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Cardiorespiratory Fitness May
Protect Memory for Poorer Sleepers
Tara Kuhn† and Jennifer Heisz*

Department of Kinesiology, McMaster University, Hamilton, ON, Canada

Objectives: Physical activity has been shown to protect executive functions against
the deleterious effects of poorer sleep among older adults (OA); however, it is unknown
whether memory is protected too, and if this relationship differs by age. The present
study investigated the relationship between cardiorespiratory fitness, sleep, and memory
in both older and young adults (YA).

Methods: This observational study recruited 26 OA (70.7 ± 2.8 years) and 35 YA
(21.0 ± 3.1 years). Participants completed the Rockport 1-mile walk test to evaluate
cardiorespiratory fitness. Participants wore an actigraph for 1 week to measure habitual
sleep and returned for a second visit to perform the memory tests. The interaction
between cardiorespiratory fitness and sleep to predict memory was assessed separately
in OA and YA.

Results: In OA, cardiorespiratory fitness significantly moderated the relationship
between memory and sleep quality, specifically number of nighttime awakenings, sleep
efficiency, and wake after sleep onset. Further analyses reveal that a high number of
nighttime awakenings and low sleep efficiency significantly predicted worse memory
performance in the low fit OA, but high fit OA. Notably, every nighttime awakening was
associated with a nearly 4% decrease in memory in low fit OA, but not high fit OA.
Wake after sleep onset did not significantly predict memory in either fitness group. No
interaction was found when looking at sleep duration or self-report sleep quality in OA
and no significant interactions were observed between fitness, sleep, and memory in YA.

Conclusion: Overall, the results suggest that cardiorespiratory fitness may act as a
protective buffer for memory in OA with poor sleep quality. These same was not true
for YA suggesting that the protective effects of cardiorespiratory fitness on sleep-related
memory impairments may be age specific.

Keywords: sleep, memory, aging – old age – seniors, physical activity, exercise, cardiorespiratory fitness,
cognition

INTRODUCTION

Sleep is vital for good health. Experts have set nightly sleep requirements of 7–9 h for adults between
18 and 65 years old and 7–8 h of sleep for older adults (OA) over the age of 65 years old (Hirshkowitz
et al., 2015). Yet nearly 1 in 3 adults fail to achieve these recommendations (Chaput et al., 2017). To
make matters worse, many OA may be in bed for the recommended amount of time but struggle to
fall asleep and stay asleep (Chaput et al., 2017). Such poor sleep quality is related to poor cognition
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(Blackwell et al., 2011; Lim et al., 2012), accelerated cognitive
decline (Bruce and Aloia, 2006; Altena et al., 2010) and dementia
(Beaulieu-Bonneau and Hudon, 2009; Lim et al., 2013; Sterniczuk
et al., 2013). Unfortunately, with aging, sleep quality naturally
declines. Compared to younger adults (YA), OA sleep less, have
more difficulty initiating and maintaining sleep, and spend less
time in slow wave sleep (SWS) – sleep’s deepest and most
restorative stage (Ohayon et al., 2004; Moraes et al., 2014;
Mander et al., 2017).

Physical activity may be an effective way to promote sleep and
counteract the deleterious effects of poor sleep on cognition. Both
acute and chronic physical activity improve sleep quality (Kubitz
et al., 1996; Kredlow et al., 2015) and cognition (Colcombe
and Kramer, 2003; Chang et al., 2010; Middleton et al., 2010;
Roig et al., 2013; Loprinzi et al., 2018). However, less is known
about whether physical activity protects poor sleepers against
their additional cognitive deficits. To date, only two studies have
examined the interplay between exercise, sleep, and cognition in
healthy humans and both of those studies focused on executive
functioning (EF), a subset of cognitive processes including
working memory, inhibitory control, and cognitive flexibility
(Diamond, 2013). One study found that sleep efficiency, but
not sleep duration, mediated the relationship between physical
activity and EF in YA and OA (Wilckens et al., 2018). These
results suggest physical activity may enhance sleep quality, which
in turn, may improve EF (Wilckens et al., 2018). The other study
(Lambiase et al., 2014), examined the relationship between sleep
and EF using a subset of data from the Healthy Women Study.
They found that poor sleepers who were also low active had
the poorest cognitive flexibility. However, the participants who
were high active performed similarly well regardless of how poor
they slept. These results are promising and suggest that physical
activity may help protect against the cognitive deficits that come
from poor sleep.

