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A B S T R A C T   

The fast accumulation of viral metagenomic data has contributed significantly to new RNA virus discovery. 
However, the short read size, complex composition, and large data size can all make taxonomic analysis difficult. 
In particular, commonly used alignment-based methods are not ideal choices for detecting new viral species. In 
this work, we present a novel hierarchical classification model named CHEER, which can conduct read-level 
taxonomic classification from order to genus for new species. By combining k-mer embedding-based encoding, 
hierarchically organized CNNs, and carefully trained rejection layer, CHEER is able to assign correct taxonomic 
labels for reads from new species. We tested CHEER on both simulated and real sequencing data. The results 
show that CHEER can achieve higher accuracy than popular alignment-based and alignment-free taxonomic 
assignment tools. The source code, scripts, and pre-trained parameters for CHEER are available via GitHub: 
https://github.com/KennthShang/CHEER.   

1. Introduction 

Metagenomic sequencing, which allows us to directly obtain total 
genomic DNAs from host-associated and environmental samples, has led 
to important findings in many areas, such as digestive health [1]. While 
bacteria are the main focus of most metagenomic sequencing projects, 
there are fast accumulation of viral metagenomic data with sequencing 
viruses as the main purpose [2]. There are different types of viruses. We 
are mainly concerned with RNA viruses because many RNA viruses are 
notorious human pathogens, such as Influenza A, Human immunodefi-
ciency virus (HIV), Ebola, SARS-CoV, and recently identified SARS-CoV- 
2. Unlike DNA viruses, RNA viruses, which contain RNA genomes, lack 
faithful proofreading mechanisms during replication and thus can pro-
duce a group of related but different viral strains infecting the same host. 
This high genetic diversity within and across different hosts poses a 
great challenge for designing long-term protection strategies against 
these infectious diseases. For example, as the circulating strains can 
change every year, flu vaccine has to be administered every year. 

Advances in viral metagenomics have contributed significantly to 
new RNA virus discovery. According to a survey by Woolhouse et al., the 
number of newly identified RNA viruses is changing from 1,899 in 2005 
to 5,561 in 2018, which is 3 times of increase [3]. Large-scale RNA virus 
sequencing projects using next-generation sequencing technologies have 

been conducted for different species. For example, Shi et al. have 
discovered a large number of new RNA viruses by sequencing samples 
from invertebrate and vertebrate animals [4,5]. Claire et al. have 
discovered 25 new RNA viruses by sequencing samples associated with 
different drosophilid [6]. Bolduc et al. sequenced RNA virus-es from 
Archaeal and bacterial samples [7]. Given fast accumulation of viral 
metagenomic data and expected discovery of new viruses, a key step is 
to conduct composition analysis for these data and assign taxonomic 
groups for possibly new species. 

Composition analysis can be conducted at the read level or contig 
level. There is no doubt that contigs can provide more information than 
short reads in taxonomic classification. However, metagenomic assem-
bly is still one of the most challenging computational problems in bio-
informatics. Unlike single genome assembly, metagenomic assembly is 
more likely to produce chimeric contigs that can contain regions from 
different species. Thus, metagenomic assembly is often preceded by read 
binning that groups reads with the same or similar taxonomic labels [8] 
in order to achieve better performance. 

In this work, we design a read level taxonomic classification tool 
(named as CHEER) for labeling new species in viral metagenomic data. 
To detect known species with available reference genomes, alignment- 
based methods can provide sufficient information for both classifica-
tion and abundance estimation. This function has been incorporated in 
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existing pipelines [9–11] and is thus not the focus of our tool. Instead, 
our tool is designed to handle the challenging cases of assigning taxo-
nomic labels for reads of new species, which have not been observed 
before. This problem was clearly formulated in metagenomic phyloge-
netic classification tools such as Phymm and PhymmBL [8]. We first 
define the classification problem following the formulation in Phymm: 
the classification problem is the assignment of a phylogenetic group 
label to each read in input data sets. As we are only interested in the hard 
case of classifying reads of new species, which have not been sequenced 
and thus no label exists for these species, the expected labels for these 
reads are the higher-rank taxonomic groups such as genus, family, or 
order. All our data and experiments are designed so that the test species 
are masked in the reference database and the trained models. 

