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Abstract: Heart failure is a major cause of death worldwide with insufficient treatment options. In the
search for pathomechanisms, we found up-regulation of an enzyme, stearoyl-CoA desaturase 1 (Scd1),
in different experimental models of heart failure induced by advanced atherosclerosis, chronic pres-
sure overload, and/or volume overload. Because the pathophysiological role of Scd1/SCD in heart
failure is not clear, we investigated the impact of cardiac SCD upregulation through the generation of
C57BL/6-Tg(MHCSCD)Sjaa mice with myocardium-specific expression of SCD. Echocardiographic
examination showed that 4.9-fold-increased SCD levels triggered cardiac hypertrophy and symptoms
of heart failure at an age of eight months. Tg-SCD mice had a significantly reduced left ventricu-
lar cardiac ejection fraction of 25.7 ± 2.9% compared to 54.3 ± 4.5% of non-transgenic B6 control
mice. Whole-genome gene expression profiling identified up-regulated heart-failure-related genes
such as resistin, adiponectin, and fatty acid synthase, and type 1 and 3 collagens. Tg-SCD mice
were characterized by cardiac lipid accumulation with 1.6- and 1.7-fold-increased cardiac contents
of saturated lipids, palmitate, and stearate, respectively. In contrast, unsaturated lipids were not
changed. Together with saturated lipids, apoptosis-enhancing p53 protein contents were elevated.
Imaging by autoradiography revealed that the heart-failure-promoting and membrane-spanning
angiotensin II AT1 receptor protein of Tg-SCD hearts was significantly up-regulated. In transfected
HEK cells, the expression of SCD increased the number of cell-surface angiotensin II AT1 receptor
binding sites. In addition, increased AT1 receptor protein levels were detected by fluorescence
spectroscopy of fluorescent protein-labeled AT1 receptor-Cerulean. Taken together, we found that
SCD promotes cardiac dysfunction with overload of cardiotoxic saturated lipids and up-regulation
of the heart-failure-promoting AT1 receptor protein.

Keywords: SCD; Scd1; transgenic mice; heart failure; lipid overload; angiotensin II; AT1 receptor;
AGTR1; cardiac dysfunction

1. Introduction

With the aging of global society, the incidence of heart failure is on the rise world-
wide [1]. Heart failure is a condition where the heart function is insufficient to meet the
oxygen demands of the body and its vital organs. Frequent causes of heart failure are
major cardiovascular pathologies such as untreated hypertension, chronic atherosclerotic
vascular disease with ensuing myocardial infarction, and chronic volume and/or pressure
overload [2,3].

Several evidence-based treatment options of heart failure are available. Recommended
treatments of heart failure reduce the morbidity of heart failure patients and extend life
expectancy [2–4]. A mainstay treatment of heart failure is the inhibition of the overactive
renin–angiotensin–aldosterone system (RAAS) [2,4]. The major heart-failure-promoting
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receptor of the RAAS is the AT1 receptor for angiotensin II, AGTR1 [2,4]. The AGTR1-
activating angiotensin II is mainly generated by the angiotensin-converting enzyme, ACE.
Consequently, recommended treatment modalities of heart failure include an inhibitor
of the angiotensin converting enzyme (ACE) or an angiotensin II AT1 receptor blocker,
ARB [4]. Despite several prognosis-improving therapies, treatment options of heart failure
are still insufficient, and diagnosis of overt heart failure is associated with a worse progno-
sis than that of most malignant diseases [5]. Therefore, research on pathomechanisms is
urgently needed to identify new targets for treatment. Based on available concepts, previ-
ously unrecognized pathomechanisms are expected to synergize with the over-activated
RAAS and other neurohumoral systems of heart failure.

To investigate the pathomechanisms of heart failure, we performed cardiac whole-
genome microarray gene expression analysis of different experimental heart failure models
applying the Mouse Genome MG430 2.0 array with more than 45,000 probe sets. Differen-
tially expressed genes were classified by gene ontology (GO) analysis. GO analysis used
our data of four murine experimental models, in which heart failure was triggered by
major cardiovascular pathologies, such as atherosclerosis, chronic pressure, and/or volume
overload [6,7]. As a model of atherosclerosis-induced heart failure, we applied aged hyper-
cholesterolemic apolipoprotein E-deficient (Apoe-/-) mice with high atherosclerotic plaque
load [6,7]. In a second model, symptoms of heart failure were induced in young hyperc-
holesterolemic Apoe-/- mice by chronic pressure overload imposed by abdominal aortic
constriction (AAC) before overt atherosclerotic plaque accumulation [6,7]. The third model
induced symptoms of heart failure in Apoe-/- mice by chronic stimulation of the heart-
failure-promoting and adipogenic transcription factor, peroxisome proliferator-activated
receptor gamma (Pparg) with the Pparg agonist, rosiglitazone [6]. In the fourth model,
heart failure symptoms were triggered in non-transgenic B6 mice with normal plasma
cholesterol by long-term AAC-induced chronic pressure overload [6,7]. In agreement with
previous whole-genome gene expression studies [8,9], data analysis of our microarray
gene expression profiles identified differentially expressed groups of genes related to heart
failure such as genes encoding connective tissue and cytoskeletal proteins, oxidation en-
zymes, and genes of cell energy processes. In addition to those previously recognized
heart-failure-related gene groups, we found the consistent up-regulation of the cardiac lipid
metabolic process in the four different experimental heart failure models. Among several
lipid-synthesizing enzymes, there was the prominent up-regulation of the stearoyl-CoA
desaturase 1 (Scd1) in failing hearts.

Several lines of evidence suggest a pathological role of SCD, notably in obesity, dia-
betes, and metabolic diseases [10,11]. Despite progress, the role of cardiac Scd1-SCD up-
regulation in heart failure is not clear. On one hand, Scd1 is reported to be beneficial because
it protects against saturated fatty acid-induced apoptosis-enhancing catabolism [12–14].
On the other hand, Scd1 seems to be detrimental for the heart because systemic Scd1 de-
ficiency could improve the impaired cardiac function of obese (ob/ob) mice [15,16]. In
agreement with a negative impact on heart function, increased plasma contents of unsatu-
rated palmitoleic acid as a marker of increased systemic stearoyl-CoA desaturase activity
were found to be associated with an elevated risk of heart failure in human subjects [17].
Unsaturated palmitoleic acid is a major lipid product of SCD, which is not only associated
with heart failure but also with other cardiovascular risk factors such as high blood pres-
sure, inflammation, diabetes, and acute myocardial infarction [18–22]. Because knockout
or inhibition of SCD leads to decreased levels of cardiotoxic free fatty acids, triglycerides,
and ceramide [23,24], an increased SCD activity could become detrimental for the heart by
increasing unsaturated and saturated lipids.

However, previous studies mainly addressed systemic functions of SCD, which is
predominantly expressed in fat tissue and liver. By high expression in fat and liver, SCD
accounts for systemic alterations of plasma lipid contents. In contrast, the specific impact
of an increased expression of SCD in the heart is not known. An increase in cardiac SCD
could be relevant because the specific increase in SCD activity in the heart could counteract
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saturated fatty-acid-induced worsening of left ventricular diastolic dysfunction [25]. More-
over, lipid-synthesizing enzymes such as Scd1 in atrial cardiomyocytes could promote
cardiomyocyte survival under stress conditions [26].

In view of the unresolved function of SCD in the heart, we generated transgenic
C57BL/6-Tg(MHCSCD)Sjaa (Tg-SCD) mice with myocardium-specific expression of SCD.
Our study aimed to investigate the function of SCD up-regulation in the heart. The outcome
of the study could identify SCD as a novel target involved in cardiac pathology and heart
failure. Phenotyping of Tg-SCD mice revealed that the increased expression of SCD in the
heart is a sufficient cause of cardiac dysfunction with a reduced left ventricular cardiac
ejection fraction and cardiac hypertrophy at an age of 8 months. Concomitantly, SCD
induced the accumulation of saturated lipids and the heart-failure-promoting AT1 receptor
protein in the heart.

2. Results
2.1. Cardiovascular Risk Factors Trigger Up-Regulation of the Cardiac Lipid Metabolic Process in
Hypercholesterolemic Apoe-/- Mice

To investigate pathomechanisms of heart failure, we performed gene ontology (GO)
analysis of whole-genome gene expression data of three different experimental heart failure
models [6,7]. In these murine models, heart failure symptoms were triggered by major car-
diovascular pathologies, i.e., advanced atherosclerosis, chronic pressure overload, and/or
volume overload [6,7]. GO analysis was performed of transcripts, which were significantly
up-regulated (≥2-fold, p < 0.01) compared to the respective control group. Cardiac whole-
genome gene expression data of the following heart failure models were used for GO
analysis [6,7]: (I) six-month-old apolipoprotein E-deficient (Apoe-/-) mice with heart failure
induced by two months of chronic pressure overload imposed by abdominal aortic constric-
tion, AAC (Figure 1a); (II) aged (18-month-old) Apoe-/- mice with symptoms of heart failure
triggered by advanced atherosclerosis and ensuing atherosclerotic narrowing of the aorta
(Figure 1b); and (III) eight-month-old Apoe-/- mice with volume overload imposed by treat-
ment for two months with the heart-failure-promoting peroxisome proliferator-activated
receptor-gamma (Pparg) agonist, rosiglitazone (Figure 1c).

