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Transmission of dengue fever depends on a complex interplay of human, cli-
mate and mosquito dynamics, which often change in time and space. It is well
known that its disease dynamics are highly influenced by multiple factors
including population susceptibility to infection as well as by microclimates:
small-area climatic conditions which create environments favourable for the
breeding and survival of mosquitoes. Here, we present a novel machine learn-
ing dengue forecasting approach, which, dynamically in time and space,
identifies local patterns in weather and population susceptibility to make epi-
demic predictions at the city level in Brazil, months ahead of the occurrence of
disease outbreaks. Weather-based predictions are improved when information
on population susceptibility is incorporated, indicating that immunity is an
important predictor neglected by most dengue forecast models. Given the
generalizability of our methodology to any location or input data, it may
prove valuable for public health decision-making aimed at mitigating the
effects of seasonal dengue outbreaks in locations globally.

1. Introduction
Owing to emerging sensor technologies and computational advances, the last
decade has seen significant strides in the way data are generated and collected,
resulting in large volumes of complex information known as ‘big data’. The
recent availability of these data has opened up the possibility of new and comp-
lementary avenues for epidemic monitoring that leverage diverse data
modalities such as satellite imagery [1,2], Internet search engine activity [3,4],
social media [5], mobile phones [6,7], genomics [8,9] and disease surveillance
databases [10,11]. This has opened up opportunities to posit and explore
more hypotheses for characterizing the causes and outcomes of disease trans-
mission, population behaviour, environmental conditions and other potential
indicators of population health. Exploiting these relationships to generate
reliable prospective forecasts would benefit health systems by allowing early
mobilization of resources for the prevention of morbidities and deaths in the
face of public health threats. A major challenge in disease forecasting is devel-
oping algorithms that can autonomously and continuously learn from these
complex and ever-changing dynamical systems, uncovering patterns and sig-
nals with little human effort. Machine learning algorithms are ideally suited
for such tasks. Indeed, they are having a profound impact across a wide
range of application fields because of their ability to aid in learning and
discovery.
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Figure 1. Ensemble forecast workflow. (a) To predict next year’s epidemic status, we extract features from a daily time series of temperature (K) and precipitation
(mm) over a defined (t0, p) time interval and for each year in the training period. (b) We produce an array of features corresponding to the mean value
of temperature and precipitation over the (t0, p) interval and (c) train an SVM to classify next year’s epidemic status. (d ) This process is repeated for all 432
(t0, p) intervals, and the top 11 models are automatically selected to (e) contribute to a majority voting system based on historical out-of-sample accuracy.
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One such complex system is the interplay of human,
climate and mosquito dynamics that give rise to the trans-
mission of mosquito-borne diseases such as dengue. Dengue
fever, a viral mosquito-borne disease transmitted predomi-
nately by the Aedes aegypti and Aedes albopictus mosquitoes,
infects an estimated 390 million people per year, with nearly
half the world’s population living at risk of infection [12].
The global burden of dengue has doubled every 10 years
over the last three decades [13], and the disease is projected
to expand its latitude range as global temperatures increase
and create new suitable habitats for the Aedes mosquitoes
among previously unexposed human populations [14]. Short-
term climate conditions, particularly temperature and precipi-
tation, can create favourable conditions for the breeding and
survival of Aedes mosquitoes that may increase the trans-
mission of the dengue fever virus in humans. Distinct ranges
of temperature and precipitation have been observed to have
an influence on the extrinsic incubation period [15,16], mos-
quito maturation rate [17], length of larval hatch time [18],
survival rate [19] and biting rate [20]. However, the relation-
ships that govern these parameters and give rise to dengue
transmission are complex and dynamic, changing over time
and across geographies. Moreover, multi-year cycles of
dengue fever outbreaks, caused by one or more circulating
dengue fever serotypes (DENV I, II, III, IV) and short-term
immunity conferred after infection, add an important layer of
complexity to prediction [21].