1.1. Related work 

Our method provides read binning, which aims to classify/cluster 
reads into bins so that reads in the same bin are from the same taxo-
nomic group [12–17]. Metagenomic read binning can provide insights in 
the composition analysis and also helps achieve better assembly and 
metagenome comparison, which are both computationally challenging 
for metagenomic data[18]. In particular, CHEER is closely related to 
taxonomy dependent binning, which conducts classification by 
comparing reads against training data with known phylogenetic origins. 
Ghosh et al. provided a review of available taxonomy dependent binning 
tools [17]. Some of these tools rely on sequence alignment [18] while 
others are alignment-free [8,19,20]. 

Many of the alignment-free tools implemented different machine 
learning models and were mainly designed for bacteria. For example, 
RDP [19] adopted a Naïve Bayes based classifier that can automatically 
learn features from the reads and assigned taxonomic labels to se-
quences from bacterial and archaeal 16S genes and fungal 28S genes. 
The NBC classifier [20,21] encoded metagenomic reads using k-mers 
and implemented a bag-of-word model to achieve the read-level taxo-
nomic classification. Phymm [8] utilized interpolated Markov models 
(IMMs) for metagenomic read classification. 

Although nucleotide-level homology search is not sensitive enough 
for assigning higher rank taxonomic groups to reads from new species 
[9,10], protein-based homology search has shown more promising re-
sults for phylogenetic classification [11,22]. In particular, a recent tool, 
VirusSeeker [23] utilized BLASTx to classify reads into bacteria, phages, 
and other viruses. It is not clear whether the protein homology search is 
able to generate accurate classification at lower ranks. We will evaluate 
this in our experiments. 

Previous works have shown that sequence composition is still an 
important and informative feature for phylogenetic classification. 
Recent applications of deep learning models have achieved better per-
formance than conventional machine learning methods in different 
sequence classification problems [24]. In particular, the convolution 
filters in Convolutional Neural Network models (CNN) can represent 
degenerated sequence motifs and thus help CNN models to learn abstract 
composition-based features. For example, frequently activated convo-
lution filters learned by DeepFam often represented the conserved mo-
tifs in different protein domain families [25]. 

The successful applications of deep learning in sequence classifica-
tion motivated us to design a novel deep learning-based classification 
model for assigning taxonomic groups for new species in viral meta-
genomic data.Overview of CHEER Our main contributions are summa-
rized below. First, our deep learning model can assign higher rank 
phylogenetic group labels (such as genus) for reads from new species. To 
achieve this goal, our model organizes multiple CNN-based classifiers in 
a tree for hierarchical taxonomic group assignment. Second, to enable 
our model to capture as much information as possible from short reads, 
we implemented and compared two encoding methods: one hot vs. 
embedding. Third, as viral metagenomic data usually contains 
contamination from either the host genomes or other microbes, we 

formulated the pre-processing step as an open set problem in targeted 
image classification and rejected non-viral reads by choosing appro-
priate negative training sets. We tested our model on both simulated 
metagenomic data and also real sequencing data. The results show that 
our model competes favorably with other popular methods. 

2. Method 

In this section, we will introduce our method for viral metagenomic 
taxonomic classification. First, we will show the architecture of CHEER, 
which is a hierarchical classification model from order to genus. Second, 
classifiers at each level will be described. Third, we will introduce DNA 
sequence encoding using skip-gram based word embedding and 
compare it with one-hot encoding. Forth, we will describe the rejection 
layer, following the idea of the open set problem, which is adopted to 
filter reads not belonging to RNA viruses. Finally, we will detail our 
dataset used in training and validation. 