However, Lambiase et al. (2014) and Wilckens et al. (2018)
used behavioral measures of physical activity rather than
physiological measures of activity, i.e., cardiorespiratory fitness.
Although cardiorespiratory fitness and physical activity are
related, the two may diverge depending on intensity and duration
of the activity that is being performed. For example, engaging
in bursts of high-intensity activity for a short period of time
can produce greater increases in fitness than engaging in a
lighter exercise for longer periods of time (Ramos et al., 2015).
Cardiorespiratory fitness may be a key factor in the buffering
the effects of poor sleep on cognition given that higher fit
adults not only sleep better (Shapiro et al., 1984) but they
also function better cognitively (Barnes et al., 2003) and are
at a reduce risk of cognitive decline and dementia (Nyberg
et al., 2014). Furthermore, these two studies provide promising
evidence for an exercise-by-sleep interaction that promotes EF.
It remains unclear whether this same relationship holds true
for memory. Theoretically, physical exercise should protect
memory in poor sleepers, as has been shown in animal models
(Zagaar et al., 2013a,b; Zagaar, 2019), but this has yet to be
examined in humans.

The present study sought to fill these two gaps by examining
the interaction between cardiorespiratory fitness, sleep, and

memory. Based off results of Lambiase et al. (2014) we
hypothesized that cardiorespiratory fitness would moderate the
relationship between sleep and memory in OA, suggesting
that cardiorespiratory fitness is neuroprotective. Specifically, we
hypothesized that OA with poor sleep would have worse memory
if they were low fit, but not if they were high fit. We also tested
this in YA but expected a weaker association.

MATERIALS AND METHODS

Setting
This study took place at McMaster University in Hamilton,
Ontario. Participant recruitment began in August 2019,
and data collection took place between September 2019 to
March 2020. Data collection ended prior to the COVID-
19 lockdowns. Participants were recruited through posters
and advertisements in local news outlets, posted throughout
the Hamilton community and on McMaster University
campus. Participants were also recruited from a participant
database consisting of participants who have previously
completed studies in the NeuroFit Lab or through McMaster’s
Department of Psychology, Neuroscience, and Behavior Research
participation system (SONA).

Participants
The present study was part of larger, unpublished master’s thesis.
In this thesis, the sample size estimate was calculated using
G∗Power (Version 3.1.9.3; Faul et al., 2007), based on the age
differences (20–39 years old versus 60–74 years old) in mean
delayed verbal memory scores (d = 0.71) found in Stark et al.
(2013). Using the parameters of power being 0.90 and alpha
equaling 0.05, G∗Power indicated a total of 86 participants would
be required: 43 YA and 43 OA. In that same study by Stark et al.
(2013), they found a negative correlation between age and high-
interference memory (r = −0.48), which converts to a Cohen’s
d of 1.00 (Ruscio, 2008), suggesting that a total sample size of
46 would have adequate power to detect differences in mean
high-interference memory scores between YA and OA.

The study was conducted between September 2019 and March
2020. Prior to the onset of the global COVID-19 pandemic, a total
of 73 participants were recruited (YA, n = 44; OA, n = 29). Three
participants did not complete both visits, due to ineligibility
requirements (OA, n = 1), scheduling conflicts (YA, n = 1), or
complications due to COVID-19 (YA, n = 1). Additionally, seven
participants (YA, n = 5; OA, n = 2) had been recruited and
scheduled but could not participate due to COVID-19 restriction
on human research. In total 63 participants completed the study
(YA, n = 37; OA, n = 26).