Among several groups of differentially expressed and heart-failure-related gene
groups, GO analysis identified the prominently up-regulated cardiac “lipid metabolic
process” in three different heart failure models (Figure 1a–c, and Tables S1–S3). In the
GO category “primary metabolic processes”, the up-regulated cardiac “lipid metabolic
process” was the predominant GO term of all three experimental heart failure models
(Figure 1a–c). In this category of “primary metabolic processes”, the “lipid metabolic
process” encompassed 51.1% of up-regulated probe sets of 6-month-old Apoe-/- mice with
AAC-induced heart failure (Figure 1a). The “lipid metabolic process” comprised 44.2%
of up-regulated probe sets of 18-month-old Apoe-/- mice with advanced atherosclerosis-
induced heart failure (Figure 1b) and 52.3% of up-regulated probe sets of Apoe-/- mice with
rosiglitazone-induced heart failure (Figure 1c).

These findings show that heart failure symptoms of hypercholesterolemic Apoe-/-
mice, which are triggered by (I)) chronic pressure overload, (II) advanced atherosclerosis,
and (III) Pparg activation with rosiglitazone, are accompanied by induction of enzymes of
the cardiac lipid metabolic process.
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Figure 1. Cardiovascular pathologies trigger up-regulation of enzymes of the cardiac lipid metabolic
process in hypercholesterolemic Apoe-/- mice. (a) GO analysis of up-regulated cardiac transcripts of
6-month-old Apoe-/- mice with 2 months of chronic pressure overload imposed by AAC compared to
age-matched, sham-operated, 6-month-old Apoe-/- mice; (b) GO analysis results of aged, 18-month-
old Apoe-/- mice with long-term atherosclerosis compared to age-matched, non-transgenic B6 hearts;
(c) GO analysis results of 8-month-old Apoe-/- mice with two months of treatment with the heart-
failure-promoting Pparg agonist, rosiglitazone, compared to untreated, 8-month-old Apoe-/- mice.
Probe sets with significantly different signal intensities compared to the respective control group
(p < 0.01; ≥2.0-fold difference; call present and/or intensity ≥100) were subjected to classification by
GO analysis. Color codes mark different groups of genes according to GO classification. GO terms
are shown in Figure 2.

2.2. Up-Regulation of the Cardiac Lipid Metabolic Process of Non-Transgenic B6 Mice with Heart
Failure Induced by Chronic Pressure Overload

We asked whether the lipid metabolic process was also up-regulated in a non-transgenic
heart failure model without hypercholesterolemia. As an experimental heart failure model,
we used 10-month-old, non-transgenic C57BL/6J (B6) mice with symptoms of heart failure
induced by 6 months of abdominal aortic constriction, AAC [6,7]. GO analysis of whole-
genome microarray gene expression data included significantly up-regulated transcripts
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(p < 0.01; ≥2-fold up-regulation) of B6 mice with heart failure induced by AAC compared
to age-matched, sham-operated, control B6 mice (Figure 2 and Table S4).

Figure 2. Up-regulation of the cardiac lipid metabolic process of non-transgenic B6 mice with heart
failure induced by chronic pressure overload. GO analysis of up-regulated cardiac transcripts of
10-month-old, male B6 mice with 6 months of chronic pressure overload imposed by AAC compared
to sham-operated, 10-month-old, male B6 hearts. Probe sets with significantly different signal
intensities compared to sham-operated control group (p < 0.01; ≥2.0-fold difference; call present
and/or intensity ≥ 100) were subjected to classification by GO analysis. GO terms are indicated.

GO analysis found that the cardiac lipid metabolic process was also up-regulated
in non-transgenic B6 mice with heart failure induced by AAC (Figure 2). Up-regulated
transcripts of the “lipid metabolic process” comprised 21.1% of heart-failure-induced
transcripts in the category “primary metabolic processes”.
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2.3. Concordantly Up-Regulated Genes of the Cardiac Lipid Metabolic Process in Different Heart
Failure Models

DNA microarray probe set intensities of heart-failure-related and concordantly up-
regulated genes of the cardiac lipid metabolic process of different heart failure models are
listed in Figures 3 and A1. Genes of the cardiac lipid metabolic process were similarly
up-regulated in three different heart failure models of hypercholesterolemic Apoe-/- mice
and in failing hearts of non-transgenic B6 mice (Figures 3 and A1). Notably, probe set
intensities of up-regulated transcripts of the cardiac lipid metabolic process were compara-
ble between non-transgenic C57BL/6J (B6) mice with heart failure induced by AAC and
hypercholesterolemic Apoe-/- mice subjected to AAC (Figure 3).

Figure 3. Up-regulation of the cardiac lipid metabolic process by chronic pressure overload in hypercholesterolemic Apoe-/-
mice and non-transgenic B6 mice. DNA microarray (MG430 2.0 Array, Affymetrix) probe set intensities are shown of
hearts from 6-month-old Apoe-/- mice with 2 months of pressure overload imposed by AAC (AAC-Apoe) compared to
age-matched, sham-operated Apoe-/- hearts (Apoe-sham) and age-matched, non-transgenic B6 controls (B6). The right panel
shows probe set intensities of 10-month-old B6 mice with six months of AAC-induced pressure overload (AAC) compared
to age-matched, sham-operated, non-transgenic B6 controls (Sham). Data of two gene chips per group with cRNAs from
four hearts per gene chip are shown. Probe sets of the “lipid metabolic process” with significantly different signal intensities
compared to respective control group and concordant up-regulation in different heart failure models are listed (p < 0.01;
≥2.0-fold difference; call present and/or intensity ≥ 100).

Up-regulated transcripts of the lipid metabolic process were sorted into the cate-
gories: lipid synthesis, lipid storage, and lipid oxidation (Figure 3). Several of the up-
regulated genes have a documented relationship to heart failure such as the major fatty-
acid-synthesizing enzyme, fatty acid synthase, Fasn [6,7], and the heart failure markers
adiponectin, Adipoq [27], and resistin, Retn [28].

The role of several of the up-regulated lipid genes in failing hearts was not previously
elucidated. Among different genes of the lipid metabolic process, Scd1, the stearoyl-CoA
desaturase-1, showed the highest signal intensity (Figure 3) but its function in the heart
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is not clear. Because the effect of Scd1 up-regulation in the heart is not known, this study
aims to elucidate the consequences of increased Scd1-SCD expression levels on cardiac
phenotype and heart function.

2.4. Generation of Tg-SCD Mice with Myocardium-Specific SCD Expression

Cardiac Scd1 was found to be up-regulated in different models of heart failure and
cardiac biopsies of patients with heart failure [6,7]. However, the impact of cardiac Scd1-
SCD up-regulation is unknown. Scd1 up-regulation was reported to protect the heart
against lipid-induced cardiac damage [12]. In contrast, another study found that Scd1 could
be deleterious for the heart because Scd1 deficiency improved the cardiac phenotype of
obese (ob/ob) mice [15,16]. In view of these divergent data, we investigated the phenotype
of cardiac SCD up-regulation by generation of transgenic mice with myocardium-specific
SCD expression under the control of the heart-muscle-specific α-MHC-promoter (Figure 4a).
There is no complication on α-MHC-promoter-driven expression of SCD expected, which
could be related to, e.g., hypercholesterolemia or hemodynamic intervention, because the
SCD transgene was expressed in non-transgenic B6 mice without hypercholesterolemia
and without hemodynamic intervention. Transgenic mice were generated by the injection
of linearized plasmid DNA into the pronucleus of embryos, followed by oviduct transfer
of two-cell stage embryos into the oviducts of foster mice. After weaning, genomic DNA
was isolated from biopsies, and transgenic mice were identified by genotyping PCR with
DNA oligonucleotides, which specifically amplify the DNA of the MHC-SCD transgene
(Figure 4b). Oligonucleotides are specific for the transgenic MHC-SCD DNA, and do not
cross-react with the endogenous murine Scd1 gene. Founder mice were used for further
breeding to generate C57BL/6-Tg(MHCSCD) mice.

Figure 4. Generation of Tg-SCD mice with myocardium-specific expression of SCD. (a) Scheme
of plasmid used for generation of Tg-SCD mice; (b) identification of mice with stable genomic
insertion of the SCD transgene by genotyping PCR. SCD-transgenic mice are marked with a star
(*), (P: plasmid control); (c) survival rate of male Tg-SCD mice compared to male, non-transgenic
B6 mice; (d) survival analysis of female Tg-SCD mice compared to female, non-transgenic B6 mice
(n = 85 mice per group).

Survival analysis showed a decreased survival rate of male Tg-SCD mice of 80.92%
compared to the survival rate of 97.54% of non-transgenic, male B6 controls during the
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observation period of 10 months (Figure 4c). Female C57BL/6-Tg(MHCSCD) mice had a
decreased survival rate of 69.85% (Figure 4d).

2.5. Immunohistological Analysis Shows Cardiac Enlargement of Tg-SCD Mice and Increased
Cardiac SCD Protein Levels

In view of the increased mortality of Tg-SCD mice, the cardiac phenotype of Tg-SCD
mice was determined by histological analysis of cardiac specimens of 8-month-old, male
and female Tg-SCD mice. At an age of 8 months, hearts from Tg-SCD mice were isolated
and characterized by histology. Histological analysis was performed with sections of
paraffin-embedded hearts from 8-month-old, male and female Tg-SCD mice compared
to age-matched, non-transgenic, male and female B6 mice (Figure 5a,b). Hematoxylin-
eosin (HE) staining showed enlargement of cardiac ventricles with thickened myocardium
indicative of cardiac hypertrophy of Tg-SCD hearts (Figure 5a,b).