2.1. Hierarchical classification model 

The architecture of our model is sketched in Fig. 1. The key 
component is a tree model that consists of multiple classifiers from order 
to genus. In order to conduct phylogenetic classification for reads from 
new species, or even new genus, our classification is conducted using a 
top-down approach from the root to the leaf node. The top layer is a 
trained CNN that can reject reads not belonging to RNA viruses, which is 
an important preprocessing step for viral metagenomic data because of 
the contamination from the host genome or other microbes. Then, the 
filtered reads (i.e. mostly RNA viral reads) will be fed into the hierar-
chical classification model, which is referred to as the tree model 
hereafter. Specifically, the order-level classifier is responsible for clas-
sifying the reads into their originating orders. Then each order has a 
separately trained classifier for assigning input reads to families within 
that order (O1 to O3 in Fig. 1). For all the reads assigned into one family, 
the family classifier (F1-F7) will assign the reads to different genus 
within that family. As an example, a path for classifying a read from a 
species in genus 7 is highlighted in Fig. 1. CHEER also implemented 
early stop functions at each level for stopping the classification path at 
higher ranks. This function can accommodate taxonomic classification 
for species from new genus or even higher ranks, which is possible for 
RNA viruses. It is convenient to add fine-grained classifiers within each 
genus so that we can assign species-level labels. However, as our focus is 
to conduct phylogenetic classification for reads from new species that do 
not have a species labels in the training data, we did not include the 
species-level assignment in this work. 

Alternative designs of hierarchical classification work, like [26,27], 
either build a classifier for each taxonomic rank or build a binary clas-
sifier for each class. We implemented a structure that built just one 
classifier for each taxonomic rank and compared different structures 
performance. According to the result shown in Fig. S1 in [Supplemen-
tary file 1], the structure shown in Fig.1 is better than one classifier per 
rank. Although one classifier per rank requires fewer classifiers, it needs 
to train many more parameters because the number of labels for each 
classifier increases by times. As a result, we observe overfitting more 
frequently. 

2.2. The structure of each classifier 

Each classifier in the tree model is implemented using CNN, which 
has achieved superior performance in various sequence classification 
problems [25]. The convolution filters used in CNN resemble position- 
specific weight matrix of motifs in genomic sequences. Frequently 
activated convolution filters can represent well-conserved motifs among 
sequences in the same class. Thus, a large number of convolution filters 
will be used in our CNN in order to learn well-conserved sequence fea-
tures in different classes. Deep CNNs in fields such as computer vision 
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often have multiple convolution layers in order to obtain more abstract 
features from training images. Here, we use a wide convolution design 
rather than a deep one, following the idea in [25]. Fig. 2 shows the 
classifier with the default hyper-parameters. First, reads will be encoded 
in matrices as input to the convolution layer using two methods. We will 
describe and compare these two encoding methods later in the Section 
2.3. Then, multiple convolution filters of different sizes are utilized to 
learn the conserved sequence features. According to our empirical study, 
we choose 3, 7, 11, 15 as the filter sizes, with 256 filters for each size 
respectively (see Fig. 2). Max pooling is then applied to each convolution 
filters output so that only the highest convolution value is kept. After the 
max-pooling layer, we have a 256-dimensional vector as the output of 
each convolution layer. We concatenate these four vectors into one 
1024-dimensional vector and feed it to one fully connected layer with 
512 hidden units. Dropout is applied to mitigate overfitting. The 
CrossEntropyLoss function supplied by Pytorch is adopted as an error 
estimation function. Due to the unbalanced size of each training class, 

we use the reciprocal of the proportion of each class as their error weight 
to help the model fairly learn from each class. And we utilize Adam 
optimizer with a 0.001 learning rate to update the parameters. The 
model is trained on HPCC with the 2080Ti GPU unit. 

2.3. Read encoding 

In previous deep learning-based sequence classification models 
[28,29], one hot encoding was commonly adopted to convert a sequence 
into a matrix, which will then be used as input to convolution layers. 
There also exist some methods using k-mer composition [30] and fre-
quency [21,20] to encode the DNA sequence, similar to the bag-of-words 
model in the field of natural language processing. However, these k-mers 
representation cannot give complete sequential information about the 
original reads. 

To incorporate both the k-mer composition and also their ordering 
information, we build a Skip-Gram [31] based embedding layer that can 
learn which k-mers tend to occur close to each other. Embedding is 
widely used in natural language processing to learn the semantic and 
syntactic relationships from sentences. A neural network with one hid-
den layer is trained to map a word to an n-dimensional vector so that the 
words that usually occur together will be closer in the n-dimension 
space. For our DNA read classification task, k-mers are the words and the 
embedding layer will map proximate k-mers into vectors of high 
similarity. 