Participants were eligible to participate if they were between
the ages of 18–30 or 65–79 and free from diagnosis of
cognitive impairment, sleep apnea, psychiatric and neurological
conditions, and were non-smokers, not obese [class I, body mass
index (BMI) < 35], not taking hormone replacement therapy or
beta-blockers. Additionally, participants were required to have
normal sleep patterns with a regular sleep phase between 9:00
p.m. and 10:00 a.m. (Finan et al., 2019). Fulfillment of these
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criteria was confirmed verbally or written, either by email or over
the phone. Prior to their first visit, eligible OA were required
to obtain written consent from their physician to participate in
a sub-maximal cardiorespiratory fitness assessment. Participants
were also screened for cognitive impairment using the Montreal
Cognitive Assessment (MoCA; Nasreddine et al., 2005). A normal
score is considered to be ≥26, and a score of <23 is a suggested
cut-off that may differentiate healthy cognition from cognitive
impairment (Carson et al., 2018). The MoCA has good reliability
(Cronbach’s alpha = 0.83), and good sensitivity and specificity for
detecting MCI (90%) and AD (100%), and good specificity (87%)
(Nasreddine et al., 2005).

All participants provided informed consent upon the first visit
and were compensated with either $30 or three SONA credits for
their participation. This study received ethics clearance from the
McMaster Research Ethics Board (MREB #2079).

Cardiorespiratory Fitness
Cardiorespiratory fitness (i.e., VO2 peak) was estimated using the
Rockport 1-mile walk test (Kline et al., 1987). The Rockport 1-
mile walk test has been validated in adults, and correlates highly
with traditional treadmill tests to assess cardiorespiratory fitness
(Kline et al., 1987; Colcombe et al., 2003, 2004). Participants were
instructed to walk one mile as fast as they could, without running
or powerwalking. Two trained research assistants supervised the
test: one member of the research team recorded heart rate (using
Polar FT1 heart rate monitors) at one-minute intervals and upon
completion, while the second research assistant recorded distance
using a surveyor’s wheel. Participants completed the Rockport 1-
mile walk test on an indoor track located in the Physical Activity
Center of Excellence at McMaster University. The following
equation was used to estimated VO2 peak (Rockport Shoes
Walking Institute, 1986):

Estimated VO2max ml · kg−1
·min−1

= 132.853 − 0.0769
(
weight in pounds

)
−

0.3877
(
age in years

)
+ 6.315

(
if male

)
−

3.2649 (time in minutes) − 0.1565
(
final heart Rate

)
Memory
The Mnemonic Similarities Task set C (MST) was used to
measure high-interference memory and general recognition
memory (Stark et al., 2013; Stark and Stark, 2017). High-
interference memory is a type of hippocampus-dependent
memory that helps one discern between highly similar, but
different events. High-interference memory (also referred to as
pattern separation) is associated with activity in the dentate
gyrus (Yassa and Stark, 2011), a structure of the hippocampus
where neurogenesis occurs (Zhao et al., 2008). Additionally,
this type of memory is influenced by both cardiorespiratory
fitness (Bullock et al., 2018) and sleep (Saletin et al., 2016).
General recognition memory reflects the ability to discriminate
new stimuli from previously observed stimuli (Mandler, 1980).
General recognition memory is thought to depend on frontal

and parietal brain regions (Neufang et al., 2006), making it less
depend on hippocampal neurogenesis (Yonelinas et al., 2005) and
less susceptive to changes in aging (Stark et al., 2013; Bullock
et al., 2018).

See Figure 1 for a visual representation of the MST task.
During the MST, there is an incidental coding phase where
participants were shown 60 full colored images, presented on the
screen for 2 s. A blank screen preceded each trial for 500 ms.
Participants were instructed to classify items as indoor, pressing
the “N” key, or outdoor, pressing the “V” key. After this phase
of the task, participants watched a video with instructions for
the test phase of the task. During the test phase, participants
were shown more images that they had to classify as either “Old”
(repetitions), “Similar” (lures), or “New” (foils) using the “V” key,
the “B” key and the “N” key, respectively. The test phase consisted
of 192 items in total: 64 repetitions, 64 lures, 64, foils. Items were
presented for 2.5 s, followed by a blank screen.