Figure 5. Immunohistological analysis shows cardiac enlargement of Tg-SCD mice and increased
cardiac SCD protein levels. (a,b) Hematoxylin-eosin-stained heart sections (HE blue) and immuno-
histological staining with knockout-validated SCD-specific antibodies (SCD-Scd1 brown) of in-
creased myocardial SCD protein levels on cardiac specimens of eight-month-old male (a) and female
(b) Tg-SCD mice compared to those of non-transgenic B6 controls (bar: 2 mm; n = 6 male (1–6) and
n = 6 female (7–12) Tg-SCD mice; n = 3 male (C1–C3) and n = 3 female (C4–C6) B6 control mice).
Quantitative data are shown in Figure A2 in Appendix A.
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Immunohistology was performed to detect cardiac SCD-Scd1 protein contents of Tg-
SCD mice and non-transgenic B6 controls. The cardiac SCD-Scd1 protein was determined
by immunohistology with knockout-validated SCD-Scd1-specific antibodies. Immuno-
histological analysis revealed significantly increased cardiac SCD-Scd1 protein contents
of 8-month-old male and female Tg-SCD mice with cardiac hypertrophy compared to
age-matched, non-transgenic B6 mice (Figure 5a,b and Figure A2). Quantitative evaluation
of immunohistological data showed 5.16 ± 0.96-fold and 3.11 ± 0.36-fold increased cardiac
SCD-Scd1 levels of male and female Tg-SCD mice, respectively, compared to non-transgenic
B6 mice (Figure A2). Cardiac SCD-Scd1 protein contents were not significantly different
between male and female Tg-SCD mice (Figure A2).

2.6. Immunoblot Analysis Shows Increased Cardiac SCD and Pro-Apoptotic p53 Protein Levels of
Tg-SCD Mice

To further analyze cardiac SCD-Scd1 protein levels of Tg-SCD mice, immunoblot
analysis was performed (Figure 6).

Figure 6. Immunoblot analysis shows increased cardiac SCD and pro-apoptotic p53 protein levels
of Tg-SCD mice. (a) Immunoblot detection (IB) of SCD-Scd1 was performed in cardiac lysates of
8-month-old Tg-SCD mice and compared to age-matched, non-transgenic B6 mice (left panel). The
right panel shows quantitative data (n = 6 mice per group); (b) immunoblot detection of p53 (IB: p53)
with p53-specific antibodies in lysates of Tg-SCD hearts compared to non-transgenic B6 mice (left
panel), and quantitative immunoblot data (right panel; n = 6 mice per group). The lower immunoblot
detects Gnb2 as a loading control. P values are indicated and were determined by the unpaired,
two-tailed t-test.
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At an age of 8 months, hearts from Tg-SCD mice were isolated and cardiac SCD-
Scd1 protein levels were quantified by immunoblot with knockout-validated SCD-Scd1-
specific antibodies. Quantitative evaluation of western blot images showed the significantly
4.9-fold-increased cardiac SCD-Scd1 protein levels of Tg-SCD mice compared to those of
non-transgenic B6 mice (Figure 6a).

Concomitantly with increased cardiac SCD-Scd1 protein levels, hearts from Tg-SCD
mice showed increased levels of the apoptosis-enhancing protein, p53 (Figure 6b). The
immunoblot detected the predominant monomeric p53 together with a partially aggregated
p53 form at 150 kDa. Taken together, high cardiac SCD-Scd1 protein levels of Tg-SCD
hearts are accompanied by an increase in the pro-apoptotic protein p53. The induction
of myocardial p53 in Tg-SCD mice could be indicative of heart failure because failing
myocardium shows increased p53 protein contents [29].

2.7. Tg-SCD Mice Have a Heart Failure Phenotype with Cardiac Hypertrophy
and Cardiac Dysfunction

Assessment of heart-weight to body-weight ratio confirmed the phenotype of cardiac
hypertrophy of Tg-SCD mice (Figure 7a). As control, body-weights of Tg-SCD mice
were not significantly different from those of non-transgenic B6 controls (Figure A3). In
agreement with cardiac enlargement, echocardiographic examination showed an increased
left ventricular inner diameter at end-diastole (LVIDdiast) and end-systole (LVIDsyst) of
Tg-SCD mice (Figure 7b,c).

Figure 7. Tg-SCD mice have a heart failure phenotype with cardiac hypertrophy and cardiac dysfunction. (a) Increased
heart-weight to body-weight ratio (HW/BW) of 8-month-old, male Tg-SCD mice compared to age-matched, non-transgenic,
male B6 mice; (b) echocardiography detected an increased LVIDdiast of Tg-SCD mice; (c) the LVIDsyst of Tg-SCD mice was
also higher compared to non-transgenic B6 mice; (d) cardiac dysfunction of Tg-SCD mice was reflected by a reduced left ven-
tricular cardiac ejection fraction; (e) reduced fractional shortening (FS) of Tg-SCD mice; (f) heart rates of Tg-SCD mice were
not significantly different from those of non-transgenic controls (±s.d.; n = 6 mice per group; unpaired, two-tailed t-test).
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Concomitantly with cardiac hypertrophy, Tg-SCD mice developed cardiac dysfunction
at an age of 8 months (Figure 7d). Cardiac dysfunction of Tg-SCD mice was documented
by echocardiography with a significantly reduced left ventricular cardiac ejection fraction
(LVEF) of 25.7 ± 2.9% compared to 54.3 ± 4.5% of B6 controls (Figure 7d). In addition,
fractional shortening (FS) of Tg-SCD mice was significantly decreased to 10.2 ± 1.3%,
whereas the FS of B6 mice was 24.2 ± 2.6% (Figure 7e). As a control, under ketamine–
medetomidine anesthesia, heart rate was not significantly different between Tg-SCD mice
and non-transgenic B6 controls (Figure 7f). Together, these experiments show that Tg-
SCD mice develop a phenotype of heart failure with cardiac dysfunction and cardiac
hypertrophy at an age of 8 months.

2.8. Gene Expression Profiling of Tg-SCD Mice Shows Up-Regulation of Heart Failure-Related
Lipid Genes

To further analyze the heart failure phenotype of Tg-SCD mice, we performed whole-
genome microarray gene expression profiling (Figure 8).

Figure 8. Gene expression profiling of Tg-SCD mice shows up-regulation of heart-failure-related lipid genes.
(a) Up-regulation of Fasn (1423828_at) in Tg-SCD hearts; (b) increased intensity of probe set detecting Scd1 (1415964_at);
(c,d) up-regulation of heart-failure-related genes, Adipoq (1422651_at), and Retn (1449182_at), in Tg-SCD hearts; (e,f) in-
creased intensities of probe sets detecting Col1a2 (1423110_at) and Col3a1 (1427884_at) are indicative of adverse fibrotic remod-
eling in Tg-SCD hearts; (g,h) comparable signal intensities of probe sets detecting Gapdh (AFFX-GapdhMur/M32599_5_at;
AFFX-GapdhMur/M32599_3_at). Data of two gene chips per group with cRNAs from four hearts per gene chip are shown
(±s.d.; n = 2 gene chips per group; p values are indicated and were determined by the unpaired, two-tailed t-test).

Gene expression analysis detected up-regulated heart-failure-related genes of the lipid
metabolic process (Figure 8a–d). The probe set intensity of the major palmitate-synthesizing
and heart-failure-promoting Fasn was significantly higher in Tg-SCD hearts in comparison
to that in non-transgenic B6 hearts (Figure 8a). In addition to Fasn, Tg-SCD hearts showed
up-regulation of the murine Scd1 transcript (Figure 8b). This finding is noteworthy because
the GeneChip Mouse Genome MG430 2.0 array (Affymetrix) does not detect the human
SCD transgene. Thus, SCD-induced symptoms of heart failure are accompanied by up-
regulation of the murine Scd1 transcript as another heart-failure-related gene of the lipid
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metabolic process. In agreement with heart failure symptoms, Tg-SCD hearts displayed
increased expression of heart-failure-related markers, Adipoq and Retn (Figure 8c,d).

Myocardial fibrosis with increased collagen synthesis is part of the pathological cardiac
remodeling process of heart failure [30]. Adverse fibrotic cardiac remodeling is attributed
in part to cardiac collagen up-regulation and deposition, which contributes to increased
myocardial stiffness and impaired cardiac function [30]. Concomitantly with cardiac
dysfunction and heart failure, Tg-SCD hearts displayed the significant up-regulation of
two major cardiac collagens, which are of type 1 and type 3 [30,31], i.e., Col1a2 and Col3a1
(Figure 8e,f). As a control, signal intensities of probe sets detecting the house-keeping
gene, Gapdh, were not significantly different between Tg-SCD hearts and B6 controls
(Figure 8g,h).

Taken together, gene expression analysis shows up-regulation of heart-failure-enhancing
genes in Tg-SCD mice. This up-regulation of heart-failure-related genes complements the
phenotype of heart failure with cardiac dysfunction of Tg-SCD mice, which was documented
by echocardiography.

2.9. Immunoblot Detection Confirms Up-Regulation of Cardiac Fasn and Adipoq Proteins of
Tg-SCD Mice

Immunoblot detection was performed to validate microarray gene expression data
(Figure 9).

