-BA interactions.

Currently, our understanding of BA diversity and function is still evolving. With the advent of new scientific methodologies and technologies, novel BAs are continuously being discovered. There is a need to further characterize these novel BAs to uncover their functions and to construct innovative BA metabolic networks. Specifically, the receptor specificity, signaling dynamics, and tissue-specific effects of novel BAs should be prioritized. The multifaceted impacts of BAs on the host make the microbiota-BA-BA receptor axis a promising therapeutic target for treating inflammatory diseases. Because of the many BA receptors expressed in tissues beyond the gastrointestinal tract, elucidating how BAs transmit signals across these organs and how dysregulation contributes to metabolic and inflammatory disorders is essential. Additionally, understanding individual variability in BA metabolism, such as shaped by genetics, microbiota composition, and environmental factors, will be critical for developing personalized interventions. Studies on BAs will persist in delving into the systemic crosstalk between BAs and other organs across homeostasis and disease states, offering new possibilities for the progression of targeted therapies for metabolic diseases and IBD.

Compliance with ethics requirement

This article does not contain any studies with human or animal subjects.

CRediT authorship contribution statement

Yannmin He: Conceptualization, Writing – original draft, Writing – review & editing. **Weike Shaoyong:** Writing – review & editing, Visualization. **Yanli Chen:** Conceptualization, Validation. **Menglin Li:** Validation. **Yujie Gan:** Conceptualization. **Lu Sun:** Visualization.

Yalin Liu: Methodology. **Yizhen Wang:** Supervision. **Mingliang Jin:** Conceptualization, Supervision, Writing – review & editing.

Funding

This work was supported by the National Key Research and Development Project of China (grant no. 2023YFD1301101); the National Natural Science Foundation of China (grant no. 32372889); and the Fundamental Research Funds for the Central Universities (grant no. 226-2024-00080).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the reviewers and editors for their work. This work was supported by the National Key Research and Development Project of China (grant no. 2023YFD1301101); the National Natural Science Foundation of China (grant no. 32372889); and the Fundamental Research Funds for the Central Universities (grant no. 226-2024-00080).

References

- [1] Zhang H, Zhou XD, Shapiro MD, Lip GYH, Tilg H, Valenti L, et al. Global burden of metabolic diseases, 1990–2021. *Metabolism* 2024;160:155999. doi: <https://doi.org/10.1016/j.metabol.2024.155999>.
- [2] Clemmensen C, Finan B, Muller TD, DiMarchi RD, Tschop MH, Hofmann SM. Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. *Nat Rev Endocrinol* 2019;15:90–104. doi: <https://doi.org/10.1038/s41574-018-0118-x>.
- [3] Leffler DA, Lamont JT. *Clostridium difficile* infection. *N Engl J Med* 2015;372:1539–48. doi: <https://doi.org/10.1056/NEJMra1403772>.
- [4] Kotter PG, Vermeire S. Upgrading therapeutic ambitions and treatment outcomes. *Nat Rev Gastroenterol Hepatol* 2024;21:84–5. doi: <https://doi.org/10.1038/s41575-023-00885-x>.
- [5] Villalbancua EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? *Nat Rev Gastroenterol Hepatol* 2022;19:493–507. doi: <https://doi.org/10.1038/s41575-022-00604-y>.
- [6] Schirmer M, Garner A, Vlamakis H, Xavier RJ. Microbial genes and pathways in inflammatory bowel disease. *Nat Rev Microbiol* 2019;17:497–511. doi: <https://doi.org/10.1038/s41579-019-0213-6>.
- [7] Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. *Nat Rev Microbiol* 2021;19:55–71. doi: <https://doi.org/10.1038/s41579-020-0433-9>.
- [8] Caenepel C, Falony G, Machiels K, Verstockt B, Goncalves PJ, Ferrante M, et al. Dysbiosis and Associated Stool Features Improve Prediction of Response to Biological Therapy in Inflammatory Bowel Disease. *Gastroenterology* 2024;166:483–95. doi: <https://doi.org/10.1053/j.gastro.2023.11.304>.
- [9] Yang M, Gu Y, Li L, Liu T, Song X, Sun Y, et al. Bile Acid–Gut Microbiota Axis in Inflammatory Bowel Disease: From Bench to Bedside. *Nutrients* 2021;13:3143. doi: <https://doi.org/10.3390/nu13093143>.
- [10] Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. *Nat Rev Drug Discov* 2008;7:678–93. doi: <https://doi.org/10.1038/nrd2619>.
- [11] Collins SL, Stine JG, Bisanz JE, Okafu CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. *Nat Rev Microbiol* 2023;21:236–47. doi: <https://doi.org/10.1038/s41579-022-00805-x>.
- [12] Axelson M, Ellis E, Mork B, Garmark K, Abrahamsson A, Bjorkhem I, et al. Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid. *Hepatology* 2000;31:1305–12. doi: <https://doi.org/10.1053/jhep.2000.7877>.
- [13] Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. *J Lipid Res* 2009;50:1509–20. doi: <https://doi.org/10.1194/jlr.R900007JLR200>.
- [14] Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. *Annu Rev Biochem* 2003;72:137–74. doi: <https://doi.org/10.1146/annurev.biochem.72.121801.161712>.
- [15] Jia W, Wei M, Rajani C, Zheng X. Targeting the alternative bile acid synthetic pathway for metabolic diseases. *Protein Cell* 2021;12:411–25. doi: <https://doi.org/10.1007/s13238-020-00804-9>.
- [16] Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. *Microbiome* 2021;9:140. doi: <https://doi.org/10.1186/s40168-021-01101-1>.
- [17] Fiorucci S, Distrutti E. Chenodeoxycholic acid: an update on its therapeutic applications. *Handb Exp Pharmacol* 2019;256:265–82. doi: https://doi.org/10.1007/164_2019_226.
- [18] Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. *Cell Metab* 2013;17:225–35. doi: <https://doi.org/10.1016/j.cmet.2013.01.003>.
- [19] Bhattacharya A, Taylor RE, Guo GL. In vivo mouse models to study bile acid synthesis and signaling. *Hepatobiliary Pancreat Dis Int* 2023;22:466–73. doi: <https://doi.org/10.1016/j.hbpd.2023.08.009>.
- [20] Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, et al. Global chemical effects of the microbiome include new bile-acid conjugations. *Nature* 2020;579:123–9. doi: <https://doi.org/10.1038/s41586-020-2047-9>.
- [21] Zheng D, Zhang H, Zheng X, Zhao A, Jia W. Novel microbial modifications of bile acids and their functional implications. *iMeta* 2024;3:e243. doi: <https://doi.org/10.1002/imt2.243>.
- [22] Guzior DV, Okros M, Shivel M, Armwald B, Bridges C, Fu Y, et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity. *Nature* 2024;626:852–8. doi: <https://doi.org/10.1038/s41586-024-07017-8>.
- [23] Garcia CJ, Kosek V, Beltran D, Tomas-Barberan FA, Hajslava J. Production of new microbially conjugated bile acids by human gut microbiota. *Biomolecules* 2022;12:687. doi: <https://doi.org/10.3390/biom12050687>.
- [24] Mohanty I, Mannochio-Russo H, Schweer JV, El Abied Y, Bittremieux W, Xing S, et al. The underappreciated diversity of bile acid modifications. *Cell* 2024;187:1801–1818 e1820. doi: <https://doi.org/10.1016/j.cell.2024.02.019>.
- [25] Rimal B, Collins SL, Tanes CE, Rocha ER, Granda MA, Solanki S, et al. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. *Nature* 2024;626:859–63. doi: <https://doi.org/10.1038/s41586-023-06990-w>.
- [26] Chen R, Chen X, Gao J. 3-O-acylated bile acids: disruptors or harmonizers of metabolism? *Trends Mol Med* 2025;31:103–5. doi: <https://doi.org/10.1016/j.jmolmed.2024.06.003>.
- [27] Nie Q, Luo X, Wang K, Ding Y, Jia S, Zhao Q, et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. *Cell* 2024;2717:2734 e33. doi: <https://doi.org/10.1016/j.cell.2024.03.034>.
- [28] Liu C, Du MX, Xie LS, Wang WZ, Chen BS, Yun CY, et al. Gut commensal *Christensenella minuta* modulates host metabolism via acylated secondary bile acids. *Nat Microbiol* 2024;9:434–50. doi: <https://doi.org/10.1038/s41564-023-01570-0>.
- [29] Chiang JY. Bile acid metabolism and signaling. *Compr Physiol* 2013;3:1191–212. doi: <https://doi.org/10.1002/cphy.c120023>.
- [30] Johnson MR, Barnes S, Kwakye JB, Diasio RB. Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from human liver. *J Biol Chem* 1991;266:10227–33.
- [31] Meier PJ, Stieger B. Bile salt transporters. *Annu Rev Physiol* 2002;64:635–61. doi: <https://doi.org/10.1146/annurev.physiol.64.082201.100300>.
- [32] Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease. *Mol Aspects Med* 2017;56:54–65. doi: <https://doi.org/10.1016/j.mam.2017.06.002>.
- [33] Song Z, Feng S, Zhou X, Song Z, Li J, Li P. Taxonomic identification of bile salt hydrolase-encoding lactobacilli: Modulation of the enterohepatic bile acid profile. *iMeta* 2023;2:e128. doi: <https://doi.org/10.1002/imt2.128>.
- [34] Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. *Proc Natl Acad Sci U S A* 2008;105:13580–5. doi: <https://doi.org/10.1073/pnas.0804437105>.
- [35] Kim GB, Yi SH, Lee BH. Purification and characterization of three different types of bile salt hydrolases from *Bifidobacterium* strains. *J Dairy Sci* 2004;87:258–66. doi: [https://doi.org/10.3168/jds.S0022-0302\(04\)73164-1](https://doi.org/10.3168/jds.S0022-0302(04)73164-1).
- [36] Delpino MV, Marchesini MI, Estein SM, Comerci DJ, Cassataro J, Fossati CA, et al. A bile salt hydrolase of *Brucella abortus* contributes to the establishment of a successful infection through the oral route in mice. *Infect Immun* 2007;75:299–305. doi: <https://doi.org/10.1128/IAI.00952-06>.
- [37] Ridlon JM, Kang DJ, Hylemon PB. Isolation and characterization of a bile acid inducible 7alpha-dehydroxylation operon in *Clostridium hylemonae* TN271. *Anaerobe* 2010;16:137–46. doi: <https://doi.org/10.1016/j.anaerobe.2009.05.004>.
- [38] Dawson PA, Lan T, Rao A. Bile acid transporters. *J Lipid Res* 2009;50:2340–57. doi: <https://doi.org/10.1194/jlr.R900012-JLR200>.
- [39] Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. *Physiol Rev* 2003;83:633–71. doi: <https://doi.org/10.1152/physrev.00027.2002>.
- [40] Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. *Pharmacol Rev* 2010;62:1–96. doi: <https://doi.org/10.1124/pr.109.002014>.
- [41] Fuchs CD, Trauner M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. *Nat Rev Gastroenterol Hepatol* 2022;19:432–50. doi: <https://doi.org/10.1038/s41574-021-00566-7>.
- [42] Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. *J Hepatol* 2013;58:155–68. doi: <https://doi.org/10.1016/j.jhep.2012.08.002>.
- [43] Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. *Nucl Recept Signal* 2010;8:e005. doi: <https://doi.org/10.1621/nrs.08005>.