High-interference memory was calculated by subtracting the
proportion of lures that were correctly identified as “Similar”
from the proportion of foils that were mistakenly identified
as “Similar” [p(“Similar”| Lure) – p(“Similar”| Foil)] (Stark
et al., 2013; Stark and Stark, 2017). By doing so, this corrects for
any overall bias of responding “Similar” to stimuli. Likewise,

FIGURE 1 | Mnemonic Similarities Task (MST). The MST measures
hippocampal dependent memory by having participants discriminate between
highly similar, but different memory. During the initial coding phase,
participants were presented with 60 images that they had to identify as
“indoor” or “outdoor” objects. During the test phase, participants were
presented with 192 additional images. A total of 64 images were exact
repetitions (images presented during the initial coding phase; correct
response = “Old”), 64 novel foils (new images they had not been seen before;
correct response = “New”), and 64 images were similar lures (images that
were similar to a previously shown image, but not exactly identical; correct
response = “similar”). High-interference memory was calculated by subtracting
the proportion of lures that were correctly identified as “Similar” from the
proportion of foils that were mistakenly identified as “Similar” [p(“Similar”|
Lure) – p(“Similar”| Foil)]. This corrects for any overall bias of responding
“Similar” to stimuli. General recognition memory was determined by whether
participants correctly identified repeated stimuli as “Old” from the proportion of
foils that were mistakenly identified as “Old” [p(“Old”| Repeat) – p(“Old”| Foil)].
Images available at: https://faculty.sites.uci.edu/starklab/mnemonic-similarity-
task-mst/.
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FIGURE 2 | The moderating effect of cardiorespiratory fitness on sleep quality
and high-interference memory performance in older adults. Sleep efficiency
significantly predict cognitive performance in the lower fit group (b = 3.77, SE
b = 1.65, p = 0.037) but not in higher fit group (b = –2.81, SE b = 1.71,
p = 0.12). Trend lines are not adjusted to covariates.

general recognition memory was determined by subtracting the
proportion of correctly identified repeated stimuli as “Old” from
the proportion of foils that were mistakenly identified as “Old”
[p(“Old”| Repeat) – p(“Old”| Foil)]. Data was screened to ensure
task comprehension. If participants did not use all keys, it was
thought they did not understand the task, and would be removed
from all memory analyses.

Sleep
Actigraphy
Actigraphy was used as the primary sleep measure using the
CenterPoint Insight watch (ActiGraph, LLC, Pensacola, FL,
United States). Sleep periods were determined using the Cole-
Kripke algorithm (Cole et al., 1992), which measures sleep
using the y-axis epochs over a 7-min period to determine wake
from sleep. A trained research assistant uploaded, compared,
and adjusted sleep periods for all participants based on sleep
diary records to ensure restless sleep was not mistaken for
wakefulness. Participants wore the actigraphy on their non-
dominant hand, and participants were considered compliant if
they wore the actigraph for at least five nights. The sleep measures
examined were number of nighttime awakenings, sleep efficiency,
wake after sleep onset (WASO), and total sleep time (TST).
Average values between visits one and two were computed for
each sleep variable.

Pittsburg Sleep Quality Index
As a secondary measure of sleep, the Pittsburgh Sleep Quality
Index (PSQI) was used to assess subjective sleep quality (Buysse
et al., 1989). This questionnaire asks participants about their sleep
habits during the last month by looking at seven components:
subjective sleep quality, sleep latency, sleep duration, sleep
efficiency, difficulties sleeping, use of sleeping medications,
and their sleepiness. Participants scores are categorized into
severity/frequency of sleep disturbances (0 = least severe,
3 = most severe), for a maximum score of 21. A higher score in

indicative of greater sleep disturbance, and a score of >5 indicates
a poor sleeper (Buysse et al., 1989). The PSQI has a Cronbach’s
alpha of 0.83, as well as good diagnostic sensitivity (89.6%) and
specificity (86.5%) at distinguishing “good” versus “poor” sleepers
(Buysse et al., 1989).