Figure 9. Immunoblot detection confirms up-regulation of cardiac Fasn and Adipoq in Tg-SCD mice.
(a,b) Increased cardiac protein levels of Fasn (a), and Adipoq in Tg-SCD mice (b). Left panels show
immunoblot images, and right panels show quantitative data (±s.d.; n = 6 mice per group; unpaired,
two-tailed t-test).

Immunoblot analysis documented increased cardiac Fasn protein levels in Tg-SCD
mice compared to those in non-transgenic B6 controls (Figure 9a). Cardiac Fasn protein
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levels of Tg-SCD mice were increased 3.7 ± 0.9-fold compared to those of non-transgenic
B6 mice (Figure 9a).

Immunoblot detection also confirmed increased Adipoq levels of Tg-SCD hearts
(Figure 9b). Adipoq levels of Tg-SCD hearts were 3.4 ± 0.8-fold higher than those of B6
hearts (Figure 9b). Together, these data show that Tg-SCD mice develop heart failure with
cardiac hypertrophy and cardiac dysfunction at an age of 8 months with concomitantly
increased cardiac protein levels of heart-failure-enhancing genes, Fasn and Adipoq.

2.10. Accumulation of Saturated Lipids in Tg-SCD Hearts

We investigated whether the up-regulated Fasn and increased SCD-Scd1 contents of
Tg-SCD hearts led to an increased cardiac lipid load (Figure 10).

Figure 10. Accumulation of saturated lipids in Tg-SCD hearts. (a) Representative GC analysis of
cardiac lipids of a Tg-SCD heart compared to that of a non-transgenic B6 control heart; (b) cardiac
palmitate contents of 8-month-old, male Tg-SCD mice compared to those of age-matched, male B6
mice; (c) cardiac stearate contents of Tg-SCD mice and B6 controls; (d) cardiac contents of mono-
unsaturated palmitoleate in Tg-SCD mice are not significantly different from those in B6 controls;
(e) contents of non-saturated oleate in Tg-SCD hearts are not significantly different from those in B6
controls. Panel (a) shows a representative experiment, and panels (b–e) show quantitative data (n = 4
mice/group; ± s.d., unpaired, two-tailed t-test).

Cardiac lipids were analyzed after transesterification by gas chromatographic (GC)
analysis with flame ionization detection (FID). For cardiac lipid analysis, we used the hearts
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of 8-month-old, male Tg-SCD mice and age-matched, male B6 control mice. Lipid analysis
found that Tg-SCD hearts had increased levels of saturated fatty acids (Figures 10a and A4).
Notably, cardiac contents of saturated lipids, palmitate and stearate, were significantly
increased in Tg-SCD hearts compared to non-transgenic B6 control hearts (Figure 10b,c).
Cardiac palmitate levels of Tg-SCD mice were 1.63-fold higher than those of B6 controls,
i.e., the cardiac palmitate content of Tg-SCD hearts was 4.6 µg/mg compared to 2.8 µg/mg
in B6 controls (Figure 10b). Cardiac stearate content of Tg-SCD mice was 5.0 µg/mg, and
cardiac stearate content of B6 controls was 2.9 µg/mg (Figure 10c).

In contrast to increased saturated lipids (palmitate and stearate), unsaturated lipids
(palmitoleate and oleate) contents of Tg-SCD hearts were not significantly different from
those of non-transgenic B6 controls (Figure 10d,e).

Thus, 4.9-fold elevated cardiac protein levels of SCD, which catalyzes the rate-limiting
step of monounsaturated lipid synthesis, did not increase cardiac contents of monounsatu-
rated lipids (palmitoleate and oleate) in Tg-SCD mice. Instead, SCD triggered accumulation
of saturated lipids in the heart, e.g., palmitate and stearate. This effect could contribute to
cardiac dysfunction, because saturated lipids are cardiotoxic and enhance cardiomyocyte
death and heart failure [6,7,32,33].

2.11. Up-Regulation of the Heart-Failure-Promoting AT1 Receptor in Tg-SCD Mice

By generating membrane lipids, SCD is also essentially involved in membrane phos-
pholipid biosynthesis. Membrane phospholipid biosynthesis is triggered by excessive lipids
when the lipid accumulation exceeds the requirements of cardiac energy production [33].

Membrane bilayer synthesis is coupled with membrane protein synthesis and protein
folding [34]. In view of the accumulation of increased saturated lipids in Tg-SCD hearts,
we asked whether SCD also changed cardiac protein contents of a membrane-spanning
and major heart-failure-promoting protein, i.e., the angiotensin II AT1 receptor, Agtr1.

Radioligand-binding studies were performed with Sar1,[125I]Tyr4,Ile8-angiotensin-II
to determine the number of AT1-receptor-specific binding sites on sarcolemmal membranes
of Tg-SCD hearts compared to those of non-transgenic B6 hearts (Figure 11a). Radioligand-
binding studies showed 1.97-fold-increased numbers of AT1-receptor-binding sites in
Tg-SCD hearts compared to those in non-transgenic B6 hearts (Figure 11a).

Autoradiographic imaging of cardiac cryo-sections with AT1-receptor-specific antibod-
ies revealed increased cardiac AT1 receptor protein contents of Tg-SCD hearts compared
to those of non-transgenic B6 hearts (Figure 11b,c). The AT1 receptor protein content of
Tg-SCD hearts was 2.57-fold higher than that of non-transgenic B6 hearts (Figure 11b,c).

AT1 receptor (Agtr1) expression levels were determined by microarray gene expression
analysis. Probe set intensities of Agtr1a were not significantly different between Tg-SCD
and non-transgenic B6 hearts (Figure A5a). Agtr1a is the major AT1 receptor in the murine
heart, whereas the expression of Agtr1b was below the detection limit (Figure A5b). Thus,
elevated cardiac SCD contents lead to increased cardiac AT1 receptor protein levels in
Tg-SCD mice, whereas Agtr1a expression levels are not affected.

In agreement with increased functional AT1 receptor binding sites, angiotensin-II-
responsive genes [35] were also up-regulated in Tg-SCD hearts, i.e., fibrosis-related genes,
Col1a2 and Col3a1 (c.f. Figure 8e,f). In addition, the oxidative-stress-induced transferrin
receptor 1, Tfrc, was elevated in Tg-SCD hearts (Figure A5c). The up-regulation of Tfrc
could be a consequence of cardiac AT1-receptor-stimulated generation of reactive oxygen
species [35,36].

In contrast, expression levels of paraoxonase enzymes 1-3 (Pon1, Pon2, Pon3), which
could detoxify oxidated lipids [37] and alleviate angiotensin-II-induced heart failure [38],
were unaltered in Tg-SCD hearts (Figure A6a–c).

Taken together, accumulation of excessive cardiac lipids in Tg-SCD hearts is accompa-
nied by increased protein levels of the heart-failure-promoting angiotensin II AT1 receptor
and up-regulation of angiotensin-II-responsive genes.
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Figure 11. Up-regulation of the heart-failure-promoting AT1 receptor in Tg-SCD mice. (a) Number of AT1-receptor-specific
binding sites on sarcolemmal membranes of 8-month-old, male Tg-SCD hearts and age-matched male B6 control hearts were
determined by radioligand binding studies (±s.d., n = 4 mice/group, unpaired, two-tailed t-test); (b) increased cardiac AT1
receptor protein contents of Tg-SCD mice compared to B6 control mice were determined by autoradiographic imaging with
AT1-receptor-specific antibodies (±s.d.; n = 6 mice per group; unpaired, two-tailed t-test); (c) autoradiographic images of AT1
receptor detection in Tg-SCD hearts and non-transgenic B6 control hearts by autoradiography with AT1-receptor-specific
antibodies (n = 6 hearts per group; bar: 2 mm).

2.12. SCD Expression Enhances the Number of Cell-Surface AT1-Receptor-Binding Sites of
HEK Cells

Does SCD alter AT1 receptor protein levels and the number of AT1 receptor bind-
ing sites in non-cardiomyocyte cells? We analyzed the impact of SCD on the number of
AT1 receptor binding sites of AT1-receptor-expressing HEK (human embryonic kidney)
cells to investigate whether SCD also affects the number of AT1 receptor binding sites of
non-cardiomyocyte cells. HEK cells with stable AT1 receptor expression were transiently
transfected with SCD expression plasmid or control vector, and the number of AT1 re-
ceptor binding sites was determined (Figure 12). Experiments found that increased SCD
expression also significantly increased the number of AT1-receptor-specific binding sites of
HEK cells (Figure 12a,b). Complementary to Tg-SCD hearts (cf. Figure A5), increased SCD
expression did not affect the expression level of the AT1 receptor, AGTR1, in HEK cells
(Figure 12c). Notably, expression levels of AGTR1, which was stably expressed in HEK cells
under control of the ubiquitous CMV promoter, were not significantly different between
HEK cells with and without SCD co-expression (Figure 12c). Together, these data show
that SCD increases the number of AGTR1-specific binding sites in HEK cells and Tg-SCD
hearts. In contrast, elevated SCD contents do not lead to increased expression levels of
AGTR1 in HEK cells and Tg-SCD hearts.
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Figure 12. SCD expression enhances the number of cell-surface AT1-receptor-specific binding sites of HEK cells. (a) Number
of AT1 receptor (AGTR1)-specific binding sites of HEK cells with stable AT1 receptor expression and transient transfection
of SCD expression plasmid (+SCD) or control plasmid (Control); (b) quantitative real-time qRT-PCR determination of SCD
expression levels of AT1-receptor-expressing HEK cells after transfection with SCD expression plasmid or control plasmid;
(c) SCD did not affect AGTR1 expression of HEK cells (±s.d., n = 5 biological replicates, unpaired, two-tailed t-test).