The dengue forecasting literature lacks a systematic, self-
adaptive and generalizable framework capable of identifying
weather and population susceptibility patterns that may be pre-
dictive of dengue fever outbreaks, particularly at the city level.
Vector-borne diseases commonly exhibit spatial heterogeneity,
a result of spatial variation in vector habitat, weather patterns
and human control actions [22–25]. For developing forecast
systems, this feature implies a trade-off between model consist-
ency and spatial resolution. As a consequence, most studies to
date focus on producing ad hoc predictions for a single location,
ranging from the national to the city level [26–28], while others
build and evaluate multiple modelling strategies per study site
in efforts to manually identify relationships between weather
patterns and dengue incidence over different geographies
and temporal windows [29,30]. Both approaches highlight
the difficulty in producing forecast models that are viable in
diverse settings. By contrast, data-driven techniques demon-
strate promise by learning from multi-scale, complex systems
and automatically adapting to new information. A recent
descriptive study showed the promise of a data-driven
approach in identifying weather patterns with meaningful
signals for dengue fever outbreaks [31]. Specifically, their
data-driven strategy identified temperature and frequency of
precipitation as key features in forecasting dengue outbreaks
by extracting windowed time intervals for different cities that
were highly predictive. Motivated by such learning algorithms,
we build upon this data-driven strategy to build a richer,
supervised forecasting algorithm.
2. Results
2.1. Exploiting weather signals to create a data-driven

forecast system
We obtained data on both annual dengue fever cases (Brazilian
Ministry of Health) for 2001–2017 and on daily temperature
and precipitation (GMAO-NASA) for 2000–2016, for 20
dengue-endemic municipalities (figure 1; electronic sup-
plementary material, table S1) in Brazil. Weather patterns
were extracted and analysed across hundreds of partially over-
lapping time intervals collectively spanning the last seven
months of a given year, a time period that typically precedes
the onset of epidemic outbreaks in Brazil. Each of these pat-
terns was then assessed for its ability to predict an outbreak
year (defined as a year in which the number of cases exceeds
100 per 100 000 persons) for the subsequent year. Retrospective
and fully out-of-sample forecasts, trained on a yearly expand-
ing window, were produced for 10 years (2008–2017) and for
each time interval using support vector machines (SVMs), a
binary classifier. Every year, the time intervals with high his-
torical predictive power were automatically selected and
evaluated in the upcoming year to produce out-of-sample pre-
dictions for the subsequent dengue season (figure 1). An
ensemble approach was then implemented to determine, in a
completely out-of-sample fashion (using the first 4 years of
out-of-sample predictions to inform ensemble model selec-
tion), the system’s final prediction: whether a year would be
epidemic or not for the next 6 years (2012–2017).

This system,which autonomously identifies and exploits the
predictions of multiple time windows during the calendar year,
makes it possible to identify temporally similar regions of highly
predictive periods of the year preceding dengue outbreaks, here
referred to as ‘weather signatures’. Weather signatures represent
time windows across years that show strong influence
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(predictive power) on the incidence of dengue in a subsequent
year. We observed that cities where our methodology led to
higher prediction accuracy tended to have clear and robust
weather signatures over the years, while cities where our
approach was not strongly predictive did not exhibit consistent
and robust weather patterns (figures 2 and 3a). Further, we
observed that strong weather signatures in our sample of cities
often corresponded with or preceded important alternating
tropical seasons, such as rainy and dry seasons.

2.2. Weather-based forecasting performance
Using weather data (temperature and frequency of precipi-
tation) alone to predict annual dengue outbreaks, our
approach correctly forecast 81% of all epidemic years across
20 municipalities in Brazil between 2012 and 2017 (table 1,
figure 3). For reference and as a baseline, the frequency of epi-
demic and non-epidemic years was 60% and 40%, thus a
naive approach that predicts that all years are epidemic (the
class majority) would achieve an overall accuracy of 60%.
Our approach only identified 58% of non-epidemic years cor-
rectly. This resulted in an overall accuracy of approximately
72%. Our approach significantly exceeded p = 0.005, the
predictive power of a naive predictor.

2.3. Incorporating empirically observed dengue
susceptibility cycles

The previously described weather-based ensemble approach
ignores important factors that may influence the emergence
of epidemic outbreaks from year to year, such as the
population susceptibility to being infected with the virus.
Specifically, endemic transmission of dengue fever is typically
distinguished by periodic outbreak cycles of around 3–4 years.
These outbreak cycles are thought to occur as a result of (i) an
exhaustion of the susceptible population after an outbreak and
(ii) short-term cross-immunity to other circulating DENV sero-
types after infection [21], although the cycles can also be
complicated by increased severity of a second infection [32].
Both factors result in a depletion of the population vulnerable
to infection and act as barriers to subsequent outbreaks. Inde-
pendent of climate variability over the years, we expect some
preservation of these susceptibility cycles.