The main hyper-parameter when training the skip-gram model is the 
size of the training context m, which defines the maximum context 
location at which the furthest k-mer is taken for training. Specifically, 
for a k-mer at position i as the input to the skip-gram model, the output 
k-mers are its neighbors located at i + jk, where − m⩽j⩽m. Larger m 
results in more training samples with a cost of training time. In our 
model, the default value of m is 1. As shown in Fig. 3, we will sample 3 k- 
mers as our dataset at a time with the middle one as the input and the 
surrounding two as the output. 

As proven in [31], Skip-Gram is able to automatically learn the 
relationship between proximate words and thus is expected to help learn 
the order between k-mers in genomic data. We implemented a hidden 
layer with 100 hidden units shown in Fig. 3. After training the model, 

Fig. 1. The flow chart and a simplified tree classifi-
cation structure of CHEER. Order classifier: classify 
reads into orders O1 to O3. O1-O3: classifiers within 
O1, O2, and O3, which assign family-level labels 
within each order. F1-F7: classifiers within each 
family from F1 to F7, which assign genus-level labels 
within each family. Genera1-Genera7: a set of genera 
under each family level. The dash line under each 
classifier shows the early stop function. The high-
lighted path with orange color shows the top-down 
classification path for a read from genera 7. The 
highlighted path with yellow shows the top-down 
classification path that stops at the family level 
determined by the early stop function. (For interpre-
tation of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   

Fig. 2. The CNN structure for each classifier in the tree model. As there are two 
options for read encoding, the figure only includes convolution filter size for k- 
mer embedding. 
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the co-occurrence features are embedded in the output of the hidden 
layer. Thus, a k-mer in a read will be represented as a 100-dimension 
vector, where each element in the vector is the output of the hidden 
unit in the hidden layer. 

When we use this pre-trained embedding layer to encode the reads, 
we first split each read into sequential k-mers. Second, each k-mer is fed 
to the embedding layer and the output is a 100-dimension vector. Third, 
all these vectors are combined into a large matrix according to the 
original position of each k-mers. Finally, this matrix will be fed to the 
convolutional layer. 

As shown in Fig. S2 in [Supplementary file 1], based on our large- 
scale experiments, we found that classifiers are easy to overfit with in-
crease of k. Thus, we choose 100-dimensional feature vectors with k 
being 3 as our default embedding layer parameter set based on our 
empirical analysis. 

2.4. Viral read screening based on Open Set Problem 

Due to the small genome size and limitations in library construction, 
it is not rare that many viral metagenomic data-sets are still contami-
nated with the genomes of the host and other microbes. Viral read 
screening is thus a key preprocessing step before the downstream 
composition analysis. Specifically, our tree model should only be 
applied to viral reads. However, the close set nature of the classifier 
forces it to assign a known label to each input without being able to 
distinguish viral reads from others. In this work, we will reject non-viral 
reads by formulating it as an open set problem in targeted image clas-
sification [32]. 

In a majority of neural network models [33,34], the logit of the last 
layer will be fed into the SoftMax function, which takes a vector of n real 
numbers as input and output a normalized probability vector for all 
labels/classes. However, for an irrelevant input from an unknown clade, 
all classes in the model tend to have low probabilities and thus applying 

a threshold on uncertainty can be used to reject unknown classes [32]. 
Along with this idea, serval approaches [35,36] have been proposed to 
solve the open set problem. 

In this work, we incorporate the pre-processing step in our hierar-
chical classification model by integrating a trained CNN and a SoftMax 
threshold. Contaminations such as bacteria will be rejected using 
empirically chosen SoftMax threshold τ. Our experiments show that 
SoftMax outputs a nearly uniform probability distribution of all labels if 
the input is not relevant. Thus, the SoftMax threshold τ is used to reject 
reads not belonging to either DNA or RNA viruses. However, using this 
thresholding method is not able to distinguish DNA viral reads from RNA 
viral reads due to their similar sequence composition. To accommodate 
this challenge, we designed a rejection classifier in the top layer using 
DNA viral reads as the negative class in the training (see Fig. 1). 