2.13. SCD Expression Increases AT1 Receptor-Cerulean Protein Levels of HEK Cells

The effect of SCD expression on protein levels of the AT1 receptor (AGTR1) was deter-
mined with an AT1 receptor with the C-terminally fused variant of the green fluorescent
protein Cerulean, AGTR1-Cerulean (Figure 13).

Figure 13. SCD expression increases AT1 receptor-Cerulean protein levels of HEK cells. (a) Flu-
orescence spectroscopic determination of AGTR1-Cerulean protein levels of HEK cells without
(Controls) and with co-expression of SCD (+SCD); (b) quantitative data of AGTR1-Cerulean peak
fluorescence levels at 475 nm without and with SCD co-expression; (c) SCD expression levels of
HEK cells without and with SCD co-transfection were normalized to GAPDH; (d) AGTR1-Cerulean
expression levels of HEK cells without and with SCD co-transfection (±s.d., n = 5 biological replicates,
unpaired, two-tailed t-test).
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The AGTR1-Cerulean was quantified by fluorescence spectroscopy. HEK cells were
transiently transfected with AGTR1-Cerulean, and AGTR1-Cerulean fluorescence was quan-
tified without and with co-expression of SCD. Fluorescence spectroscopy showed that
expression of SCD increased protein levels of AT1 receptor-Cerulean (AGTR1-Cerulean),
which was determined by fluorescence spectroscopy (Figure 13a,b).

As a control, SCD did not significantly alter the expression level of AGTR1-Cerulean
(Figure 13c). Together, these experiments show that SCD also increases protein levels of
AGTR1 and AGTR1-Cerulean in cultured human embryonic kidney cells.

3. Discussion

This study characterized the phenotype of Tg-SCD mice with myocardium-specific
expression of SCD in the heart. The Tg-SCD mouse model recapitulates the up-regulated
cardiac SCD levels of different experimental heart failure models [6,7] and of patients with
heart failure [7]. The SCD-transgenic mouse model was generated because the functions
of SCD and SCD up-regulation in the heart are not known. On one hand, SCD could be
beneficial for cardiomyocyte survival because SCD counteracts saturated fatty acid-induced
cellular apoptosis [12–14]. On the other hand, SCD could be detrimental because data from
Scd1-knockout mice show that Scd1 deficiency protects the heart against obesity-induced
cardiac damage of ob/ob mice [15,16].

Phenotyping of Tg-SCD mice showed several lines of evidence, which prove that
moderately (4.9-fold) increased cardiac SCD levels promote symptoms of heart failure at
an age of 8 months. First, Tg-SCD mice have an increased mortality during the observation
period of 10 months. The survival of Tg-SCD mice was reduced to 80.92% in male mice and
69.85% in female mice, respectively. Second, Tg-SCD mice develop cardiac hypertrophy
with an increased heart-weight to body-weight ratio and predominant enlargement of
the left cardiac ventricle. Left ventricular enlargement was documented by histological
and echocardiographic analysis. Third, Tg-SCD mice develop cardiac dysfunction with a
decreased left ventricular ejection fraction of 25.7± 2.9% and reduced fractional shortening
of 10.2 ± 1.3%. These symptoms of heart failure were accompanied by up-regulation
of heart-failure-promoting lipid genes, Fasn and Scd1, and heart failure markers, Retn
and Adipoq, in Tg-SCD hearts [7,27,28]. In addition, up-regulation of extracellular matrix
proteins, Col1a2 and Col3a1, could reflect adverse fibrotic remodeling of Tg-SCD mice with
symptoms of heart failure [30].

SCD could enhance the development of heart failure by the accumulation of saturated
cardiac lipids. Lipid analysis showed 1.6-fold increased cardiac palmitate and 1.7-fold
increased cardiac stearate contents of Tg-SCD mice compared to those of non-transgenic B6
mice. In contrast to saturated lipids, SCD overexpression in the heart did not significantly
increase unsaturated cardiac lipids such as palmitoleate and oleate. Because saturated
lipids are cardiotoxic [6,32,33], SCD could promote cardiac dysfunction and cardiomyocyte
degeneration through induction of saturated lipid load. The increase in saturated lipids
could be mediated by the major palmitate-synthesizing enzyme, Fasn, which was up-
regulated in Tg-SCD hearts. These data complement previous studies with Scd1-deficient
mice [23,24]. Notably deficiency of Scd1 in mice led to a decreased accumulation of
cardiotoxic free fatty acids, triglycerides and ceramide [23,24], and even down-regulated
the lipid-generating enzyme Fasn [24].

SCD is a 9-delta desaturase, and major lipids generated by SCD are palmitoleate and
oleate. Nevertheless, Tg-SCD hearts did not show increased unsaturated lipids, although
saturated lipids were increased. This lipid profile of Tg-SCD hearts could be a consequence
of increased oxidative stress, which is a major characteristic of heart failure [36,39]. In
agreement with this notion, the oxidative stress-induced gene, Tfrc, as a marker of increased
oxidative stress [35], was highly expressed in Tg-SCD hearts.

In addition to a direct cardiotoxic effect of accumulated saturated lipids, this study found
that Tg-SCD mice had increased cardiac levels of the heart-failure-promoting angiotensin II
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AT1 receptor. Tg-SCD hearts had a higher number of AT1-receptor-specific binding sites and
increased AT1 receptor protein levels as determined by autoradiographic imaging.

The up-regulated AT1 receptor could enhance the heart failure phenotype of Tg-
SCD mice in several ways. The AT1 receptor could promote cardiomyocyte death by
up-regulation of the pro-apoptotic p53 [40]. In agreement with this notion, Tg-SCD hearts
had increased p53 levels. The enhanced AT1-receptor-dependent pro-apoptotic activity in
Tg-SCD hearts could counteract antiapoptotic and cell-protective activities of SCD in vivo,
which are documented for cardiomyocytes and other cells [12–14].

The increased AT1 receptor protein of Tg-SCD mice could also contribute to myocar-
dial fibrosis, which is enhanced by angiotensin II AT1 receptor stimulation during the
pathogenesis of heart failure [35,41]. In agreement with enhanced angiotensin-II-stimulated
signaling, gene expression analysis found increased expression of angiotensin-II-responsive
genes in Tg-SCD hearts. Notably, there was an increased expression of extracellular matrix
genes, Col1a2 and Col3a1, which could be induced by chronic angiotensin II stimulation [35].
Increased myocardial collagen accumulation is part of the adverse remodeling process of
heart failure and contributes to myocardial stiffness and cardiac dysfunction [30].

The increased generation of reactive oxygen species, ROS, is another heart-failure-
promoting factor triggered by angiotensin II AT1 receptor stimulation [36]. Up-regulation
of the angiotensin-II-responsive and oxidative-stress-induced Tfrc [35] could reflect the
exaggerated angiotensin-II-stimulated oxidative stress response of Tg-SCD mice. This
SCD-dependent increase in AT1-receptor-stimulated generation of ROS could contribute to
the observed accumulation of cardiotoxic saturated lipids in Tg-SCD hearts [42].

In concert with enhanced ROS generation, the angiotensin-II-generating ACE-AT1
receptor axis could directly enhance the accumulation of cardiotoxic lipids because an-
giotensin II AT1 receptor stimulation inhibits lipolysis and increases the activity of fatty
acid synthase [43,44]. Thereby, the SCD-induced AT1 receptor could actively promote the
accumulation of cardiotoxic lipids in Tg-SCD mice. Moreover, the AT1 receptor could
impair the SCD-mediated increase in unsaturated lipids, most likely due to enhanced
AT1-receptor-mediated ROS generation and lipid peroxidation [42].

SCD caused AT1 receptor (AGTR1) protein up-regulation not only in the heart but
also in non-cardiomyocyte cells. SCD increased the number of AT1-receptor-specific
binding sites of transfected HEK cells. In addition, SCD augmented AGTR1-Cerulean
protein levels of transfected HEK cells. Up-regulation of the membrane-spanning AT1
receptor protein could be a consequence of enhanced membrane phospholipid biosynthesis
because excessive lipid accumulation accounts for enhanced membrane biogenesis [33].
Ensuing expansion of the ER membrane could account for improved protein folding and
increased biosynthesis of the membrane-spanning AT1 receptor [34]. In addition, by
its delta-9 desaturase activity, SCD is an enhancer of membrane fluidity [45]. Thereby,
SCD could further modulate and ameliorate membrane protein folding [46]. However,
additional studies will have to delineate the exact mechanism underlying SCD-dependent
AT1 receptor protein up-regulation.