[44] Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. *Nat Rev Gastroenterol Hepatol* 2018;15:111–28. doi: <https://doi.org/10.1038/nrgastro.2017.119>.

[45] Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. *Cell Metab* 2016;24:41–50. doi: <https://doi.org/10.1016/j.cmet.2016.05.005>.

[46] Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. *Cell Metab* 2005;2:217–25. doi: <https://doi.org/10.1016/j.cmet.2005.09.001>.

[47] Adorini L, Trauner M. FXR agonists in NASH treatment. *J Hepatol* 2023;79:1317–31. doi: <https://doi.org/10.1016/j.jhep.2023.07.034>.

[48] Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. *Science* 1999;284:1365–8. doi: <https://doi.org/10.1126/science.284.5418.1365>.

[49] Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. *Science* 1999;284:1362–5. doi: <https://doi.org/10.1126/science.284.5418.1362>.

[50] Lee MH, Nuccio SP, Mohanty I, Hagey LR, Dorrestein PC, Chu H, et al. How bile acids and the microbiota interact to shape host immunity. *Nat Rev Immunol* 2024;24:798–809. doi: <https://doi.org/10.1038/s41577-024-01052-x>.

[51] Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. *Nat Med* 2018;24:1919–29. doi: <https://doi.org/10.1038/s41591-018-0222-4>.

[52] Perino A, Schoonjans K. Metabolic Messengers: bile acids. *Nat Metab* 2022;4:416–23. doi: <https://doi.org/10.1038/s42255-022-00559-z>.

[53] Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, et al. Identification of membrane-type receptor for bile acids (M-BAR). *Biochem Biophys Res Commun* 2002;298:714–9. doi: [https://doi.org/10.1016/s0006-291x\(02\)02550-0](https://doi.org/10.1016/s0006-291x(02)02550-0).

[54] Schaa FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. *Nat Rev Gastroenterol Hepatol* 2014;11:55–67. doi: <https://doi.org/10.1038/nrgastro.2013.151>.

[55] Ay U, Lenicek M, Haider RS, Classen A, van Eijk H, Koelfat KVK, et al. Microbially conjugated bile salts found in human bile activate the bile salt receptors TGR5 and FXR. *Hepatol Commun* 2024;8:e0383. doi: <https://doi.org/10.1097/HC9.0000000000000383>.

[56] Jia W, Li YT, Cheung KCP, Zheng XJ. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. *Sci China Life Sci* 2023;67:865–78. doi: <https://doi.org/10.1007/s11427-023-2353-0>.

[57] Achudhan D, Liu SC, Lin YY, Huang CC, Tsai CH, Ko CY, et al. Anticin K inhibits TNF-alpha, IL-1beta and IL-8 expression in synovial fibroblasts and ameliorates cartilage degradation: implications for the treatment of rheumatoid arthritis. *Front Immunol* 2021;12:790925. doi: <https://doi.org/10.3389/fimmu.2021.790925>.

[58] Zhao C, Wu K, Hao H, Zhao Y, Yao L, Qiu M, et al. Gut microbiota-mediated secondary bile acid alleviates *Staphylococcus aureus*-induced mastitis through the TGR5-cAMP-PKA-NF- κ B/NLRP3 pathways in mice. *NPJ Biofilms Microbiomes* 2023;9:8. doi: <https://doi.org/10.1038/s41522-023-00374-8>.

[59] Mohrban K, Haugbro T, Karlstrom E, Kleiveland CR, Lea T. Activation of the bile acid receptor TGR5 enhances LPS-induced inflammatory responses in a human monocytic cell line. *J Recept Signal Transduct Res* 2015;35:402–9. doi: <https://doi.org/10.3109/10799893.2014.986744>.

[60] Ye D, He J, He X. The role of bile acid receptor TGR5 in regulating inflammatory signalling. *Scand J Immunol* 2024;99:e13361. doi: <https://doi.org/10.1111/sji.13361>.

[61] Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. *Nat Rev Gastroenterol Hepatol* 2024;21:348–64. doi: <https://doi.org/10.1038/s41575-024-00896-2>.

[62] Sorrentino G, Perino A, Yildiz E, El Alami G, Bou Sleiman M, Gioiello A, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. *Gastroenterology* 2020;159:956–968 e958. doi: <https://doi.org/10.1053/j.gastro.2020.05.067>.

[63] Chaudhari SN, Luo JN, Harris DA, Aliakbarian H, Yao L, Paik D, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. *Cell Host Microbe* 2021;29:408–424 e407. doi: <https://doi.org/10.1016/j.chom.2020.12.004>.

[64] Zheng X, Chen T, Jiang R, Zhao A, Wu Q, Kuang J, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. *Cell Metab* 2021;33:791–803 e797. doi: <https://doi.org/10.1016/j.cmet.2020.11.017>.

[65] Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. *Cell Metab* 2009;10:167–77. doi: <https://doi.org/10.1016/j.cmet.2009.08.001>.

[66] Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. *Trends Mol Med* 2022;28:223–36. doi: <https://doi.org/10.1016/j.tim.2021.12.006>.

[67] Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular physiology of bile acid signaling in health, disease, and aging. *Physiol Rev* 2021;101:683–731. doi: <https://doi.org/10.1152/physrev.00049.2019>.