Inspired by this phenomenon, we implemented a data-
driven hidden Markov model by empirically computing the
frequency of transitioning between multiple sequences of epi-
demic and non-epidemic years (described in detail in the
electronic supplementary material). Given the previously
observed sequence of consecutive outbreak and non-outbreak
years (dengue fever cycles), the Markov model computes the
probability of the next year being an outbreak or a non-outbreak
year. This acts as a proxy to dengue fever susceptibility in the
population as it accounts for the cyclical nature of outbreaks
thatmaybe influencedby, for example, a depletion of the suscep-
tible population following multiple years of high dengue
activity. The approach is implemented as follows: if the
weather-based approach makes a prediction with low prob-
ability, a decision rule is implemented to automatically
override the weather-based prediction if the hidden Markov
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Table 1. Performance of weather-based out-of-sample forecasts across 120
municipality years in Brazil, with and without consideration for DENV
susceptibility cycles.

evaluation metric weather
weather + DENV
cycle

accuracy 71.70% 75%

hit rate (sensitivity) 81% 78%

non-epidemic detection

rate (specificity)

58% 71%

no-information rate 60% 60%

P (accuracy > no-

information rate)

p = 0.005 p = 0.0004
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model (based on the pattern of consecutive outbreaks and non-
outbreaks in years prior) predicts a more likely scenario. In this
way, the ‘cycles’ of dengue fever outbreak susceptibility are
incorporated into our otherwise agnostic weather-based
approach.
2.4. Combining dengue cycles with weather patterns
improves forecasts

Compared with the exclusively weather-based approach,
incorporating these empirically observed dengue cycles into
our system improved our ability to predict non-epidemic
years by approximately 20% (specificity = 69%) and increased
overall accuracy to 74.2% (table 1). Specifically, the additional
decision rule replaced seven epidemic forecasts with non-
epidemic forecasts, of which five were correct (figure 3b).
The majority of these cases belonged to cities which had
experienced three consecutive epidemic years leading up to
the prediction.

Overall, the combined approach (weather-based plus
dengue cycles) was dominantly driven by weather patterns
and informed by the decision rule only in a few cases when
historical data showed a very strong likelihood of either an
epidemic or not epidemic year happening. Thus, the decision
rule to favour the Markov model acts as an ‘expert opinion’
for situations in which there is clear evidence that a given
predicted outbreak scenario (even if suggested by the
weather patterns) is unlikely. Our specific finding—that
the dengue cycles were used exclusively to overturn epidemic
forecasts—suggests that while the weather conditions in
those locations and years were identified to be conducive to
an outbreak, there was stronger evidence that the population
may have had low susceptibility to infection (thus avoiding
an outbreak), based on multiple consecutive preceding
years of high disease incidence.

2.5. Model performance by year
The success of our combined epidemic forecasts varied by
year, reflecting the difficulty of forecasting disease activity
relying only on weather patterns and the empirically
extracted susceptibility cycles. During the last three years of
the time series (2015–2017), epidemics were predicted by
the weather-only models with at least 80% accuracy, with
100% of the 13 outbreaks in 2016 correctly forecast
(figure 3b,c). Conversely, non-epidemic years during
2013–2014 were particularly difficult to predict, with only
one-third and one-half of cities correctly forecasting non-
epidemics for these years, respectively. The most successful
non-epidemic predictions occurred in 2012, for which six
out of eight non-epidemics (75%) were predicted correctly.
Overall, 2015 and 2016 were the most successfully classified
years, with 80% and 85% of municipalities correctly classified
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as epidemics or non-epidemics, respectively, while 2014 and
2017 were the most difficult years to predict, with 45% and
35% of municipalities misclassified, respectively.

Incorporating information on the dengue cycles helped
detect an additional non-epidemic in 2012 and 2015, and an
additional three non-epidemics in 2017 (figure 3b).
2.6. Quantifying the strength of predictions
Because our forecast system produces deterministic binary pre-
dictions (epidemic/non-epidemic year) using local-in-time
SVM classifiers, a natural question is how to quantify the con-
viction (or confidence) of each prediction. It is important
to note that the number of observations per city is small
(n = 17), and, thus, a rigorous probabilistic approach to quanti-
fying conditional probabilities of success is not feasible.
However, in the interest of better communicating to public
health officials the reliability of our predictions in a given
location and time period, as well as identifying the determi-
nants of success of our prediction system if one were to
extend our predictive approach to new locations, we explored
simple ways to characterize the accuracy and conviction of pre-
dictions. We did this based on both the historical performance
of the selected ensemble generating the prediction and the
performance of the weather-based classifiers themselves.

Our prediction system combines the output of a collection
of local-in-time binary classifiers that use different time
periods (characterized by an initial point in time, t0, and a
window length, p), prior to the typical date of the onset of
dengue outbreaks, as predictors. For each city and each
year, the combination of these outputs is calculated using a
voting system that only considers time windows that have
consistently exhibited the highest historical out-of-sample
prediction performance among all other time windows of
the calendar year. In our framework, time windows are auto-
matically selected into the forecasting ensemble if (i) their
own historical out-of-sample performance is high and (ii)
the historical performance of their calendar neighbours, that
is, models using temporally nearby time windows as
predictors, is high as well.