This study identified the heart-failure-enhancing activity of SCD in mice. SCD could
also contribute to heart failure in patients because cardiac SCD protein contents are in-
creased in cardiac biopsy specimens of patients with heart failure [7]. SCD enhances cardiac
damage by increasing cardiotoxic saturated lipids. Increased contents of saturated lipids
with membrane phospholipid saturation correlate with diastolic dysfunction in patients
with heart failure [33]. SCD-inducing factors include saturated fatty acids, cholesterol,
carbohydrates, and insulin [12,47,48]. All of these factors are major players of diabetic car-
diomyopathy. Therefore, SCD could play a major role in patients with diabetes, who are at
increased risk of developing heart failure. In agreement with a role of SCD in human heart
failure pathogenesis, increased circulating markers of enhanced stearoyl-CoA desaturase
activity were associated with an elevated risk of heart failure development and all-cause
mortality in human subjects [17,49].
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SCD not only increased cardiotoxic saturated lipids but also augmented cardiac con-
tents of the major heart-failure-promoting angiotensin II AT1 receptor. Pharmacological
inhibition of AT1 receptor function by an ACE inhibitor, an AT1 receptor antagonist, or
an ARNI (angiotensin receptor blocker and neprilysin inhibitor) is the mainstay of rec-
ommended prognosis-improving therapies of heart failure [4]. Treatment with an AT1
receptor blocker or ACE inhibitor was reported to down-regulate the increased expression
of SCD [50]. Concomitantly, inhibition of the angiotensin II–ACE–AT1 receptor axis is
expected to prevent detrimental AT1-receptor-stimulated lipid accumulation [43,44]. Con-
sequently, AT1-receptor-blocking therapies are expected to interrupt the vicious circle of
SCD-induced lipid load and AT1 receptor up-regulation during the pathogenesis of heart
failure (Figure 14).

Figure 14. Scheme of SCD-induced pathomechanisms of heart failure. SCD triggers cardiotoxic
saturated lipids and the heart-failure-promoting angiotensin II AT1 receptor. Saturated lipids, the
AT1 receptor, and heart failure further augment the expression of SCD and thereby trigger a vicious
circle of SCD-induced aggravation of heart failure.

Because AT1 receptor levels are increased in diabetic cardiomyopathy [51], interrup-
tion of this vicious circle of SCD-induced AT1 receptor up-regulation by an AT1 receptor
blocker is expected to be most efficacious in diabetic patients with heart failure. Future
studies will have to investigate whether inhibition of SCD could synergize with an ACE
inhibitor or AT1 receptor antagonist to prevent detrimental and heart-failure-enhancing
activities of SCD in patients with SCD-mediated pathologies. A combination of an ACE
inhibitor or AT1 receptor antagonist with an SCD inhibitor could also circumvent potential
pro-atherogenic side effects of systemic SCD inhibition [52]. Those side effects could arise
from the accumulation of lipid substrates of SCD, the saturated fatty acids (SFAs), which are
pro-inflammatory and pro-atherogenic [53]. Pro-inflammatory and pro-atherogenic side
effects of SCD inhibition in vivo can also be overcome by dietary fish oil supplementation,
with a diet rich in omega-3 polyunsaturated fatty acids [54].

SCD inhibition in vivo is possible, and side effects of SCD inhibition do not seem to be
a major concern, because in vivo data of an experimental SCD inhibitor showed beneficial
therapeutic effects in an experimental model of liver injury [55]. Another SCD inhibitor
showed beneficial therapeutic effects against diabetes and dyslipidemia [56]. This SCD
inhibitor, MK-8245, is liver-targeted [56] and thereby overcomes side effects of systemic
SCD inhibition such as skin barrier dysfunction and eye dryness [57]. SCD-induced cardiac
dysfunction in Tg-SCD mice recapitulates the pathological effects of increased SCD levels in
the heart. Therefore, treatment strategies should aim to target exaggerated and pathological
SCD activities, while leaving physiological SCD effects untouched. With this strategy and
in view of our study, the development of systemic SCD inhibitors for patient use appears
as a promising strategy to improve heart failure treatment options.
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4. Materials and Methods
4.1. GO Analysis of Whole-Genome Microarray Gene Expression Data of Experimental Heart
Failure Models

In frame of this study, GO analyses of our cardiac whole-genome microarray gene
expression data of experimental heart failure models were performed [6,7]. GO analyses
were performed with the data of the following heart failure models: 6-month-old, male
Apoe-/- mice with two months of AAC and age-matched, sham-operated, male Apoe-/-
controls; 18-month-old, male Apoe-/- mice and age-matched, non-transgenic, male B6
controls; 8-month-old, male Apoe-/- mice with rosiglitazone treatment (30 mg/kg/d in
drinking water) and age-matched, untreated, male Apoe-/- controls; 10-month-old, male
B6 mice with 6 months of AAC and age-matched, sham-operated, non-transgenic, male
B6 controls. Whole genome microarray gene expression data are available at the NCBI
GEO database with the following accession numbers: GSE25765, GSE25766, GSE25767, and
GSE25768. GO analyses were performed of GCOS/RMA processed data with Genespring
GX Software (Agilent, Santa Clara, CA, USA). For GO analyses, probe sets with significantly
different signal intensities were used (p ≤ 0.01; call present and/or signal intensity ≥100;
≥2-fold different signal intensity compared to respective control group). Probe sets with
significantly different signal intensities compared to their respective control group were
identified by TIGR MEV with the unpaired two-tailed t-test (just alpha).

4.2. Generation of Tg-SCD Mice and Animal Experiments

Tg-SCD mice were generated by the injection of NotI-linearized plasmid MyHC-
SCD into the pronucleus of fertilized oocytes of B6 mice (2 ng/microL), as described [6].
For the generation of Tg-SCD mice, the cDNA encoding SCD was inserted into the SalI-
HindIII sites of the plasmid MyHC [58]. The plasmid directs the expression of SCD under
control of the myocardium-specific alpha-MHC promoter [58]. After DNA injection, 2-cell
stage embryos were implanted into the oviducts of pseudopregnant foster mice. After
weaning at an age of 3–4 weeks, offspring were subjected to genotyping PCR, and mice
with stable genomic integration of the transgene were used for generation of C57BL/6-
Tg(MHCSCD)Sjaa (Tg-SCD) mouse lines. The following DNA oligonucleotide primers
were used for genotyping PCR of Tg-SCD mice: 5′-GGT TTC ACT TGG AGC TGT GGG
TGA GG-3′; 5′-ATT AGG ACA AGG CTG GTG GGC ACT GGA GTG-3′. Oligonucleotides
are specific for the transgenic MHC-SCD DNA and do not cross-react with the endogenous
murine Scd1 gene. The study used male and female Tg-SCD mice (C57BL/Tg(MHCSCD)2
Sjaa) at an age of 8 months. Controls were age-matched and sex-matched, male and
female, non-transgenic C57BL/6 (B6) mice. Male and female mice were housed under
SPF conditions in groups of 2–5 animals with a 12 h light cycle and had free access to
food and water. Sperm of Tg-SCD mice are cryopreserved at Janvier Labs repository
(C57BL/Tg(MHCSCD)2 Sjaa, No. 181.078 ETH Zurich). At an age of 8 months, mice
were anesthetized i.p. with ketamine and medetomidine (75 and 0.5 mg/kg), and cardiac
function parameters were assessed by echocardiography in the parasternal long-axis view
by a Vivid 7 echocardiograph equipment (GE Healthcare GmbH, Solingen, Germany) with
a 12 MHz linear array transducer [7]. Data were evaluated offline with the EchoPAC PC
3.0 Software (GE Healthcare GmbH, Solingen, Germany). The left ventricular cardiac
ejection fraction (LVEF) was determined by the formula of Teichholz. For RNA isolation,
protein, lipid, and histological analyses, animals were intracardially perfused with PBS
under terminal anesthesia with ketamine and xylazine (200 mg/kg and 60 mg/kg) or
euthanized. Hearts were rapidly isolated and dissected free of connective tissue. For RNA,
protein and lipid isolation, heart specimens were immediately frozen in liquid nitrogen.
For histological analysis, formalin-fixed, paraffin-embedded heart specimens were used.
Animal experiments used a group size of 4–6. The number is based on the expected effect
size and was determined in advance in frame of statistical pre-evaluation of the study by
Novustat GmbH (Wollerau, Switzerland). The animal study and generation of transgenic
mice were conducted according to NIH and Swiss guidelines and approved by the Cantonal
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Veterinary Office Zurich (ZH215/2020, date of approval 15.03.2021; and 145-G, date of
approval 14.02.2013).

4.3. Antibodies

The following antibodies were used for the study: rabbit polyclonal anti-SCD-Scd1
antibodies (ab39969, knockout-validated, Abcam, Cambridge, UK), which were raised
against a synthetic peptide; rabbit polyclonal anti-FASN antibodies, which were raised
against an antigen encompassing amino acids 2205-2504 of human FASN [6]; rabbit mono-
clonal adiponectin antibody, which was raised against human adiponectin (C45B10 No.
2789, Cell Signaling Technology Inc., Danvers, MA, USA); affinity-purified, rabbit anti-AT1
receptor antibodies, which were raised against an antigen encompassing amino acids
306-359 of AGTR1 [59]; mouse monoclonal anti-p53 antibody (DO-1, sc-126, Santa Cruz
Biotechnology Inc., Heidelberg, Germany); mouse monoclonal anti-Gnb antibody, which
interacts with the N-terminus of Gnb2 (A-4, sc-166250, Santa Cruz Biotechnology Inc.,
Heidelberg, Germany); rabbit monoclonal anti-Gnb2 antibody (EP3262Y, ab108504, Abcam;
Cambridge, UK); POD-conjugated AffiniPure F(ab)2 fragments of goat anti-rabbit IgG
(Fcγ fragment specific with minimal cross-reaction to human serum proteins; Cat. No.
111-036-046, Jackson ImmunoResearch Europe Ltd., Ely, UK); POD-conjugated AffiniPure
F(ab)2 fragment goat anti-mouse IgG (Fcγ fragment-specific, minimal cross-reactivity to
human, bovine and horse proteins, Cat. No. 115-036-071, Jackson ImmunoResearch Europe
Ltd., Ely, UK).