[68] Zollner G, Wagner M, Trauner M. Nuclear receptors as drug targets in cholestasis and drug-induced hepatotoxicity. *Pharmacol Ther* 2010;126:228–43. doi: <https://doi.org/10.1016/j.pharmthera.2010.03.005>.

[69] Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, Latour A, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. *P Natl Acad Sci USA* 2001;98:3369–74. doi: <https://doi.org/10.1073/pnas.051551698>.

[70] Xu BY, Tang XD, Chen J, Wu HB, Chen WS, Chen L. Rifampicin induces clathrin-dependent endocytosis and ubiquitin-proteasome degradation of MRP2 via oxidative stress-activated PKC-ERK/JNK/p38 and PI3K signaling pathways in HepG2 cells. *Acta Pharmacol Sin* 2020;41:56–64. doi: <https://doi.org/10.1038/s41401-019-0266-0>.

[71] Zhang L, Yan J, Liu J, Meng C, Liu F, Xia C. Panaxytriol upregulates CYP3A4 expression based on the interaction of PXR, CAR, HSP90alpha, and RXRalpha. *Phytomedicine* 2022;101:154097. doi: <https://doi.org/10.1016/j.phymed.2022.154097>.

[72] Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets in cholestasis. *J Steroid Biochem Mol Biol* 2012;130:147–58. doi: <https://doi.org/10.1016/j.jsbmb.2011.06.012>.

[73] Song S, Peng H, Li Y, Zhao T, Cao R, Zheng L, et al. Oleanolic acid promotes liver regeneration after partial hepatectomy via regulating pregnane X receptor signaling pathway in mice. *Chem Biol Interact* 2024;393:110970. doi: <https://doi.org/10.1016/j.cbi.2024.110970>.

[74] Zhao T, Zhong G, Wang Y, Cao R, Song S, Li Y, et al. Pregnan X receptor activation in liver macrophages protects against endotoxin-induced liver injury. *Adv Sci (Weinh)* 2024;11:e2308771. doi: <https://doi.org/10.1002/advs.202308771>.

[75] Li N, Ma P, Li Y, Shang X, Nan X, Shi L, et al. Gut microbiota-derived 12-ketolithocholic acid suppresses the IL-17A secretion from colonic group 3 innate lymphoid cells to prevent the acute exacerbation of ulcerative colitis. *Gut Microbes* 2023;15:2290315. doi: <https://doi.org/10.1080/19490976.2023.2290315>.

[76] Shah YM, Ma XC, Morimura K, Kim I, Gonzalez FJ. Pregnan X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF- κ B target gene expression. *Am J Physiol-Gastr L* 2007;292:G1114–22. doi: <https://doi.org/10.1152/ajpgi.00528.2006>.

[77] Mencarelli A, Renga B, Palladino G, Claudio D, Ricci P, Distrutti E, et al. Inhibition of NF- κ B by a PXR-dependent pathway mediates counter-regulatory activities of rifaximin on innate immunity in intestinal epithelial cells. *Eur J Pharmacol* 2011;668:317–24. doi: <https://doi.org/10.1016/j.ejphar.2011.06.058>.

[78] Yan T, Luo Y, Xia Y, Hamada K, Wang Q, Yan N, et al. John's Wort alleviates dextran sodium sulfate-induced colitis through pregnane X receptor-dependent NFKappaB antagonism. *FASEB J* 2021;35:e21968. doi: <https://doi.org/10.1096/fj.2020201098R>.

[79] Huang K, Mukherjee S, DesMarais V, Albanese JM, Rafti E, Draghi Li A, et al. Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. *Pediatr Res* 2018;83:1031–40. doi: <https://doi.org/10.1038/pr.2018.14>.

[80] Li F, Lu J, Cheng J, Wang L, Matsubara T, Csanaky IL, et al. Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy. *Nat Med* 2013;19:418–20. doi: <https://doi.org/10.1038/nm.3104>.

[81] Yu X, Xu M, Meng X, Li S, Liu Q, Bai M, et al. Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI. *Sci Transl Med* 2020;12:eadh9242. doi: <https://doi.org/10.1126/scitranslmed.aay7591>.

[82] Xing Y, Yan J, Niu Y. PXR: a center of transcriptional regulation in cancer. *Acta Pharm Sin B* 2020;10:197–206. doi: <https://doi.org/10.1016/j.apsb.2019.06.012>.

[83] Harmsen S, Meijerman I, Beijnen JH, Schellens JH. The role of nuclear receptors in pharmacokinetic drug-drug interactions in oncology. *Cancer Treat Rev* 2007;33:369–80. doi: <https://doi.org/10.1016/j.ctrv.2007.02.003>.

[84] Hodnik Ž, Peterlin Mašić L, Tomašić T, Smođić D, D'Amore C, Fiorucci S, et al. Bazedoxifene-scaffold-based mimetics of solomonsterols A and B as novel pregnane X receptor antagonists. *J Med Chem* 2014;57:4819–33. doi: <https://doi.org/10.1021/jm500351m>.

[85] Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang. *Cell* 2014;157:255–66. doi: <https://doi.org/10.1016/j.cell.2014.03.012>.

[86] Chen ML, Huang X, Wang H, Hegner C, Liu Y, Shang J, et al. CAR directs T cell adaptation to bile acids in the small intestine. *Nature* 2021;593:147–51. doi: <https://doi.org/10.1038/s41586-021-03421-6>.

[87] Stern S, Kurian R, Wang H. Clinical relevance of the constitutive androstane receptor. *Drug Metab Dispos* 2022;50:1010–8. doi: <https://doi.org/10.1124/dmd.121.000483>.

[88] Honkakoski P. Searching for constitutive androstane receptor modulators. *Drug Metab Dispos* 2022;50:1002–9. doi: <https://doi.org/10.1124/dmd.121.000482>.

[89] Zhang J, Huang W, Qatanani M, Evans RM, Moore DD. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. *J Biol Chem* 2004;279:49517–22. doi: <https://doi.org/10.1074/jbc.M409041200>.

[90] Saini SP, Sonoda J, Xu L, Toma D, Uppal H, Mu Y, et al. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. *Mol Pharmacol* 2004;65:292–300. doi: <https://doi.org/10.1124/mol.65.2.292>.

[91] Cai X, Young GM, Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. *Biochim Biophys Acta Mol Basis Dis* 2021;1867:166101. doi: <https://doi.org/10.1016/j.bbadiis.2021.166101>.

[92] Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. *Mucosal Immunol* 2019;12:851–61. doi: <https://doi.org/10.1038/s41385-019-0162-4>.

[93] Willson TM, Kliewer SA. PXR, CAR and drug metabolism. *Nat Rev Drug Discov* 2002;1:259–66. doi: <https://doi.org/10.1038/nrd753>.

[94] Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. *Cell* 2006;126:789–99. doi: <https://doi.org/10.1016/j.cell.2006.06.049>.

[95] Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. *Nat Rev Immunol* 2008;8:685–98. doi: <https://doi.org/10.1038/nri2378>.

[96] Carlberg C. Vitamin D and its target genes. *Nutrients* 2022;14:1354. doi: <https://doi.org/10.3390/nu14071354>.

[97] Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, et al. Vitamin D receptor as an intestinal bile acid sensor. *Science* 2002;296:1313–6. doi: <https://doi.org/10.1126/science.1070477>.

[98] Zhang Z, Chen F, Li J, Luo F, Hou T, Xu J, et al. 1,25(OH)(2)D(3) suppresses proinflammatory responses by inhibiting Th1 cell differentiation and cytokine production through the JAK/STAT pathway. *Am J Transl Res* 2018;10:2737–46.

[99] Jiang S, Zhang H, Li X, Yi B, Huang L, Hu Z, et al. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/Caspase-1/GSDMD pyroptosis pathway. *J Steroid Biochem Mol Biol* 2021;206:105789. doi: <https://doi.org/10.1016/j.jsbmb.2020.105789>.

[100] Chen Y, Zhang J, Ge X, Du J, Deb DK, Li YC. Vitamin D receptor inhibits nuclear factor kappaB activation by interacting with IkappaB kinase beta protein. *J Biol Chem* 2013;288:19450–8. doi: <https://doi.org/10.1074/jbc.M113.467670>.

[101] Hewison M. Vitamin D and the immune system: new perspectives on an old theme. *Endocrinol Metab Clin North Am* 39 (2010) 365–379, table of contents. doi: 10.1016/j.ecl.2010.02.010.