Consequently, we computed metrics of ensemble accuracy
and strength (or confidence) by quantifying both of these
elements. We found that, in cities where the predictive per-
formance of our approach is highest (electronic
supplementary material, figure S2), the successful individual
classifiers that contribute to our final prediction use as input
temporal regions that are clustered around one another (as
shown in figure 4), suggesting that the presence of temporally
consistent weather patterns can be thought of as an indicator of
the success of our methodology.

It is important to note that models with high historical
prediction performance may still lead to poor outcomes if
the weather data for the year of (out-of-sample) forecast do
not clearly belong to an epidemic or non-epidemic class, as
learned by the individual classifiers, and/or if its weather
patterns happen to ‘look like’ those appearing historically
in the opposite class.

In order to further assess the individual strength or con-
viction of each individual classifier, we estimated whether
the separability or difference between the two classes



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20201006

6
(epidemic versus non-epidemic) was well captured by the
classifier by extracting calibrated posterior probabilities of
each SVM model using Platt’s scaling [33]. The posterior
probability reflects the distance to the separation boundary
distinguishing epidemic and non-epidemic years on the
basis of weather. Thus, a higher probability represents how
strongly the weather patterns of the prediction year aligned
with those experienced by prior outbreak or non-outbreak
years. We observed that, in general, the probabilities were
moderately calibrated, i.e. roughly 80% of predictions made
with 0.8 probability were epidemics (electronic supplemen-
tary material, figure S3); however, the small sample size
(i.e. six out-of-sample years for each of the 20 cities) limits
the ability to interpret this feature appropriately. We found
that this measure of separability was not a particularly
good indicator of accuracy; that is, our approach failed even
in scenarios with high separability. Several factors may be
driving this finding, including insufficient training data and
the influence of factors beyond weather (e.g. sociodemo-
graphic characteristics, land use) on outbreaks; we elaborate
further in the electronic supplementary material.

Both approaches to characterize the confidence of our pre-
dictions—quantifying ensemble strength and quantifying the
separability of the data—highlight separate limitations of our
modelling framework. First, we expect that both a greater
variety of environmental variables (e.g. humidity, vegetation
and standing water) and non-environmental variables (e.g.
human activity and public health interventions) will contrib-
ute to more accurate predictions by considering broader
factors that contribute to dengue fever activity in a given
location. Second, the robustness of our predictions was lim-
ited by a short time series of annual information, which
may not be sufficient to detect clear differences in epidemic
and non-epidemic years on the basis of weather alone. None-
theless, our reproducible modelling framework can easily be
extended to accommodate additional predictors and longer
time series, and thus we highlight these as limitations of
only the present case study, with potential for improved
performance in other data settings.
3. Discussion
Here, we have presented a novel approach to forecasting
dengue fever outbreak years in Brazil at its smallest adminis-
trative unit, the city level, using a single, dynamic and
flexible modelling framework that uses only two weather vari-
ables and historical information on yearly dengue activity. Our
approach automatically learns from weather and population
susceptibility patterns of any inputted yearly time series of
dengue incidence and leverages the best historical predictions
to generate an ensemble forecast. We find that complementing
our weather-based statistical approach with observed 3–4 year
cycles of dengue fever outbreaks (as a proxy for population
susceptibility) is key for our models to achieve higher accuracy
and improve substantially in predicting non-epidemic years.
These forecasts may provide timely information on dengue
fever activity to policymakers months ahead of outbreak
seasons. Further, our entirely data-driven models show an
ability to learn from complex relationships between dengue
epidemics and climatic conditions and identify, in vastly differ-
ent locations, potentially relevant weather patterns with likely
biological significance. Importantly, these models can be
immediately extended to other locations, requiring no
location-specific manipulation or inputs aside from a globally
available time series of daily temperature and precipitation as
well as a complete yearly record of dengue incidence.