2.5. The early stop function in the hierarchical classification 

As the focus of our work is to assign labels for new species, the hi-
erarchical classification ends at genus-level assignment, which is con-
ducted by the bottom layer in Fig. 1. Given the fast accumulation of viral 
metagenomic data, there are cases where a new species does not belong 
to any existing genus and thus the label assignment should stop at the 
higher ranks. Thus, we allow our model to stop at a higher rank in the 
tree during the top-down classification. Towards this goal, we still apply 
SoftMax threshold in our early stop function, which stops reads from 
further classification by the child classifiers. This early stop function also 
serves as a quality control measure for preventing wrong classifications 
if the confidence is low. For example, when a read arrives, the model 
may be able to identify its order and family labels with high reliability 
but cannot decide which genus it belongs to. In this case, the model 
should only assign order and family label to this read rather than clas-
sifying it into a potentially wrong genus. To achieve this goal, SoftMax 
threshold is applied for every classifier in the tree. Only reads with a 
score higher than the threshold will be assigned to the child class. 

An example of early stop is highlighted by the yellow path in Fig. 1. 
The model can classify the read into order 2 (O2) and then family 4 (F4) 
with high reliability but cannot decide which genus it belongs to. 

2.6. Training and validation datasets 

All the viruses used in the experiments were obtained from the 
RefSeq in the NCBI virus database. The viruses taxonomic classification 
was downloaded from Virus Taxonomy 2018b Release [37] published 
by the International Committee on Taxonomic of Virus (ICVT). Because 
training deep learning classifiers required enough samples, we removed 
the orders with only one family, families with only one genus, and 
genera with less than 3 species from our dataset. Finally, there are 6 
orders, 23 families, and 55 genera remained. The RefSeq genomes are 
available at the following URL:https://www.ncbi.nlm.nih. 
gov/labs/virus/vssi/#/find-data/virus. The information of the taxa 
can be found in Table. S1 in [Supplementary file 1]. 

As CHEER conducts read-level taxonomic classification, the training 
is also conducted using reads. In order to train our model on each 
complete virus genome, we generated simulated reads by uniformly 
extracting substrings of 250 bp with 200 bp overlaps. All these reads 
formed the training set so that the model can learn the features from the 
whole genome. The validation set, however, is generated by read 
simulation tool WgSim [38] with specified error rate so that we can have 
a better estimation of the models performance on real sequencing data. 
Finally, as shown in Table S2 in [Supplementary file 1], the total number 
of species used in the experiment is 1,092. And there are 438,072 reads 
generated from the species. 

Some existing deep learning tools for taxonomic classification, like 
[28,30], generate reads first, then randomly choose some of them as 
training set and others as testing set. This strategy cannot guarantee that 
the training and testing data sets have no overlaps from the same 

Fig. 3. The training procedure of the embedding layer. There are 100 hidden 
units in the model. 
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species. In order to test whether our model can learn the label of new 
species, we use test species masking in the training set. Specifically, we 
split our RNA virus database into two independent sets. For any test 
species, their reads are not used in the training data. Thus, the model 
will only use the knowledge of known species for the new species 
classification. 

3. Results and discussion 

In this section, we will first give details of the hyperparameters of 
CHEER. Then we present the results of applying CHEER to both simu-
lated and mock sequencing data. For the simulated data by WgSim, we 
evaluated how sequencing error rate affects the performance of CHEER 
and compared the taxonomic classification results with state-of-the-art. 
For the mock data, we tested CHEERs performance in both taxonomic 
classification and its ability in distinguishing viral reads from others. 

3.1. Training and testing procedure 

In our experiments, the minimum number of species with-in a genus 
is 3. We thus constructed three test sets, each containing reads from one 
species that is randomly chosen from each genus. The three test sets 
contain three different species, respectively. In total, 165 species from 
55 genera are chosen to be new species for testing and the information of 
these species can be found in Table. S3 in [Supplementary file 1]. 

We used WgSim to simulate reads from testing species. In order to 
evaluate the impact of sequencing error on CHEER, we simulated reads 
with an error rate of 0, 0.01, 0.02, and 0.05, respectively. For each 
classifier (CNN), we computed the classification accuracy, which is 
defined in Eq. 1. To ensure that the computation of the accuracy is not 
affected by the number of reads from different species, we constructed a 
balanced test read set by simulating the same number of reads for each 
test species (1,000 reads for each). 

Accuracy =
number of correct prediction

total number of reads
(1) 

For each component classifier in the tree model, we record the 
average accuracy for multiple test species. For each taxa level, we 
calculate the average accuracy of all the classifiers in the same level. 