[102] Chun RF, Liu PT, Modlin RL, Adams JS, Hewison M. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. *Front Physiol* 2014;5:151. doi: <https://doi.org/10.3389/fphys.2014.00151>.

[103] Cao R, Ma Y, Li S, Shen D, Yang S, Wang X, et al. 1,25(OH)(2)D(3) alleviates DSS-induced ulcerative colitis via inhibiting NLRP3 inflammasome activation. *J Leukoc Biol* 2020;108:283–95. doi: <https://doi.org/10.1002/JLB.3MA0320-406RR>.

[104] Zhang Y, Limaye PB, Renaud HJ, Klaassen CD. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. *Toxicol Appl Pharmacol* 2014;277:138–45. doi: <https://doi.org/10.1016/j.taap.2014.03.009>.

[105] Theriot CM, Koenigsknecht MJ, Carlson Jr PE, Hatton GE, Nelson AM, Li B, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to *Clostridium difficile* infection. *Nat Commun* 2014;5:3114. doi: <https://doi.org/10.1038/ncomms4114>.

[106] Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota - a systematic review. *J Infect* 2019;79:471–89. doi: <https://doi.org/10.1016/j.jinf.2019.10.008>.

[107] Yang M, Zheng X, Fan J, Cheng W, Yan TM, Lai Y, et al. Antibiotic-induced gut microbiota dysbiosis modulates host transcriptome and m(6)A epitranscriptome via bile acid metabolism. *Adv Sci (Weinh)* 2024;11: e2307981. doi: <https://doi.org/10.1002/advs.202307981>.

[108] Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. *Nat Chem Biol* 2015;11:685–90. doi: <https://doi.org/10.1038/nchembio.1864>.

[109] Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. *Gut Microbes* 2020;11:158–71. doi: <https://doi.org/10.1080/19490976.2019.1674124>.

[110] Maxson T, Mitchell DA. Targeted treatment for bacterial infections: prospects for pathogen-specific antibiotics coupled with rapid diagnostics. *Tetrahedron* 2016;72:3609–24. doi: <https://doi.org/10.1016/j.tet.2015.09.069>.

[111] Alm RA, Lahiri SD. Narrow-spectrum antibacterial agents-benefits and challenges. *Antibiotics (Basel)* 2020;9:418. doi: <https://doi.org/10.3390/antibiotics9070418>.

[112] Yagi R, Masuda T, Ito S, Ohtsuki S. Effect of antibiotic-administration period on hepatic bile acid profile and expression of pharmacokinetic-related proteins in mouse liver, kidney, and brain capillaries. *Drug Metab Pharmacokinet* 2023;50:100494. doi: <https://doi.org/10.1016/j.dmpk.2023.100494>.

[113] de Bruijn V, Behr C, Sperber S, Walk T, Ternes P, Slopianka M, et al. Antibiotic-induced changes in microbiome-related metabolites and bile acids in rat plasma. *Metabolites* 2020;10:242. doi: <https://doi.org/10.3390/metabo10060242>.

[114] Behr C, Slopianka M, Haake V, Strauss V, Sperber S, Kamp H, et al. Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats. *Toxicol Appl Pharmacol* 2019;363:79–87. doi: <https://doi.org/10.1016/j.taap.2018.11.012>.

[115] Sanoh S, Tamura Y, Fujino C, Sugahara G, Yoshizane Y, Yanagi A, et al. Changes in bile acid concentrations after administration of ketoconazole or rifampicin to chimeric mice with humanized liver. *Biol Pharm Bull* 2019;42:1366–75. doi: https://doi.org/10.1248/bpb.b19_00249.

[116] Zhang MY, Xiao BY, Chen XQ, Ou BM, Wang ST. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. *Acta Physiol* 2024;240:e14065. doi: <https://doi.org/10.1111/apha.14065>.

[117] Hagiwara M, Matsumoto M, Yajima T, Hara H, Ishizuka S. Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. *J Appl Physiol* 2010;109:663–8. doi: <https://doi.org/10.1152/japplphysiol.00777.2009>.

[118] Danesi E, Salvagno GL, Tarperi C, Negrini D, Montagnana M, Festa L, et al. Middle-distance running acutely influences the concentration and composition of serum bile acids. Potential implications for cancer risk? *Oncotarget* 2017;8:52775–82. doi: <https://doi.org/10.18632/oncotarget.17188>.

[119] Morville T, Sahl RE, Trammell SA, Svenningsen JS, Gillum MP, Helge JW, et al. Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. *JCI Insight* 2018;3:e122737. doi: <https://doi.org/10.1172/jci.insight.122737>.

[120] Babu AF, Csader S, Männistö V, Tauriainen MM, Penttiläinen H, Savonen K, et al. Effects of exercise on NAFLD using non-targeted metabolomics in adipose tissue, plasma, urine, and stool. *Sci Rep* 2022;12:6485. doi: <https://doi.org/10.1038/s41598-022-10481-9>.

[121] Wertheim BC, Martinez ME, Ashebeck EL, Roe DJ, Jacobs ET, Alberts DS, et al. Physical activity as a determinant of fecal bile acid levels. *Cancer Epidemiol Biomarkers Prev* 2009;18:1591–8. doi: <https://doi.org/10.1158/1055-9965.EPI-08-1187>.

[122] Molina-Molina E, Lunardi Baccetto R, Wang DQH, de Bari O, Krawczyk M, Portincasa P, Exercising the hepatobiliary-gut axis. The impact of physical activity performance, *Eur J Clin Invest* 48 (2018) e12958. doi:ARTN e1295810.1111/eci.12958.

[123] Yokota A, Fukuya S, Islam KB, Oooka T, Ogura Y, Hayashi T, et al. Is bile acid a determinant of the gut microbiota on a high-fat diet? *Gut Microbes* 2012;3:455–9. doi: <https://doi.org/10.4161/gmic.21216>.

[124] Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. *Gut* 2020;69:1258–68. doi: <https://doi.org/10.1136/gutjl-2019-320438>.

[125] Makki K, Brolin H, Petersen N, Henricsson M, Christensen DP, Khan MT, et al. 6 α -hydroxylation bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. *Gut* 2023;72:314–24. doi: <https://doi.org/10.1136/gutjl-2021-326541>.

[126] Ahmad F, Saha P, Singh V, Wahid M, Mandal RK, Nath Mishra B, et al. Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. *Food Chem* 2023;410:135320. doi: <https://doi.org/10.1016/j.foodchem.2022.135320>.

[127] Fu T, Huan T, Rahman G, Zhi H, Xu ZJ, Oh TG, et al. Paired microbiome and metabolome analyses associate bile acid changes with colorectal cancer progression. *Cell Rep* 2023;42:112997. doi: ARTN 11299710.1016/j.celrep.2023.112997.

[128] Wu WR, Kaicen W, Bian XY, Yang LY, Ding S, Li YT, et al. *Akkermansia muciniphila* alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. *Microb Biotechnol* 2023;16:1924–39. doi: <https://doi.org/10.1111/1751-7915.14293>.

[129] Xu H, Fang F, Wu K, Song J, Li Y, Lu X, et al. Gut microbiota-bile acid crosstalk regulates murine lipid metabolism via the intestinal FXR-FGF19 axis in diet-induced humanized dyslipidemia. *Microbiome* 2023;11:262. doi: <https://doi.org/10.1186/s40168-023-01709-5>.

[130] Lamaziere A, Rainteau D, Kc P, Humbert L, Gauliard E, Ichou F, et al. Distinct postprandial bile acids responses to a high-calorie diet in men volunteers underscore metabolically healthy and unhealthy phenotypes. *Nutrients* 2020;12:3545. doi: <https://doi.org/10.3390/nu12113545>.

[131] Zheng M, Zhai Y, Yu Y, Shen J, Chu S, Focaccia E, et al. TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. *Cell Metab* 2024;36:2086–2103 e2089. doi: <https://doi.org/10.1016/j.cmet.2024.06.008>.

[132] Gao L, Lv G, Li R, Liu WT, Zong C, Ye F, et al. Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/mTOR dependent autophagy activation. *Cancer Lett* 2019;454:215–23. doi: <https://doi.org/10.1016/j.canlet.2019.04.009>.

[133] Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. *Gut* 2018;67:1881–91. doi: <https://doi.org/10.1136/gutjl-2017-314307>.