Using weather information only, our models seek to
characterize and exploit the predictive ability of distinct
weather patterns preceding outbreak years. Because our
framework automatically identifies the time periods for
which weather patterns produce strong signals, it was poss-
ible to identify temporal weather signatures in multiple
locations with vastly different ecosystems and geographical
locations. For this, we observed that cities with better overall
prediction accuracy had stronger weather signatures,
suggesting perhaps some biological consistency. For example,
the southeastern municipality of Barra Mansa (five out of six
ensemble years predicted correctly) exhibited strong signals
from time windows spanning the first half of the city’s
rainy season, in October through December of each year.
Further north, the hot, wet and humid municipality of
Manaus (five out of six ensemble years predicted correctly),
situated at the mouth of the Amazon, appeared to show
two distinct weather signatures straddling the driest month
of the year, August. These patterns, generated from 10
years of out-of-sample model predictions, suggest that, in
different regions of Brazil, the weather may affect dengue
transmission differently and at different times of the year.
However, in locations where weather-based predictions
were less successful, these signatures were not distinct; for
instance, Rio de Janeiro (three out of six ensemble years pre-
dicted correctly) showed no clear temporal trend. In cities
such as these, we might expect to see a lower influence of
weather patterns on transmission than with other predictors
(e.g. sociodemographics, policy, population behaviour,
human land use, vector abundance). We did not find clear
patterns by geography, population density or municipality
size. We believe this work should catalyse important research
both on the local influence of weather patterns on dengue
outbreaks and on the extent to which other factors drive out-
breaks in these locations. Moreover, this data-driven
approach may help generate hypotheses on the relevance of
multiple factors that may influence the dynamics of seasonal
dengue outbreaks.

Even weather conditions that appear highly suitable for
an outbreak (or none), based on historical information, may
be challenged by other factors that limit (or encourage) trans-
mission of dengue. A key strength of our approach is the
incorporation of empirically observed information on
dengue fever susceptibility cycles, to correct for potential
short-term immunity that results from previous exposure to
the dengue virus. We found that these susceptibility cycles
were critical to the performance of models, particularly
those which identified weather patterns suitable for a
dengue outbreak in a year with potentially low population
susceptibility to infection. For instance, this approach cor-
rectly identified three additional non-epidemics in 2017
compared with weather patterns alone, supporting the dis-
course on the unusually low dengue activity seen in Brazil
in 2017 [34]. Still, our models missed half (6/12) of non-epi-
demics in 2014, which was predicted by experts to be a low
transmission year because of the immunity provided by a
large outbreak in 2013 with no changes in circulating
DENV serotypes [34,35]. Thus, incorporating information
on specific circulating serotypes could be used to better
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detect changes in population immunity and enhance our
approach. Empirical and modelling-based seroprevalence
studies may aid with this component, though this surveil-
lance information is more challenging to routinely acquire
[36]. Regardless, here we highlight the importance of incor-
porating mechanistic processes of disease transmission into
data-driven approaches that may be otherwise blinded to
them.

Our approach achieved an overall accuracy of 75%, which
we believe is promising considering the difficulties in predict-
ing the target. To put our results in context, we visited other
benchmarks in the dengue prediction literature. While most
dengue forecast models predict a continuous outcome such
as total incidence (rendering comparisons of performance
metrics not possible), we do find that dengue weather-
based predictions achieve overall lower accuracy than other
comparator models and achieve varied performance across
distinct geographical regions, for example in the work of
Lauer et al. [30] and Johansson et al. [29]. To the latter
point, we find similarities with our work in that weather-
based predictions performed well in some Brazilian munici-
palities, but not others. In another study that predicted a
comparable binary outcome, weekly outbreak status, in
Malaysian districts using weather information such as temp-
erature and rainfall, the authors found an overall 70%
accuracy using an SVM classifier [37], though noted that
weather variables were not the most predictive in the model.

Because dengue transmission is driven bymultiple complex
socioecological and biological factors, we expect our models to
capture only a portion of the epidemiological triangle. Here, we
show the performance of two simple and relevantweather indi-
cators of dengue fever, but the incorporation of additional
weather features (i.e. humidity, vegetation and soil water
absorption) combined with a feature selection step may lead
to improved accuracyof forecasts, by consideringmore complex
weather conditions preceding dengue outbreaks. However, in
initial exploratory analysis, we did not find that other weather
factors such as humidity or soil absorption outperformed temp-
erature and precipitation alone, confirming the findings of
[31,38] that factors other than temperature and precipitation
may have little influence on dengue outbreaks.We also demon-
strate the robustness of this approach by replicating the study
using an alternative feature extraction method, singular value
decomposition, with similar results (electronic supplementary
material, figure S4). Nonetheless, we show that weather predic-
tions fail in some cities, for example Rio de Janeiro (discussed
above), where non-climatic factors may be influential in
dengue outbreaks. For example, social factors including socioe-
conomic conditions [39], population mobility dynamics [40]
and public health and infrastructure [41], as well as mosquito
factors such as vector abundance [42], are known contributors
to dengue transmission. These variables may contribute to a
more complete understanding of dengue fever in Brazil. Our
work shows that weather- and susceptibility-based models
can contribute valuable information to larger ensemble
approaches that leverage a collection of mobility, sociodemo-
graphic, epidemiological, climatic and biological information.
Future work should explore the incorporation of these
comprehensive data into a single modelling approach.