3.2. Classification performance at each level 

We present the results of CHEER at each level in this section. Because 
CHEER is designed for new species, we benchmark it against alignment- 
free models. Based on the results shown by Wood et al. [9], Naïve Bayes 
Classifier (NBC) in [19] outperformed other alignment-free models. 
Thus, we choose NBC as one of our baselines. To show the improvement 
of CHEER’s classifier, We also compared another CNN based classifier, 
named metagenomicDC [30]. MetagenomicDC and NBC are designed 
for bacteria taxonomic classification and thus, we re-trained the two 
models on our RNA virus dataset. We implemented the metagenomicDC 
and NBC following [19,30] with the same hyper-parameters. 

Fig. 4 shows the classification accuracy for genera. Since each family 
has a separately trained classifier, which conducts genus classification 
within that family, there are totally 14 classifiers at this level. Fig. 5 
shows the accuracy for labeling families. There are totally 6 classifiers 
that assign reads to families within each of the 6 orders. Fig. 6 shows the 
mean accuracy at each rank. The family and genus level accuracy are the 
average accuracy of all classifiers in Figs. 4 and 5. There is only one 
classifier for order level classification. 

As shown in Figs. 4–6, CHEER has better performance than meta-
genomicDC and NBC across different ranks. Overall the order-level 
classification accuracy is good, but there is one order, named Nidovir-
ales, poses challenges for NBC classifier as shown in Fig. S3 in [Sup-
plementary file 1]. We also compared the performance of using one-hot 
encoding and embedding layer in CHEER. The performance comparison 

at each rank shows that for most of the classifiers, the embedding layer 
improves the learning ability. 

Figs. 4–6 also revealed the robustness of CHEER. Although the 
classification accuracy decreases as the error rate increases, the decrease 
is smaller than 2%. The accuracy is almost identical for many classifiers. 
Thus, CHEER is not very sensitive to sequencing errors. We also con-
ducted experiments for reads with higher error rates (0.02 and 0.05). 
The results can be found in Fig. S4, Fig. S5 and Fig. S6 in [Supplementary 
file 1]. 

Fig. 4. The classification accuracy at genus level. Y-axis: classifier within each 
family. X-axis: the accuracy. NBC: Naïve Bayes Classifier. MetagenomicDC: 
CNN based classifier. CHEER-one-hot: one hot encoding option. CHEER: 
embedding layer option. Model name which suffix 0.01: testing reads with a 
sequencing error rate of 0.01. 
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3.3. Real sequencing data 

The next experiment is to evaluate our model on a real sequencing 
dataset and test CHEERs performance in both taxonomic classification 
and non-viral read rejection. 

We built a mock dataset by mixing Ebolavirus reads with gut 

bacterial reads from a gut amplicon sequencing dataset, which is chosen 
to ensure that we only use reads from bacteria. The taxonomic classifi-
cation of Zaire Ebolavirus in the tree model is highlighted in Fig. 7. We 
chose one of the Ebola species named Zaire Ebolavirus as our testing 
species because it is the most dangerous of the five Ebolavirus species 
and was responsible for the 2014 West African Ebola outbreak. We 
downloaded the dataset from NCBI with accession number 
SRR1930021. These reads were sequenced by Illumina using whole- 
genome amplification strategy. Since Zaire Ebolavirus usually causes 
fatal hemorrhagic fever and abdominal pain, it is possible that this Ebola 
virus occurs with other gut bacteria. Thus, we created a mock viral 
metagenomic data by mixing these Ebola reads with a gut bacteria 
amplicon sequencing data in order to test whether CHEER can reject the 
bacterial reads at the top rejection layer. The gut bacteria dataset is 
downloaded from NCBI with accession number: SRR10714026. There 
are totally 2,737 Ebola virus reads and 51,280 gut bacterial reads in the 
mock data. After the rejection layer, the Ebola reads will be used to 
evaluate our tree model. 

To treat Zaire Ebolavirus as a new species, we removed its genome 
from our training set and re-trained the whole pipeline. As shown in 
Fig. 7, after removing this species, we still have four Ebola species in our 
training set. However, our read mapping experiment using Bowtie2 [39] 
showed that none of the reads from Zaire Ebolavirus can be mapped to 
other Ebola species with the default parameters, indicating that using 
usual alignment-based methods will have difficulty to conduct genus- 
level assignment. 