[134] Liu Y, Chen K, Li F, Gu Z, Liu Q, He L, et al. Probiotic *Lactobacillus rhamnosus* GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. *Hepatology* 2020;71:2050–66. doi: <https://doi.org/10.1002/hep.30975>.

[135] Song F, Chen L, Chen L, Li H, Cheng X, Wu W. Association of elevated maternal serum total bile acids with low birth weight and intrauterine fetal growth restriction. *JAMA Netw Open* 2021;4:e2117409. doi: <https://doi.org/10.1001/jamanetworkopen.2021.17409>.

[136] Ma ZX, Liu YF, Chai L, Jin GC, Sun YN, Zhou SM, et al. Metabolic changes in bile acids with pregnancy progression and their correlation with perinatal complications in intrahepatic cholestasis of pregnant patients. *Sci Rep* 2023;13:1608. doi: ARTN 160810.1038/s41598-022-22974-8.

[137] Kemis UH, Linke V, Barrett KL, Boehm FJ, Traeger LL, Keller MP, et al. Genetic determinants of gut microbiota composition and bile acid profiles in mice. *Plos Genet* 2019;15:e1008073. doi: ARTN e1008073.10.1371/journal.pgen.1008073, e1008073.

[138] Mao F, Wang MX, Hou X, Zhou Z, Yan YY, Fang LJ, et al. NTCP deficiency causes gallbladder abnormalities in mice and human beings. *Cell Mol*

Gastroenterol Hepatol 2021;11:831–9. doi: <https://doi.org/10.1016/j.jcmgh.2020.09.001>

[139] Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. *J Clin Invest* 2002;110:109–17. doi: <https://doi.org/10.1172/jci15387>.

[140] Lam P, Soroka CJ, Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. *Semin Liver Dis* 2010;30:125–33. doi: <https://doi.org/10.1055/s-0030-1253222>.

[141] Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. *J Lipid Res* 2006;47:241–59. doi: <https://doi.org/10.1194/jlr.R500013-JLR200>.

[142] Chiang JY. Bile acids: regulation of synthesis. *J Lipid Res* 2009;50:1955–66. doi: <https://doi.org/10.1194/jlr.R900010-JLR200>.

[143] Won TH, Arifuzzaman M, Parkhurst CN, Miranda IC, Zhang B, Hu E, et al. Host metabolism balances microbial regulation of bile acid signalling. *Nature* 2025;638:216–24. doi: <https://doi.org/10.1038/s41586-024-08379-9>.

[144] Urdaneta V, Casadesús J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. *Front Med (Lausanne)* 2017;4:163. doi: <https://doi.org/10.3389/fmed.2017.00163>.

[145] Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. *FEMS Microbiol Rev* 2005;29:625–51. doi: <https://doi.org/10.1016/j.femsre.2004.09.003>.

[146] Vavassori M, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. *J Immunol* 2009;183:6251–61. doi: <https://doi.org/10.4049/jimmunol.0803978>.

[147] Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as inflammatory mediators and modulators of intestinal permeability. *Front Immunol* 2022;13:1021924. doi: <https://doi.org/10.3389/fimmu.2022.1021924>.

[148] Murakami Y, Tanabe S, Suzuki T. High-fat diet-induced intestinal hyperpermeability is associated with increased bile acids in the large intestine of mice. *J Food Sci* 2016;81:H216–22. doi: <https://doi.org/10.1111/1750-3841.13166>.

[149] Li DK, Chaudhari SN, Lee Y, Sojoodi M, Adhikari AA, Zukerberg L, et al. Inhibition of microbial deconjugation of micellar bile acids protects against intestinal permeability and liver injury. *Sci Adv* 2022;8: eab02794. doi: <https://doi.org/10.1126/sciadv.aba2794>.

[150] Song M, Ye JY, Zhang FL, Su H, Yang XH, He HW, et al. Chenodeoxycholic Acid (CDCA) protects against the lipopolysaccharide-induced impairment of the intestinal epithelial barrier function via the FXR-MLCK pathway. *J Agr Food Chem* 2019;67:8868–74. doi: <https://doi.org/10.1021/acs.jafc.9b03173>.

[151] Song M, Zhang F, Fu Y, Yi X, Feng S, Liu Z, et al. Taurooursodeoxycholic acid (TUDCA) improves intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets. *J Anim Sci Biotechnol* 2022;13:73. doi: <https://doi.org/10.1186/s40104-022-00713-3>.

[152] Luo L, Zhao Y, Zhang G, Dong S, Xu Y, Shi H, et al. Taurooursodeoxycholic acid reverses dextran sulfate sodium-induced colitis in mice via modulation of intestinal barrier dysfunction and microbiome dysregulation. *J Pharmacol Exp Ther* 2024;390:116–24. doi: <https://doi.org/10.1124/jpet.123.002020>.

[153] Verbeke L, Farre R, Verbinne B, Covens K, Vanuytsel T, Verhaegen J, et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. *Am J Pathol* 2015;185:409–19. doi: <https://doi.org/10.1016/j.ajpath.2014.10.009>.

[154] Larabi AB, Masson HLP, Baumler AJ. Bile acids as modulators of gut microbiota composition and function. *Gut Microbes* 2023;15:2172671. doi: <https://doi.org/10.1080/19490976.2023.2172671>.

[155] Shi L, Jin L, Huang W. Bile acids, intestinal barrier dysfunction, and related diseases. *Cells* 2023;12:1888. doi: <https://doi.org/10.3390/cells12141888>.

[156] Lajczak-McGinley NK, Porru E, Fallon CM, Smyth J, Curley C, McCarron PA, et al. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. *Physiol Rep* 2020;8:e14456. doi: <https://doi.org/10.14814/phy2.14456>.

[157] Chen C, Liu L, Zhong Y, Wang M, Ai Y, Hou Y, et al. Gut microbiota-bile acids-glycan like peptide-1 axis contributes the resistance to high fat diet-induced obesity in mice. *J Nutr Biochem* 2023;117:109358. doi: <https://doi.org/10.1016/j.jnutbio.2023.109358>.

[158] Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. *J Exp Med* 2018;215:383–96. doi: <https://doi.org/10.1084/jem.20171965>.

[159] Wei M, Huang F, Zhao L, Zhang Y, Yang W, Wang S, et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. *EBioMedicine* 2020;55:102766. doi: <https://doi.org/10.1016/j.ebiom.2020.102766>.

[160] Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. *Mol Endocrinol* 2003;17:259–72. doi: <https://doi.org/10.1210/me.2002-0120>.

[161] Fuchs CD, Trausnigg SA, Trauner M. Nuclear receptor modulation for the treatment of nonalcoholic fatty liver disease. *Semin Liver Dis* 2016;36:69–86. doi: <https://doi.org/10.1055/s-0036-1571296>.

[162] Kast HR, Nguyen CM, Sinal CJ, Jones SA, Laffitte BA, Reue K, et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. *Mol Endocrinol* 2001;15:1720–8. doi: <https://doi.org/10.1210/mend.15.10.0712>.

[163] Prieur X, Coste H, Rodriguez JC. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. *J Biol Chem* 2003;278:25468–80. doi: <https://doi.org/10.1074/jbc.M301302200>.

[164] Zhai Y, Zhou W, Yan X, Qiao Y, Guan L, Zhang Z, et al. Astragaloside IV ameliorates diet-induced hepatic steatosis in obese mice by inhibiting intestinal FXR via intestinal flora remodeling. *Phytomedicine* 2022;107:154444. doi: <https://doi.org/10.1016/j.phymed.2022.154444>.

[165] Chen B, Bai Y, Tong F, Yan J, Zhang R, Zhong Y, et al. Glycoursodeoxycholic acid regulates bile acids level and alters gut microbiota and glycolipid metabolism to attenuate diabetes. *Gut Microbes* 2023;15:2192155. doi: <https://doi.org/10.1080/19490976.2023.2192155>.

[166] Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. *Mol Cell* 2013;49:331–8. doi: <https://doi.org/10.1016/j.molcel.2012.11.009>.

[167] Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. *Immunity* 2016;45:802–16. doi: <https://doi.org/10.1016/j.immuni.2016.09.008>.

[168] Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. *Cell Metab* 2017;25:856–867 e855. doi: <https://doi.org/10.1016/j.cmet.2017.03.007>.