4.4. Histology and Immunohistology

After deparaffinization and rehydration, longitudinal cardiac paraffin sections of
male and female Tg-SCD and non-transgenic B6 mice (age 8 months) were stained with
hematoxylin and eosin (HE). For HE staining, sections were first incubated with Mayer’s
hemalum solution (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) for 4 min, dipped
in 0.1% HCl, and blued by rinsing steps with tap water. Thereafter, sections were stained
with aqueous Eosin Y solution (0.5%; Sigma-Aldrich, Merck KGaA, Darmstadt, Germany)
followed by a final washing step. Immunohistological analysis detected the cardiac SCD-
Scd1 proteins on paraffin sections of 8-month-old, male and female Tg-SCD mice. The
controls were age-matched, non-transgenic, male and female B6 mice. After deparaffiniza-
tion and rehydration of paraffin sections, antigen retrieval was performed by microwave
heating in antigen retrieval buffer (0.1 M citrate buffer, pH 6.0) for 20 min. After washing
steps with PBS and inactivation of endogenous peroxidase activity by incubation with
hydrogen peroxide solution (3%) for 5 min, blocking of unspecific binding sites was per-
formed by incubation in blocking buffer (PBS with 3% BSA and 0.05% Tween-20) for 1 h at
37 ◦C. Cardiac sections were incubated with the primary antibody (knockout-validated,
rabbit polyclonal anti-SCD-Scd1 antibodies; dilution 1:200; ab39969 Abcam) for 1 h at 37 ◦C.
Unbound antibody was removed by washing with PBS-Tween, followed by a blocking step
in blocking buffer and incubation for 1 h, at 37◦ with secondary POD-coupled anti-rabbit
POD-conjugated AffiniPure F(ab)2 fragments of goat anti-rabbit IgG (Fcγ fragment specific
with minimal cross-reaction to human serum proteins; Cat. No. 111-036-046, Jackson Im-
munoResearch Europe Ltd., Ely, UK). After several washing steps with PBS, the substrate
reaction was performed with a DAB (3,3′diaminobenzidine tetrahydrochloride)-enhanced
liquid substrate system (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany). The reaction
was stopped by rinsing with water, and slides were mounted with Poly-Mount-Xylene
(Polysciences Europe GmbH, Hirschberg, Germany). (Immuno-)histological sections were
imaged with a DMI6000 microscope equipped with a DFC420 camera (Leica Microsystems
GmbH, Wetzlar, Germany).

4.5. Immunoblot Detection of Proteins

For the detection of proteins by immunoblot, frozen hearts were pulverized under liq-
uid nitrogen, and cardiac proteins were extracted by gentle agitation on ice with 500–750 µL
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of extraction buffer (10 mM Tris, pH 7.4, 1% sodium deoxycholate, 0.1% SDS, 5 mM EDTA,
1 mM beta-glycerophosphate disodium, 20 mM NaF, 1 mM sodium orthovanadate, 1 mM
sodium molybdate, 1 mM PMSF, protease inhibitor cocktail 1:100). Insoluble material was
pelleted by centrifugation (16,000× g, 4 ◦C, 10 min), and solubilized proteins were collected.
Thereafter, proteins were concentrated and delipidated by addition of acetone/methanol
(12:2, final concentration 83%) and incubation for 1 h at 4 ◦C. Precipitated proteins were
collected by centrifugation and washed three times with 0.2 mL of ice-cold acetone. The
pellet was solubilized in urea-containing, SDS sample buffer (supplemented with 2% SDS,
5% beta-mercaptoethanol and 6 M urea) for 90 min at room temperature. Proteins were sep-
arated by 7.5% or 10% SDS-PAGE under reducing conditions supplemented with urea (8 M)
and transferred to PVDF membranes (Immobilon P, 0.45 microm; Millipore, Merck KGaA,
Darmstadt, Germany) by semi-dry blotting (Trans-Blot® SD Semi-Dry Electrophoretic
Transfer Cell, Bio-Rad Laboratories Ltd., Hemel Hempstead, UK). After a blocking step
with a blocking buffer (PBS with 0.2% Tween-20 and 5% BSA) for 1 h, the membrane was in-
cubated with the primary antibody (dilution 1:2000) for 1 h at room temperature. Unbound
antibody was removed by four washing steps of 5 min with washing buffer (PBS, 0.2%
Tween-20), and the membrane was incubated for 30 min with the peroxidase-conjugated
secondary antibody at a dilution of 1:40,000. After additional washing steps with PBS,
bound POD-conjugated antibodies were visualized by chemiluminescence (Amersham
ECL Prime Western Blotting Detection Reagent, or Amersham ECL Select, Cytiva Europe
GmbH, Freiburg, Germany) and exposure of PVDF membranes to X-ray films.

4.6. RNA Isolation, Whole-Genome Microarray Gene Expression Profiling, and Real-Time
qRT-PCR

Total RNA was isolated of HEK cells and hearts from 8-month-old, male Tg-SCD mice
and age-matched, non-transgenic, male B6 controls by the RNeasy mini kit according to
the instructions of the manufacturer (Qiagen GmbH, Hilden, Germany). Total RNA was
processed for whole-genome microarray gene expression profiling with the Affymetrix
One-Cycle cDNA Synthesis kit according to the Affymetrix protocol (Affymetrix GeneChip
Expression Analysis Technical Manual, rev. 5, Affymetrix, Santa Clara, CA, USA), simi-
larly as described [6,52,60]. Biotin-labeled, fragmented cRNA (15 microg per gene chip)
was hybridized to GeneChip Mouse Genome MG430 2.0 arrays (Affymetrix, Santa Clara,
CA, USA) with more than 45,000 probe sets. Signals of probe sets were processed with
GCOS (version 1.4, Affymetrix, Santa Clara, CA, USA) to a target value of 300. Probe
sets of Tg-SCD hearts with significantly different signal intensities compared to those of
non-transgenic B6 controls (p ≤ 0.01; call present and/or signal intensity ≥100; ≥2-fold
difference to B6 control group) were identified by TIGR MEV with the unpaired two-tailed
t-test (just alpha). SCD and AGTR1 expression levels of HEK cells were determined after
reverse transcription by quantitative real-time qRT-PCR with LightCycler 480 SYBR Green
I Master and a LightCycler 480 instrument (Roche Diagnostics AG, Rotkreuz, Switzerland)
according to the protocol of the manufacturer. The following oligonucleotide primers
were used for real-time qRT-PCR: AGTR1 forward 5′-CCG CCT TCG ACG CAC AAT
GC-3′; AGTR1-reverse 5′-GGT CAG GCC CAG CCC TAT CG-3′; SCD-forward 5′-TTC
GTT GCC ACT TTC TTG CG-3′; SCD-reverse 5′-AAG TTG ATG TGC CAG CGG TA-3′;
GAPDH forward 5′-CAA ATT CCA TGG CAC CGT CAA G-3′; GAPDH reverse 5′-GGC
CAT CCA CAG TCT TCT GG-3′. DNA oligonucleotides were purchased from Microsynth
AG (Balgach, Switzerland). Microarray gene expression data of Tg-SCD mice are available
at the NCBI GEO database with accession number GSE120020.

4.7. GC Analysis of Cardiac Lipids

Cardiac lipids were extracted by the method of Folch [61]. For lipid analysis, hearts
of 8-month-old Tg-SCD mice and age-matched, non-transgenic B6 controls were rapidly
frozen in liquid nitrogen. Frozen hearts were pulverized under liquid nitrogen with a
pestle and mortar and extracted twice with 10 mL of chloroform/methanol (2:1) for 10 min
followed by extraction with acidified chloroform/methanol (2:1). Lipid extracts were col-
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lected by centrifugation (620× g), and solvents were evaporated. The residual lipid extract
was dissolved in 4 mL of chloroform/methanol (2:1). Hydrophilic contaminants were ex-
tracted with 50 mM CaCl2 (800 microL). The lipid phase was collected and subjected to the
formation of fatty acid methyl esters (FAMEs) by transesterification with 3 N methanolic
HCl. FAMEs were analyzed with a gas chromatograph (Focus, Thermo Scientific, Fisher
Scientific AG, Reinach, Switzerland) equipped with a flame ionization detector and a DB-23
column (Agilent J&W; Agilent, Santa Clara, CA, USA). FAME reference standards (Supelco
37 component FAME mix, Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) were used
for identification, and an internal standard was included for quantitative lipid analysis.