In our work, CHEER will first use rejection layer to remove the reads 
not belonging to the RNA virus. Second, the Order classifier will be 
applied to evaluate how many reads can be classified into Mono-
negavirales order. Third, Mononegavirales classifier takes all these 
Mononegavirales reads as input to predict how many reads will be 
assigned to the Filoviridae family. Finally, Filoviridae classifier is 
adopted to check how many reads belong to the Ebola genus. 

3.3.1. Evaluation of the rejection layer 
Fig. 8 show the ROC curve of the rejection layer. True positive rate 

reveals how many Ebolavirus reads pass the rejection layer. The false 
positive rate reveals how many gut bacterial reads pass the rejection 
layer. We generated thresholds from 0 to 1 with step size 0.01 and used 
each threshold for the rejection layer. Then for each threshold, we 
recorded the true positive rate and false positive rate for plotting the 
ROC curve. As shown in Fig. 8, with the increase of the threshold, more 
bacterial reads are filtered by the rejection layer, at the expense of 
missing more real Ebola reads. The default threshold for the rejection 
layer is 0.6 in CHEER. User can adjust the threshold according to their 
needs. 

3.3.2. Comparison to the NBC model 
After evaluating the rejection layer, we continued to test the hier-

archical classification performance at each rank. We first compared our 
tree model with NBC. Then we also benchmarked CHEER with the 
method using protein-level alignment in Section 3.3.3. 

The performance of the complete hierarchical classification pipeline 
of NBC and CHEER is shown in Fig. 9. From order to genus, each bar 
shows the accuracy of correctly classified reads by the parent classifier. 
For example, NBC correctly classified 1580 at the order level. Then, 
1564 out of the 1580 reads are correctly labeled at the family level. 
While Figs. 4–6 have shown the performance of CHEER and NBC at each 
taxonomic rank using the same set of reads as input for each level of 
classifiers, this experiment focused on comparing the hierarchical clas-
sification pipeline using only correctly predicted reads by the parent 
classifier. The results demonstrated that CHEER can classify Ebola reads 
with better performance. NBC can only classify 1,564 (57.1%) reads into 
Ebolavirus. CHEER, however, had totally 2407 (87.9%) reads classified 
correctly. 

Fig. 5. The classification accuracy at family level. Y-axis: the classifier within 
each order. X-axis: the accuracy. Refer to Fig. 4 for the meaning of the labels. 

Fig. 6. The mean accuracy at each level. Y-axis: the taxonomic rank. X-axis: the 
accuracy. Refer to Fig. 4 for the meaning of the labels. 
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3.3.3. Comparison with alignment-based methods 
Although nucleotide-level alignment models are not ideal choices for 

predicting new species, as mentioned in [8], protein-level alignment 
such as BLASTx is still frequently used for homology search because of 
the conservation among homologous protein sequences. We followed 
VirusSeeker [23], which is a BLASTx based model, to align translated 
reads to virus-only protein database (VIRUSDB NR) provided by NCBI. 
Then, we kept alignments with E-value cutoff 0.001, which is used in 
VirusSeeker. The output of BLASTx shows that a read can often align to 
multiple proteins, making the phylogenetic classification ambiguous 
(see Fig. 11). Also, existing tools such as VirusSeeker often use the best 
alignment only, which does not always yield the highest accuracy. To 
optimize the usage of the alignment-based method, we implemented k- 
Nearest Neighbor (kNN) algorithm to record the best k alignments rather 
than only using the best one. The label of the input read is determined by 
the majority vote in the labels of the top k alignments. 

According to Fig. 10, most of the reads have hit numbers between 11 
to 15 and 6 to10. Thus, we chose 1, 5, 10, 15 as our k when running kNN. 
There are also 512 reads that cannot be aligned with any VIRUSDB 
protein sequence. All these reads will be regarded as wrong prediction. 

Fig. 7. Taxonomy of Ebola. The red lines with arrows is the classification path for a new species in Ebolavirus in the tree model.  