[169] Feng S, Xie X, Li J, Xu X, Chen C, Zou G, et al. Bile acids induce liver fibrosis through the NLRP3 inflammasome pathway and the mechanism of FXR inhibition of NLRP3 activation. *Hepatol Int* 2024;18:1040–52. doi: <https://doi.org/10.1007/s12072-023-10610-0>.

[170] Pi Y, Wu Y, Zhang X, Lu D, Han D, Zhao J, et al. Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization. *Microbiome* 2023;11:19. doi: <https://doi.org/10.1186/s40168-022-01458-x>.

[171] Liu Y, Xu J, Ren X, Zhang Y, Ke Z, Zhou J, et al. Cholecystectomy-induced secondary bile acids accumulation ameliorates colitis through inhibiting monocyte/macrophage recruitment. *Gut Microbes* 2022;14:2107387. doi: <https://doi.org/10.1080/19490976.2022.2107387>.

[172] Hu J, Wang C, Huang X, Yi S, Pan S, Zhang Y, et al. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. *Cell Rep* 2021;36:109726. doi: <https://doi.org/10.1016/j.celrep.2021.109726>.

[173] Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. *Science* 2018;360:eaan5931. doi: <https://doi.org/10.1126/science.aan5931>.

[174] Hang S, Paik D, Yao L, Kim E, Tirnath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. *Nature* 2019;576:143–8. doi: <https://doi.org/10.1038/s41586-019-1785-z>.

[175] Song XY, Sun XM, Oh SF, Wu M, Zhang YB, Zheng W, et al. Microbial bile acid metabolites modulate gut ROR γ T cell homeostasis. *Nature* 2020;577:410–+. doi: <https://doi.org/10.1038/s41586-019-1865-0>.

[176] Campbell C, McKenney PT, Konstantinovsky D, Isaeva Ol, Schizas M, Verter J, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. *Nature* 2020;581:475–9. doi: <https://doi.org/10.1038/s41586-020-2193-0>.

[177] Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. *Pharmacol Ther* 2022;237:108238. doi: <https://doi.org/10.1016/j.pharmthera.2022.108238>.

[178] Zheng C, Wang L, Zou T, Lian S, Luo J, Lu Y, et al. Ileitis promotes MASLD progression via bile acid modulation and enhanced TGR5 signaling in ileal CD8(+) T cells. *J Hepatol* 2024;80:764–77. doi: <https://doi.org/10.1016/j.jhep.2023.12.024>.

[179] Cong J, Liu P, Han Z, Ying W, Li C, Yang Y, et al. Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8(+) T cell effector functions. *Immunity* 2024;57:876–889 e11. doi: <https://doi.org/10.1016/j.immuni.2024.02.014>.

[180] Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. *Gastroenterology* 2017;152:1679–1694 e1673. doi: <https://doi.org/10.1053/j.gastro.2017.01.055>.

[181] Gonzalez FJ, Jiang C, Patterson AD. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. *Gastroenterology* 2016;151:845–59. doi: <https://doi.org/10.1053/j.gastro.2016.08.057>.

[182] Corpechot C. Primary biliary cirrhosis beyond ursodeoxycholic acid. *Semin Liver Dis* 2016;36:15–26. doi: <https://doi.org/10.1055/s-0035-1571273>.

[183] Mao Q, Lin B, Zhang W, Zhang Y, Zhang Y, Cao Q, et al. Understanding the role of ursodeoxycholic acid and gut microbiome in non-alcoholic fatty liver disease: current evidence and perspectives. *Front Pharmacol* 2024;15:1371574. doi: <https://doi.org/10.3389/fphar.2024.1371574>.

[184] Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiansen BA, Schap FG, Rust C, et al. Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health. *J Hepatol* 2012;57:133–40. doi: <https://doi.org/10.1016/j.jhep.2012.02.014>.

[185] Min BH, Devi S, Kwon GH, Gupta H, Jeong JJ, Sharma SP, et al. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation. *Gut Microbes* 2024;16:2307568. doi: <https://doi.org/10.1080/19490976.2024.2307568>.

[186] Wu J, Wang K, Wang X, Pang Y, Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. *Protein Cell* 2021;12:360–73. doi: <https://doi.org/10.1007/s13238-020-00814-7>.

[187] Chávez-Talavera O, Haas J, Grzych G, Tailleux A, Staels B. Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: what do the human studies tell? *Curr Opin Lipidol* 2019;30:244–54. doi: <https://doi.org/10.1097/MOL.0000000000000597>.

[188] Wang K, Liao M, Zhou N, Bao L, Ma K, Zheng Z, et al. *Parabacteroides distasonis* alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. *Cell Rep* 2019;26:222–235 e225. doi: <https://doi.org/10.1016/j.celrep.2018.12.028>.

[189] Yang X, Stein KR, Hang HC. Anti-infective bile acids bind and inactivate a *Salmonella* virulence regulator. *Nat Chem Biol* 2023;19:91–100. doi: <https://doi.org/10.1038/s41589-022-01122-3>.

[190] Wei S, Ma X, Zhao Y. Mechanism of hydrophobic bile acid-induced hepatocyte injury and drug discovery. *Front Pharmacol* 2020;11:1084. doi: <https://doi.org/10.3389/fphar.2020.01084>.

[191] Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. *Pharmacol Rev* 2014;66:948–83. doi: <https://doi.org/10.1124/pr.113.008201>.

[192] Li W, Chen H, Tang J. Interplay between bile acids and intestinal microbiota: regulatory mechanisms and therapeutic potential for infections. *Pathogens* 2024;13:702. doi: <https://doi.org/10.3390/pathogens13080702>.

[193] Gao Y, Lin J, Ye C, Guo S, Jiang C. Microbial transformations of bile acids and their receptors in the regulation of metabolic dysfunction-associated steatotic liver disease. *Liver Res* 2023;7:165–76. doi: <https://doi.org/10.1016/j.livres.2023.09.002>.

[194] Trauner M, Nevens F, Schiffman ML, Drenth JPH, Bowlus CL, Vargas V, et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. *Lancet Gastroenterol Hepatol* 2019;4:445–53. doi: [https://doi.org/10.1016/S2468-1253\(19\)30094-9](https://doi.org/10.1016/S2468-1253(19)30094-9).

[195] Liu J, Sun J, Yu J, Chen H, Zhang D, Zhang T, et al. Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism. *NPJ Biofilms Microbiomes* 2023;9:29. doi: <https://doi.org/10.1038/s41522-023-00399-z>.

[196] Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. *Cell Metab* 2023;35:1752–1766 e1758. doi: <https://doi.org/10.1016/j.cmet.2023.07.011>.

[197] Eslam M, Sanyal AJ, George J. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. *Gastroenterology* 2020;158:1999–2014 e1991. doi: <https://doi.org/10.1053/j.gastro.2019.11.312>.

[198] Sandhu BK, McBride SM. *Clostridioides difficile*. *Trends Microbiol* 2018;26:1049–50. doi: <https://doi.org/10.1016/j.tim.2018.09.004>.

[199] Abt MC, McKenney PT, Pamer EG. *Clostridium difficile* colitis: pathogenesis and host defence. *Nat Rev Microbiol* 2016;14:609–20. doi: <https://doi.org/10.1038/nrmicro.2016.108>.

[200] Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant *C. difficile* strains by gut microbiota derived secondary bile acids. *Anaerobe* 2017;45:86–100. doi: <https://doi.org/10.1016/j.anaerobe.2017.03.004>.

[201] Theriot CM, Bowman AA, Young VB. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for *Clostridium difficile* Spore Germination and Outgrowth in the Large Intestine. *mSphere* 2016;1:e00045–15. doi: <https://doi.org/10.1128/mSphere.00045-15>.

[202] Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to *Clostridium difficile*. *Nature* 2015;517:205–8. doi: <https://doi.org/10.1038/nature13828>.

[203] Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee IK, Yun BS, et al. Bile acid 7 α -dehydroxylating gut bacteria secrete antibiotics that inhibit *Clostridium difficile*: role of secondary bile acids. *Cell Chem Biol* 2019;26:27–34 e24. doi: <https://doi.org/10.1016/j.chembiol.2018.10.003>.