Our approach also demonstrates the feasibility (and limit-
ations) of predicting in a ‘small data’ setting, wherein only
17 outcome data points were available in total for training
and out-of-sample predictions (each representing annual
outbreak status between 2001 and 2017). We chose a short
training period (initial 7 years) to maximize the number of
out-of-sample ensemble predictions, but ultimately it is difficult
to establish strong climatic distinctions between outbreak and
non-outbreak years in the data with so few samples. Thus, we
anticipate improvement in performance for settings that have
multiple decades of data, whichwould allow for longer training
periods, improved separability in the data and more stable
identification of dengue susceptibility cycles, all improving the
quality, robustness and accuracy of predictions. In addition,
where epidemiological data are available at finer temporal resol-
utions (e.g. weekly, monthly), this prediction problem could
leverage more classical time-series approaches (such as
SARIMA models) that incorporate adjustments for seasonality
and trends, for example, as was done in [29]. Future studies
should compare our approach with time-series-based methods
wherever data are available to do so. Finally, our approach—
which spans twodecades and20 locations—is limitedby report-
ing heterogeneities in space and time. Brazil’s centralized
compulsory notification system, SINAN (Information System
forNotifiableDiseases), has experienced software and reporting
standards changes over the last two decades, giving rise
to potential discrepancies in disease reporting at temporal
change points. In addition, the case notification data in
SINAN originate from data collected at health facilities via epi-
demiological disease surveillance reporting forms, and despite
well-centralized reporting standards differences in reporting
may exist between locations. However, dengue is a compulsory
reportable disease in Brazil and receives a large number of
reports nationwide each year (e.g. 1.7 million cases reported in
2015), and reporting is thought to accurately represent the over-
all trend of dengue in Brazil [43]. Becausewe further reduce the
number of case reports to a binary outbreak status (epidemic/
non-epidemic), our dependent variable may be less susceptible
to these issues. Nonetheless, reporting heterogeneities are an
inherent limitation to work like this.

Ultimately, this framework provides a simple, reproducible
method of predicting dengue fever outbreak years in a wide
range of locations. Given that the global and economic burden
of dengue is placed at an estimated 390 million infections and
US$8.9 billion per year [12,44], optimizing resource allocation
for disease prevention is critical. However, control of the Aedes
mosquito requires weeks or months before effects are seen on
the vector population, so predicting dengue outbreaks up to
several months before their onset is ideal. Our reproducible
approach, which uses globally available datawith the daily res-
olution, is intended to serve as a supervised learning framework
to produce early outbreak warnings in any desired context,
resulting in more efficient resource mobilization, budgeting
and prevention campaigns. Moreover, the flexible approach
can be extended to include other variables thought to be predic-
tive of dengue outbreaks. Developing transparent early
warning systems at the local level is emerging as a top global
health priority, making our contribution both timely and
impactful.
4. Material and methods
4.1. Study design
We developed a single, flexible modelling framework capable of
identifying potentially useful weather patterns to predict dengue
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fever and used this to forecast annual outbreak status (epidemic/
non-epidemic).

Our workflow, outlined in figure 1, combines elements from
signal processing/spectral analysis, machine learning and
ensemble modelling to achieve robust, data-driven epidemic
forecasts that do not require any prior knowledge of the system
(i.e. climatic influences on dengue transmission). Our research
question is inherently one of time-series classification, to forecast
epidemic versus non-epidemic years of dengue fever. The work-
flow begins with a time series of hourly and daily weather
information, which serve as inputs to a collection of classifiers
that contribute to ensemble-based epidemic predictions. Our
approach can be described in five steps.

1. Signal preprocessing: for a time series of weather data, define
time intervals of varying sizes (10–95 days across the last
seven months of the calendar year) and use a windowing
technique [31] to include information within several days of
the interval. In contrast with [31], there are no deleterious
effects due to missing temperature data since the data are
acquired via satellite instead of ground measurements.

2. Time-series feature extraction: extract a simple summary
measure for two weather variables with known influence
on mosquito-borne disease dynamics, temperature and fre-
quency of precipitation. Although more variables can be
considered, they have little influence on the predictive
power in comparison with the two selected [31].