Fig. 8. The ROC curve of the rejection layer for recognizing reads from Zaire 
Ebolavirus in the mock dataset. Y-axis: True positive rate of rejection layer. X- 
axis: False Positive rate of rejection layer. Four points corresponding to four 
thresholds are highlighted in the ROC curve. The percentage after each 
threshold means how many Ebolavirus reads pass the rejection layer. 

Fig. 9. Zaire Ebolavirus read prediction at each rank using the top-down 
approach. Y-axis: different taxonomic rank with NBC and CHEER. X-axis: 
number of reads. Correct: reads with correct classification. Wrong: reads with 
wrong classification. Following the classification tree, only correct predictions 
(yellow bar) will be fed to the child classifier. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 10. Distribution of BLASTx hit numbers with E-value threshold 0.001.  
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Fig. 11 shows the classification results of kNN. When we use the best 
hit as the prediction the accuracy is only 64%. The best performance of 
kNN will be 74% with 2,026 correct predictions when k is 5. But the 
accuracy sharply decreases if k is larger than 5. 

Figs. 10 and 11 also revealed that it is hard for users to choose a 
proper k in real classification tasks. The most common value of the hit 
number is 11–15 shown in Fig. 11. The best kNN result, however, has a k 
equal to 5. Thus, comparing to this alignment-based method, CHEER, 
with 2,407 (87.9%) reads classified correctly, is more practical and 
reliable. 

3.3.4. Evaluation of the early stop function 
The two main purposes of the early stop function are: (1) to handle 

the cases of a new species from an unseen genus or higher ranks; (2) to 
serve as a quality control measure for preventing wrong classifications in 
child classifiers. As Fig. 6 shows, the higher rank classification tends to 
be more accurate than lower ranks. Because the genus of Ebolavirus 
exists in our classification tree, the evaluation of the early stop function 
focuses on the second purpose. 

Fig. 12 shows the percentage of how many reads are classified into 
Ebolavirus genus correctly for different classifiers. By allowing early 
stop, the number of wrong predictions decreased sharply. In short, 
although there are fewer reads being labelled at the genus level, the total 
number of reads with wrong classification is decreased. Thus, this is still 
a useful feature provided by CHEER. 

3.3.5. Comparison of execution speed 
Another significant advantage of CHEER is the high classification 

speed. Although training the model uses heavy computing resources, the 
inference procedure of this algorithm is fast. And with the help of GPU 
acceleration, the training time also decreases a lot. 

In the experiments shown in Section 3.4, it takes around 46 min to 
run BLASTx against the virus protein database. Our method, however, 
only takes 7 s for the preprocessing step to convert the raw sequence into 
a vector, and then takes less than 35 s to make the prediction for all 
2,737 reads. 

4. Conclusion 

In this work, all training data are RNA virus genomes downloaded 
from the NCBI RefSeq database. The training reads are extracted 

uniformly from the genome to make sure that classifiers can learn the 
features from the whole genome. To evaluate the model on new species 
detection, all species in the test set are excluded from the training data. 
Error rates are also added to evaluate the robustness of the model. The 
results reveal that the model is tolerant to the sequencing error. In 
addition, a SoftMax threshold rejection layer is applied to filter reads 
from non-RNA viruses. The SoftMax threshold in each classifier will also 
help early stop classification with low confidence and thus decreases the 
wrong predication rate. We show a case study on real-world data to 
identify how this threshold will influence the rejection classifier and 
early stop function. The results show that CHEER competes favorably 
with state-of-the-art tools. 
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Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the 
online version, athttps://doi.org/10.1016/j.ymeth.2020.05.018. 

Fig. 11. Ebola kNN BLASTx classification result with different k value. Y-axis: k 
value. X-axis: percentage of correct and wrong classification. ALL: all hits 
satisfying the E-value cutoff are used to run the majority voting program. Fig. 12. Comparison between different models. Y-axis: name of different 

classifier. NBC: Naïve Bayes classifier. kNN: k-Nearest Neighbor model. CHEER: 
without early stop threshold. CHEER 0.7: early stop threshold 0.7. CHEER 0.8: 
early stop threshold 0.8. X-axis: percentage and number of correct, wrong, and 
early stopped classifications. Classified into Ebola genus (yellow): correctly 
classified reads. Early stop (light orange): reads that are stopped at higher 
ranks. Wrong (dark orange): misclassified reads. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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