[204] Winston JA, Rivera AJ, Cai J, Thanissery R, Montgomery SA, Patterson AD, et al. Ursodeoxycholic Acid (UDCA) mitigates the host inflammatory response during *Clostridioides difficile* infection by altering gut bile acids. *Infect Immun* 2020;88:e00045–120. doi: <https://doi.org/10.1128/iai.00045-20>.

[205] Pike CM, Tam J, Melnyk RA, Theriot CM. Tauroursodeoxycholic acid inhibits *Clostridioides difficile* toxin-induced apoptosis. *Infect Immun* 2022;90:e0015322. doi: <https://doi.org/10.1128/iai.00153-22>.

[206] Mulder DJ, Noble AJ, Justinich CJ, Duffin JM. A tale of two diseases: the history of inflammatory bowel disease. *J Crohns Colitis* 2014;8:341–8. doi: <https://doi.org/10.1016/j.crohns.2013.09.009>.

[207] Chen L, Jiao T, Liu W, Luo Y, Wang J, Guo X, et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. *Cell Stem Cell* 2022;29:1366–1381 e1369. doi: <https://doi.org/10.1016/j.stem.2022.08.008>.

[208] Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. *Nature* 2019;569:655–62. doi: <https://doi.org/10.1038/s41586-019-1237-9>.

[209] Yang ZH, Liu F, Zhu XR, Suo FY, Jia ZJ, Yao SK. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis. *World J Gastroenterol* 2021;27:3609–29. doi: <https://doi.org/10.3748/wjg.v27.i24.3609>.

[210] Gentry EC, Collins SL, Panitchpakdi M, Belda-Ferre P, Stewart AK, Carrillo Terrazas M, et al. Reverse metabolomics for the discovery of chemical structures from humans. *Nature* 2024;626:419–26. doi: <https://doi.org/10.1038/s41586-023-06906-8>.

[211] Ding NS, McDonald JAK, Perdones-Montero A, Rees DN, Adegbola SO, Misra R, et al. Metabonomics and the gut microbiome associated with primary response to anti-TNF therapy in Crohn's disease. *J Crohns Colitis* 2020;14:1090–102. doi: <https://doi.org/10.1093/ecco-icc/jiaa039>.

[212] Van den Bossche L, Borsboom D, Devriese S, Van Welden S, Holvoet T, Devisscher L, et al. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis. *Lab Invest* 2017;97:519–29. doi: <https://doi.org/10.1038/labinvest.2017.6>.

[213] Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, J NG, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. *Am J Physiol Gastrointest Liver Physiol* 2017;312:G550–8. doi: <https://doi.org/10.1152/ajpgi.00256.2016>.

[214] Su X, Gao Y, Yang R. Gut microbiota derived bile acid metabolites maintain the homeostasis of gut and systemic immunity. *Front Immunol* 2023;14:1127743. doi: <https://doi.org/10.3389/fimmu.2023.1127743>.

[215] Jia B, Park D, Chun BH, Hahn Y, Jeon CO. Diet-related alterations of gut bile salt hydrolases determined using a metagenomic analysis of the human microbiome. *Int J Mol Sci* 2021;22:3652. doi: <https://doi.org/10.3390/ijms22073652>.

[216] Neish AS. Microbes in gastrointestinal health and disease. *Gastroenterology* 2009;136:65–80. doi: <https://doi.org/10.1053/j.gastro.2008.10.080>.

[217] Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, et al. Increased proportions of *Bifidobacterium* and the *Lactobacillus* group and loss of butyrate-producing bacteria in inflammatory bowel disease. *J Clin Microbiol* 2014;52:398–406. doi: <https://doi.org/10.1128/JCM.01500-13>.

[218] Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemse EC, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. *Gut* 2011;60:463–72. doi: <https://doi.org/10.1136/gut.2010.212159>.

[219] Fiorucci S, Carino A, Baldoni M, Santucci L, Costanzi E, Graziosi L, et al. Bile Acid Signaling in Inflammatory Bowel Diseases. *Dig Dis Sci* 2021;66:674–93. doi: <https://doi.org/10.1007/s10620-020-06715-3>.

[220] Gadaleta RM, Garcia-Irigoyen O, Cariello M, Scialpi N, Peres C, Vetrano S, et al. Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor. *EBioMedicine* 2020;54:102719. doi: <https://doi.org/10.1016/j.ebiom.2020.102719>.

[221] Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, et al. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. *Gut Microbes* 2024;16:2356284. doi: <https://doi.org/10.1080/19490976.2024.2356284>.

[222] Zhou C, Wang Y, Li C, Xie Z, Dai L. Amelioration of colitis by a gut bacterial consortium producing anti-inflammatory secondary bile acids. *Microbiol Spectr* 2023;11:e0333022. doi: <https://doi.org/10.1128/spectrum.03330-22>.

[223] Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. *Cell Host Microbe* 2020;27:659–670 e655. doi: <https://doi.org/10.1016/j.chom.2020.01.021>.

[224] Li T, Ding N, Guo H, Hua R, Lin Z, Tian H, et al. A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage. *Cell Host Microbe* 2024;32:191–208 e199. doi: <https://doi.org/10.1016/j.chom.2023.12.015>.

[225] Shafran I, Burgunder P. Adjunctive antibiotic therapy with rifaximin may help reduce Crohn's disease activity. *Dig Dis Sci* 2010;55:1079–84. doi: <https://doi.org/10.1007/s10620-009-1111-y>.

[226] Prantero C, Lochs H, Campieri M, Scribano ML, Sturniolo GC, Castiglione F, et al. Antibiotic treatment of Crohn's disease: results of a multicentre, double blind, randomized, placebo-controlled trial with rifaximin. *Aliment Pharmacol Ther* 2006;23:1117–25. doi: <https://doi.org/10.1111/j.1365-2036.2006.02879.x>.

[227] Saleh A, Parsa S, Garza M, Quigley EMM, Abraham BP. The role of fecal microbiota transplantation in the induction of remission in ulcerative colitis. *Dig Dis* 2023;41:656–65. doi: <https://doi.org/10.1159/000529591>.

[228] Wei Y, Zhu W, Gong J, Guo D, Gu L, Li N, et al. Fecal microbiota transplantation improves the quality of life in patients with inflammatory bowel disease. *Gastroenterol Res Pract* 2015;2015:517597. doi: <https://doi.org/10.1155/2015/517597>.

[229] Goyal A, Yeh A, Bush BR, Firek BA, Siebold LM, Rogers MB, et al. Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease. *Inflamm Bowel Dis* 2018;24:410–21. doi: <https://doi.org/10.1093/ibd/izx035>.

[230] Zhang L, Ma X, Liu P, Ge W, Hu L, Zuo Z, et al. Treatment and mechanism of fecal microbiota transplantation in mice with experimentally induced ulcerative colitis. *Exp Biol Med (Maywood)* 2021;246:1563–75. doi: <https://doi.org/10.1177/15353702211006044>.

[231] Paramsothy S, Nielsen S, Kamm MA, Deshpande NP, Faith JJ, Clemente JC, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. *Gastroenterology* 2019;156:1440–1454 e1442. doi: <https://doi.org/10.1053/j.gastro.2018.12.001>.

[232] Liu M, Ma J, Xu J, Huangfu W, Zhang Y, Ali Q, et al. Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived

lipopolysaccharides. *Int J Biol Macromol* 2024;261:129696. doi: <https://doi.org/10.1016/j.ijbiomac.2024.129696>.

[233] Yadav D, Khanna S. Safety of fecal microbiota transplantation for *Clostridioides difficile* infection focusing on pathobionts and SARS-CoV-2. *Therap Adv Gastroenterol* 2021;14:17562848211009694. doi: <https://doi.org/10.1177/17562848211009694>.

[234] Zellmer C, Sater MRA, Huntley MH, Osman M, Olesen SW, Ramakrishna B. Shiga toxin-producing *Escherichia coli* transmission via fecal microbiota transplant. *Clin Infect Dis* 2021;72:e876–80. doi: <https://doi.org/10.1093/cid/ciaa1486>.

[235] Ghani R, Chrysostomou D, Roberts LA, Pandiaraja M, Marchesi JR, Mullish BH. Faecal (or intestinal) microbiota transplant: a tool for repairing the gut microbiome. *Gut Microbes* 2024;16:2423026. doi: <https://doi.org/10.1080/19490976.2024.2423026>.