4.8. Radioligand Binding Studies

Sarcolemmal angiotensin II AT1-receptor-specific binding sites were determined by
radioligand binding. Radioligand binding studies were performed with sarcolemmal
membranes, which were isolated from 8-month-old Tg-SCD mice and age-matched, non-
transgenic B6 controls. Heart tissue was homogenized in a 10-fold volume of homoge-
nization buffer (10 mM Tris, 1 mM EDTA, pH 7.4, supplemented with 300 mM sucrose
and proteinase inhibitor cocktail) on ice with an Ultra-Turrax homogenizer (15,000 rpm).
After centrifugation (1000× g, 10 min, 4 ◦C), the supernatant was centrifuged for 30 min at
40,000× g at 4 ◦C. The pellet was resuspended in buffer (0.6 M KCl, 30 mM histidine, pH 7.0)
and centrifuged (40,000× g, 20 min, 4 ◦C). After the final centrifugation step, the pellet was
resuspended in binding buffer (50 mM Tris, pH 7.4, supplemented with 10 mM MgCl2, 0.2%
BSA and protease inhibitors) and stored at −80 ◦C. Radioligand binding was performed
in triplicates in 100 µL of binding buffer with 100 µg of membrane protein for 60 min at
18 ◦C with Sar1,[125I]Tyr4,Ile8-angiotensin-II (specific activity 2200 Ci/mmol, Perkin Elmer
Inc., Waltham, MA, USA). Non-specific binding was determined in the presence of the
AT1-receptor-specific antagonist, losartan (1000-fold molar excess). After 60 min of incu-
bation, the reaction was stopped by addition of ice-cold binding buffer (4 mL), followed
by rapid filtration over glass fiber filters (Whatman GF/C) and three washing steps with
binding buffer. Filter-bound radioactivity was quantified in a beta-counter by scintillation
counting. For radioligand binding studies, adherent HEK cells were grown on 6-well
plates. Before radioligand binding, HEK cells were starved for 3 h in DMEM with 0.2% FCS.
Binding was performed with Sar1,[125I]Tyr4,Ile8-angiotensin-II in HEPES-buffered DMEM
supplemented with protease inhibitor cocktail for 4 h, at 4 ◦C. Non-specific binding was
determined in the presence of a 1000-fold molar excess of losartan. After three washing
steps with ice-cold DMEM, cells were solubilized with 2 M NaOH, and radioactivity was
determined by scintillation counting.

4.9. Imaging of Cardiac AT1 Receptors by Autoradiography

Autoradiographic imaging of cardiac AT1 receptors was performed by radio-immunoh
istochemistry with longitudinal heart cryosections prepared from Tg-SCD and non-transgenic
B6 control mice (age: 8 months). Cryostat sections with 10 µm thickness were cut on a
cryostat (Microm HM550), air-dried, and incubated in a blocking buffer (PBS supplemented
with 5% BSA) for 1 h followed by incubation with affinity-purified anti-AGTR1 antibodies
(dilution 1:200) from rabbit [59] for 2 h at room temperature. Unbound antibodies were
removed by washing steps with buffer. After another blocking step with 10% goat serum,
incubation with [125I]-labeled secondary antibodies (NEX155250UC, [125I]-labeled goat anti-
rabbit IgG, ~3000 Ci/mmol; Perkin Elmer Inc., Waltham, MA, USA) diluted in blocking
buffer was performed for 1 h at room temperature. Unbound antibodies were removed by
several washing steps with PBS, and autoradiographic imaging of sections was performed
by exposure to X-ray films.

4.10. Culture of HEK Cells and Fluorescence Spectroscopy

HEK293-AT1 cells with stable expression of AGTR1 were cultured in a humidified
atmosphere with 5% CO2 in DMEM (supplemented with 10% fetal bovine serum, 100 U/mL
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penicillin and 100 microg/mL streptomycin). HEK293 cells were transiently transfected
with pcDNA3-based-expression plasmids encoding SCD and AGTR1-Cerulean by using
Lipofectamine 2000 as a transfection agent. The SCD-pcDNA3 expression plasmid was
generated by insertion of the SCD-cDNA into the EcoRI-XhoI sites of pcDNA3. The AGTR1
and AGTR1-Cerulean expression plasmids were described previously [62]. Forty-eight
hours after transfection, cells were starved for three hours in DMEM supplemented with
0.2% FCS and used for radioligand binding studies or cellular fluorescence measurements.
For fluorescence measurements, AGTR1-Cerulean-expressing HEK cells were detached by
short trypsinization (1–2 min) with 2 mL PBS-trypsin (PBS supplemented with 0.025%
trypsin, 0.01% EDTA). Trypsin was rapidly removed by two washing steps with DMEM.
After the second washing step, cells were suspended at a cell density of 1 × 106 cells/mL
in incubation buffer (140 mM NaCl, 5.4 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 20 mM
HEPES, pH 7.4). The cell suspension was transferred into a fluorescence cuvette, and
fluorescence emission spectra (450 nm–600 nm) were recorded under constant stirring with
a magnetic stirrer at an excitation wavelength of 420 nm with a fluorescence spectrometer
(LS55, Perkin Elmer Inc., Waltham, MA, USA) and the following settings: excitation and
emission slit width 10 nm; scan velocity 100 nm/min. The background fluorescence of
HEK293 cells without AGTR1-Cerulean expression was subtracted. For data recording, the
FL WinLab software was used.

4.11. Statistical Analyses

Experimental data were analyzed with GraphPad Prism 8. Comparisons between the
two groups were made by the unpaired, two-tailed t-test. For comparisons between more
than two groups, ANOVA with a post-test was used as indicated. p-values of < 0.05 were
considered significant. Data are shown as means ± s.d.
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Appendix A

Figure A1. Up-regulation of the cardiac lipid metabolic process in experimental heart failure models. Heart failure was
induced in 6-month-old, male Apoe-/- mice by two months of pressure overload imposed by abdominal aortic constriction,
AAC (AAC-Apoe1; AAC-Apoe2). Age-matched (6-month-old), male, sham-operated Apoe-/- mice (Apoe-sham1; Apoe-
sham2), and age-matched, non-transgenic, male B6 mice (B6-1; B6-2) were used as controls. In the second model, heart
failure was induced in 10-month-old, male, non-transgenic B6 mice by pressure overload imposed by 6 months of AAC
(AAC-10mo1; AAC-10mo2). Age-matched (10-month-old), sham-operated, male B6 mice (Sham-10mo1; Sham-10mo2)
served as controls. In the third model, heart failure was induced by long-term atherosclerosis of 18-month-old, male Apoe-/-

mice (Apoe-18mo1; Apoe-18mo2). Age-matched, male B6 mice (B6-18mo1; B6-18mo2) were used as controls. In the fourth
model, heart failure of 8-month-old, male Apoe-/- mice was induced by Pparg activation with 2 months of rosiglitazone (30
mg/kg/d in drinking water) treatment (Rosiglit-1; Rosiglit-2). Age-matched (8-month-old), male Apoe-/- mice (Apoe-8mo1;
Apoe-8mo2), and B6 mice (B6-8mo1; B6-8mo2) served as controls. At the end of the observation periods, hearts were
isolated and total RNA was prepared and processed for microarray gene expression profiling. Two gene chips are shown
for each group (four individuals/gene chip). Intensities of probe sets of the lipid metabolic process (GO analysis) are
marked in red, which were concordantly up-regulated (-fold change ≥ 2; p ≤ 0.01 or 0.05) in the different heart failure
models compared to respective controls. As a control, the probe set detecting Apoe is also shown. Whole genome microarray
gene expression data of all models are available at the NCBI GEO database with accession numbers GSE25765, GSE25766,
GSE25767, and GSE25768.

Figure A2. Quantitative evaluation of immunohistological detection of SCD-Scd1 protein by
knockout-validated SCD-specific antibodies on hearts of male and female Tg-SCD mice and non-
transgenic B6 controls (±s.d.; n = 6 male and female Tg-SCD mice; n = 3 male and female B6 mice;
ANOVA and Tukey’s test). All immunohistological images are shown in Figure 5.
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Figure A3. Heart weights (a) and body weights (b) of 8-month-old, male Tg-SCD mice com-
pared to 8-month-old, male, non-transgenic B6 controls (±s.d.; n = 6 mice per group; unpaired,
two-tailed t-test).

Figure A4. Cardiac lipid analyses of 8-month-old, male Tg-SCD hearts (n = 4) and 8-month-old, male
B6 control hearts (n = 4). Cardiac lipids were extracted and analyzed after transesterification by GC
analysis with flame ionization detection.
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Figure A5. Expression levels of Agtr1a, Agtr1b, and Tfrc in Tg-SCD hearts. (a) Probe set intensities
detecting Agtr1a (1436739_at) were not significantly different between Tg-SCD and non-transgenic
B6 hearts; (b) intensities of probe set detecting Agtr1b (1446527_at) were below detection limit;
(c) increased intensities of probe set detecting Tfrc (1452661_at) indicate up-regulation of Tfrc as an
angiotensin-II-responsive and oxidative stress-induced gene. Data of two gene chips per group with
cRNAs from four hearts per gene chip are shown (±s.d.; n = 2 gene chips per group; p values are
indicated and were determined by the unpaired, two-tailed t-test).

Figure A6. Cardiac expression levels of paraoxonase enzymes were not altered in Tg-SCD mice.
(a) Intensities of probe set detecting Pon1 (1418190_at) were below detection limit; (b,c) intensities of
probe sets detecting Pon2 (1450686_at) and Pon3 (1419298_at) were not significantly altered in Tg-SCD
hearts compared to non-transgenic B6 controls. Data of two gene chips per group with cRNAs from
four hearts per gene chip are shown (±s.d.; n = 2 gene chips per group; p values are indicated and
were determined by the unpaired, two-tailed t-test).
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