3. Independent model training and prediction: train a collection of
independent SVM classifiers on historical information from
each unique time interval, and generate an out-of-sample epi-
demic prediction for the following year. Although SVM was
used in [31], we provide here a richer out-of-sample prediction
scheme for forecasting.

4. Model selection: choose the best 11 models, representing strongly
predictive periods of the year preceding outbreaks, based on
(i) historical out-of-sample prediction accuracy and (ii) out-
of-sample performance of neighbouring time intervals.

5. Ensemble prediction: determine a final out-of-sample epidemic
forecast by a majority vote of the selected top models.

To potentially enhance the performance of this exclusively
weather-based approach, we implemented a post hoc step incor-
porating empirical information on 3- and 4-year dengue fever
cycles as a proxy for population susceptibility to infection.

6. Dengue cycles: implement a decision rule governed by the
second- and third-order Markov transition probabilities,
reflecting the transition between consecutive sequences of
epidemic and non-epidemic states

We applied our approach to 20 cities in Brazil spanning large
geographical and population ranges (electronic supplementary
material, figure S1 and table S1). We used as input a historical
time series spanning 17 years and consisting of information on
dengue case reports (number, annual) and two weather variables:
2 m air temperature (kelvin, daily) and precipitation (kg m−2,
hourly). We describe data sources, acquisition and processing in
the electronic supplementary material. After an initial training
period of 7 years, we generated 10 years of out-of-sample epidemic
predictions for each of the independent models using a 1 year
expanding training window (step 2). We used the first 4 years of
out-of-sample predictions to inform ensemble model selection
(step 4) andproduced ensemble-basedpredictions for the remaining
6 years (step 5).
4.2. Signal preprocessing
Using a daily time series of weather data to forecast dengue fever
epidemic status requires identifying the most predictive period(s)
of the calendar year during which weather information contains
a strong signal for subsequent dengue fever outbreaks. In order
to construct a single framework that can automatically identify
important weather signals in multiple different locations with
vastly different ecosystems and weather patterns, we allow the
data to inform the choice of time intervals. Our algorithm
achieves this by scanning over multiple, partially overlapping
time intervals across the calendar year, and building hundreds
of models on these different intervals in order to select those
with the strongest signals.

Each time interval is defined by a start date, t0, between early
June and late September, and a period length, p, of between 10
and 95 days. The combination of each (t0, p) produces multiple,
partially overlapping intervals spanning the last seven months
of the calendar year.

Borrowing from spectral analysis and wavelet decompo-
sition, we use a windowing-inspired approach to better capture
signals within the time intervals. Windowing is typically used
to improve signal clarity, and here we apply a rectangular
‘range’ as described in [31] to incorporate the information in
the days both within and around each time interval. We define
a rectangle of 5 × 6, indicating that, for every defined (t0, p)
time interval, the algorithm collects information from five
consecutive start dates, t0, t0 + 1, …, t0 + 4, spanning six consecu-
tive period lengths, p, p + 1, …, p + 5. Each time interval and
weather variable, then, is summarized by 30 data points, each
capturing slightly different temporal slices from the time series.
This process effectively adds a bit of redundant information
to the model-building process—to which our learning algorithm,
the SVM, is in general robust—in order to pick up signals in the
data that may not be captured by applying an arbitrary ‘start’
and ‘end’ cut-off to the data.

4.3. Time-series feature extraction
Time-series data must be transformed into appropriate inputs in
order to be used in supervised learning models. This process,
called time-series feature extraction, involves computing sum-
mary features of the time series, which can range from simple
means to complex wavelet transforms. To test the feasibility of
our approach using only simple summary features, we extracted
the following features within each (t0, p) time interval based on
the findings of [31]: (i) the arithmetic mean of daily temperature
and (ii) mean precipitation frequency, with the frequency defined
as the time interval (in days) between peaks (local maxima) of
daily precipitation. In the electronic supplementary material,
we present an alternative method of feature extraction using
singular value decomposition.

4.4. Independent model training and prediction
The goal of our independent model-building step is to identify
dynamically, through the continually updating performance of
a collection of models, the periods of the year that are most pre-
dictive of annual dengue outbreaks, in order to exploit a small
number of them to generate forecasts.

To forecast outbreak years, we trained a collection of SVM
classifiers on an initial 7 year training period and produced
annual forecasts incorporating the most recently available
weather information using a dynamic, 1 year expanding training
window. A unique SVM was trained for each of the (t0, p) time
intervals, resulting in a total of 432 independent models trained
per year. Each model generated out-of-sample predictions for the
remaining 10 years of data. Predictions were made by classifying
the 30 out-of-sample data points corresponding to the weather
information preceding the target year, and taking a majority
vote. In order to handle highly nonlinear relationships between
weather variables, both radial basis function and sigmoid kernels
were used and evaluated for performance and show results for
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the best respective kernel in each city. We tuned model par-
ameters (gamma, soft margin cost function and coefficient)
using 10-fold cross-validation.