[236] Han M, Liang J, Hou M, Liu Y, Li H, Gao Z. *Bifidobacterium bifidum* ameliorates DSS-induced colitis in mice by regulating microbial metabolome and targeting gut microbiota. *J Agric Food Chem* 2024. doi: <https://doi.org/10.1021/acs.jafc.4c00365>.

[237] Liu W, Li Z, Ze X, Deng C, Xu S, Ye F. Multispecies probiotics complex improves bile acids and gut microbiota metabolism status in an *in vitro* fermentation model. *Front Microbiol* 2024;15:1314528. doi: <https://doi.org/10.3389/fmicb.2024.1314528>.

[238] Mencarelli A, Distrutti E, Renga B, D'Amore C, Cipriani S, Palladino G, et al. Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation. *PLoS One* 2011;6:e22978. doi: <https://doi.org/10.1371/journal.pone.0022978>.

[239] Zhang Y, Xia Y, Sun J. Probiotics and microbial metabolites maintain barrier and neuromuscular functions and clean protein aggregation to delay disease progression in TDP43 mutation mice. *Gut Microbes* 2024;16:2363880. doi: <https://doi.org/10.1080/19490976.2024.2363880>.

[240] Wu Y, Li Y, Zheng Q, Li L. The efficacy of probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in irritable bowel syndrome: a systematic review and network meta-analysis. *Nutrients* 2024;16:2114. doi: <https://doi.org/10.3390/nu16132114>.

[241] Holvoet T, Joossens M, Wang J, Boelens J, Verhasselt B, Laukens D, et al. Assessment of faecal microbial transfer in irritable bowel syndrome with severe bloating. *Gut* 2017;66:980–2. doi: <https://doi.org/10.1136/gutjnl-2016-312513>.

[242] Luo Y, De Souza C, Ramachandran M, Wang S, Yi H, Ma Z, et al. Precise oral delivery systems for probiotics: a review. *J Control Release* 2022;352:371–84. doi: <https://doi.org/10.1016/j.jconrel.2022.10.030>.

[243] Baars A, Oosting A, Knol J, Garssen J, van Bergenhenegouwen J. The gut microbiota as a therapeutic target in IBD and metabolic disease: a role for the bile acid receptors FXR and TGR5. *Microorganisms* 2015;3:641–66. doi: <https://doi.org/10.3390/microorganisms3040641>.

[244] Li M, Liu N, Zhu J, Wu Y, Niu L, Liu Y, et al. Engineered probiotics with sustained release of interleukin-2 for the treatment of inflammatory bowel disease after oral delivery. *Biomaterials* 2024;309:122584. doi: <https://doi.org/10.1016/j.biomaterials.2024.122584>.

[245] Huang H, Liu X, Lang Y, Cui J, Zhong D, Zhou M. Breaking barriers: bacterial-microalgae symbiotic systems as a probiotic delivery system. *J Nanobiotechnology* 2024;22:371. doi: <https://doi.org/10.1186/s12951-024-02647-6>.

[246] Heidarrezaei M, Mauriello G, Shokravi H, Lau WJ, Ismail AF. Delivery of probiotic-loaded microcapsules in the gastrointestinal tract: a review, probiotics antimicrob. *Proteins* 2024;17:193–211. doi: <https://doi.org/10.1007/s12602-024-10311-6>.

[247] Koh E, Hwang IY, Lee HL, De Sotto R, Lee JWJ, Lee YS, et al. Engineering probiotics to inhibit *Clostridioides difficile* infection by dynamic regulation of intestinal metabolism. *Nat Commun* 2022;13:3834. doi: <https://doi.org/10.1038/s41467-022-31334-z>.

[248] Gadaleta RM, Cariello M, Crudele L, Moschetta A. Bile salt hydrolase-competent probiotics in the management of IBD: unlocking the “Bile Acid Code”. *Nutrients* 2022;14:3212. doi: <https://doi.org/10.3390/nu14153212>.

[249] Zhu Q, Yuan C, Dong X, Wang Y, Li B, Tu B, et al. Bile acid metabolomics identifies chenodeoxycholic acid as a therapeutic agent for pancreatic necrosis. *Cell Rep Med* 2023;4:101304. doi: <https://doi.org/10.1016/j.xcrm.2023.101304>.

[250] Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. *Acta Pharm Sin B* 2015;5:99–105. doi: <https://doi.org/10.1016/j.apsb.2015.01.006>.

[251] Lee SY, Jang SI, Cho JH, Do MY, Lee SY, Choi A, et al. Gallstone dissolution effects of combination therapy with n-3 polyunsaturated fatty acids and ursodeoxycholic acid: a randomized, prospective, preliminary clinical trial. *Gut Liver* 2024;18:1069–79. doi: <https://doi.org/10.5009/gnl230494>.

[252] Kubota H, Ishizawa M, Kodama M, Nagase Y, Kato S, Makishima M, et al. Vitamin D receptor mediates attenuating effect of lithocholic acid on dextran sulfate sodium induced colitis in mice. *Int J Mol Sci* 2023;24:3517. doi: <https://doi.org/10.3390/ijms24043517>.

[253] Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. *Nature* 2006;439:484–9. doi: <https://doi.org/10.1038/nature04330>.

[254] Li W, Zou L, Huang S, Miao H, Liu K, Geng Y, et al. The anticancer activity of bile acids in drug discovery and development. *Front Pharmacol* 2024;15:1362382. doi: <https://doi.org/10.3389/fphar.2024.1362382>.

[255] Ali AH, Lindor KD. Obeticholic acid for the treatment of primary biliary cholangitis. *Expert Opin Pharmacother* 2016;17:1809–15. doi: <https://doi.org/10.1080/14656566.2016.1218471>.

[256] Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. *N Engl J Med* 2016;375:631–43. doi: <https://doi.org/10.1056/NEJMoa1509840>.

[257] Younessi ZM, Ratiu V, Loomba R, Rinella M, Anstee QM, Goodman Z, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. *Lancet* 2019;394:2184–96. doi: [https://doi.org/10.1016/s0140-6736\(19\)33041-7](https://doi.org/10.1016/s0140-6736(19)33041-7).

[258] Mudaliar S, Henry RR, Sanyal AJ, Morrow I, Marschall HU, Kipnes M, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. *Gastroenterology* 2013;145:574–582 e571. doi: <https://doi.org/10.1053/j.gastro.2013.05.042>.

[259] Carino A, Biagioli M, Marchianò S, Fiorucci C, Bordoni M, Roselli R, et al. Opposite effects of the FXR agonist obeticholic acid on Mafg and Nrf2 mediate the development of acute liver injury in rodent models of cholestasis. *Biochim Biophys Acta Mol Cell Biol Lipids* 2020;1865:158733. doi: <https://doi.org/10.1016/j.bbapap.2020.158733>.

[260] Jin W, Zheng M, Chen Y, Xiong H. Update on the development of TGR5 agonists for human diseases. *Eur J Med Chem* 2024;271:116462. doi: <https://doi.org/10.1016/j.ejmech.2024.116462>.

[261] Zhang J, Zhang X, Li G, Ge J, Feng X, Loureirin B ameliorates glycolipid metabolism disorders in Ob/Ob mice by regulating bile acid levels and modulating gut microbiota composition. *Chem Biodivers* 2024;22: e202401793. doi: <https://doi.org/10.1002/cbdv.202401793>.

[262] Kiriyama Y, Nochi H. The role of gut microbiota-derived lithocholic acid, deoxycholic acid and their derivatives on the function and differentiation of immune cells. *Microorganisms* 2023;11:2730. doi: <https://doi.org/10.3390/microorganisms1112730>.

[263] Song P, Zhang X, Feng W, Xu W, Wu C, Xie S, et al. Biological synthesis of ursodeoxycholic acid. *Front Microbiol* 2023;14:1140662. doi: <https://doi.org/10.3389/fmicb.2023.1140662>.

Yanmin He is a master student in the College of Animal Sciences, Zhejiang University, China. Her current research interests include bile acid metabolism and its roles in diseases.

Mingliang Jin is a professor in the College of Animal Sciences, Zhejiang University, China. He was awarded the National Natural Science Foundation for Distinguished Young Scholars of China. He joined as faculty in Zhejiang University in 2019. His research is focused on gut microbiota and intestinal immunonutrition regulation. He has published more than 40 papers in internationally reputed peer review journals. Furthermore, he has presided more than 20 key projects including the National Key Research and Development Program, the National Natural Science Foundation of China, etc.