SVMs, a supervised learning method for classification, were
used because of their flexibility in the face of complex, nonlinear
decision boundaries and their robustness to overfitting and outliers.
Theproperty that underpins these advantages is knownas the ‘large-
margin classifier’. SVMs are also known for their good performance
in high-dimensional feature space, which is advantageous for the
scale-up of the model to include dozens more predictors.

4.5. Model selection
From the resulting collection of 432 models, the best-performing
models (n = 11) were selected each year based on (i) historical out-
of-sample prediction accuracy (per cent of outbreak forecasts cor-
rect) and (ii) out-of-sample prediction accuracy of neighbouring
models (representing similar time intervals). These models thus
represent strongly predictive periods of the year preceding out-
breaks, and the algorithm rewards the high performance of
similar temporal windows over the high performance of a time
window whose neighbours exhibit poor prediction tendencies.
Because the model-building process is dynamic, resulting in a
new collection of models each year with continually updating per-
formance measures, the selection of the 11 models changes from
year to year.

In order to get a sense of the out-of-sample performance of the
432 models, we allowed all models to generate 4 years of out-of-
sample predictions before the top 11 models were selected based
on this prediction accuracy. As a result, the ensemble approach,
which exploited the predictions of the top 11 models, was used
for the final 6 years of out-of-sample predictions.

4.6. Ensemble prediction
Ensemble learning helps improve machine learning algorithms
by combining the results of multiple trained predictors in order
to generate a single, robust prediction. In our approach, we com-
bine the results from the strongest-performing models, which
represent the most highly predictive time periods preceding
dengue outbreaks. While there is an abundance of ensembling
methods in machine learning, we use a simple majority vote of
the 11 models to decide a single forecast. These single forecasts
were produced for the last 6 years of the 17 year dataset, repre-
senting the culmination of a prediction process that involves:
7 year initial training period, 4 year out-of-sample model cali-
bration period and 6 year out-of-sample ensemble prediction
period. Across 20 Brazilian municipalities, this scheme produced
120 municipality years of out-of-sample ensemble predictions.

4.7. Dengue cycles
Our weather-based ensemble approach remains agnostic to the
relationship between weather patterns and dengue outbreaks,
instead allowing the data to drive model selection and predic-
tions. However, endemic transmission of dengue fever is
typically distinguished by periodic outbreak cycles of around
3–4 years. These outbreak cycles are thought to occur as a
result of (i) an exhaustion of susceptibles after an outbreak and
(ii) short-term cross-immunity to other circulating DENV sero-
types after infection [21]. Both factors result in a depletion of
the population vulnerable to infection and act as barriers to sub-
sequent outbreaks. Independent of climate variability over the
years, we expect some preservation of these cycles.

Consequently, we implemented a ‘decision rule’ in the model
based on the observed transitions between epidemic and non-
epidemic years across 51 Brazilian municipalities meeting ende-
mic inclusion criteria (electronic supplementary material).
Across these municipalities, we computed the mean second-
and third-order Markov transition probabilities, representing
the probability of transition from one outbreak state (epi-
demic/non-epidemic) to the opposite outbreak state (non-
epidemic/epidemic) after 2 and 3 consecutive years, respectively.
Thus, we obtained the transition probabilities corresponding to
the following 3 and 4 year cycles: 001, 110, 0001 and 1110 (0 =
non-epidemic year, 1 = epidemic year). Transition probabilities
were computed based only on the first 11 years of data; that is,
the years preceding the six out-of-sample ensemble predictions.

Our decision rule acts as a surrogate ‘expert opinion’, over-
turning the ensemble prediction if the probability of a specific
Markov transition to an epidemic or non-epidemic status (based
on the data from previous years) exceeded the per cent of model
votes (out of 11 votes). For example, if the ensemble predicts an
epidemic year to succeed two epidemic years with seven votes,
the corresponding ‘strength’ of that vote is 63% (7/11), which is
weaker than the corresponding observed second-order transition
probability for a non-epidemic year to follow two epidemic years
(0.71). In this case, the model vote would be overridden to predict
a non-epidemic year instead of an epidemic year.

We compared the performance of predictions based solely on
weather patterns with those which incorporate additional
empirical data from outbreak cycles.
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