Sleep Journal
A sleep journal created by the National Sleep Foundation
was used to measure and record participants bed and wake
times. Participants were instructed to record each morning the
time they went to bed, the time they roughly fell asleep, and
the time they woke up that morning. These times were used
to determine the in-bed and awake times for the actigraph
measures, as restless sleep would be mistaken for awake time
(Morgenthaler et al., 2007).

Covariates
Covariates included age, biological sex, years of education,
BMI and depression, as these variables relate to sleep (Pearson
et al., 2006; Park et al., 2013; Mallampalli and Carter, 2014;
Moraes et al., 2014; Mander et al., 2017) and/or cognition
(Hammar and Årdal, 2009; Salthouse, 2019; Lövdén et al., 2020).
Age, biological sex, and years of education were assessed via
demographics questionnaire. Depression was assessed using the
Beck Depression Inventory (BDI; Beck et al., 1996). This is
a 21-item questionnaire, requiring participants to select which
statement best describes who they have been feeling during
the previous 2 weeks, with responses ranging in intensity.
A minimum score is 0 and a maximum score is 63. The BDI has
a Cronbach’s alpha of 0.91 (Dozois et al., 1998) in YA and 0.86 in
OA (Segal et al., 2008), and has good convergent and discriminant
validity in both age groups (Segal et al., 2008).

Procedure
This study was completed over the course of two visits.
During the first visit, anthropometric measurements were taken,
including weight and height, which were used to calculate
BMI. Participants completed the MoCA to screen for cognitive
impairment, and then performed the Rockport 1-Mile walk test.
Upon completion, participants returned to the lab and filled out
a demographic questionnaire. Participants were then given an
actigraph and instructed to wear at all times for 1 week, except
during bathing or swimming activities. Participants were also
given a sleep journal to record their sleep over the week.

Following 1 week of tracking, participants returned to the lab
and performed the MST. Finally, participants filled out the BDI
and were debriefed.

Statistical Analysis
Data was analyzed using R 4.0.5 programming software (R
Core Team, 2021). Data was screened for extreme outliers,
where values beyond < Q1 – 3*IQR or > Q3 + 3*IQR
were removed. Descriptive statics were calculated for all study
variables. Normality was assessed using Shapiro–Wilk tests and
through visual inspection of histograms. Normality of residuals
was inspected using Q–Q plots. Independence was measured
using Durbin-Watson tests. Influential cases were screened using
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Cook’s distance. For all statistical analysis, two-tailed tests were
used, and significance was considered at p < 0.05. Covariates
included sex, years of education, BMI, age, and depression.

To test the moderating effect of cardiorespiratory fitness on
the relationship between sleep and memory, multiple linear
regressions were used to examine the interaction between
cardiorespiratory fitness and sleep variables. Within each age
group and stratified by sex, participants were categorized as
“high fit” or “low fit” via median split, like the methodology
used by Lambiase et al. (2014). If there was a significant
interaction, the simple slopes for “high fit” and “low fit” in
the model were calculated using the reghelper package (Hughes,
2021). These analyses were done separately for YA and OA.
A baseline model that included only the covariates was used to
calculate 1R2.

RESULTS

Data Screening and Assumptions
A total of 63 participants (OA, n = 26; YA, n = 37) completed
both visits in the study. Two participants were removed from all
analysis due to low actigraph compliance (wearing <5 nights; YA,
n = 2). The final sample consists of 61 participants (OA, n = 26;
YA, n = 35).

The data was screen for missing data; 0.68% of the data was
missing. Two participants failed to properly fill out the PSQI (YA,
n = 1; OA, n = 1), so their PSQI measures were removed, but their
actigraphy data remained included. High-interference memory
scores were removed if participants failed to understand the task,
as indicated by failing to press all three keys (OA, n = 1). Two
participants had extreme scores for their recognition memory
scores (YA, n = 1; OA, n = 1), removed from their respective
analyses.

All data met the assumption of normality using the Shapiro–
Wilk test and visual inspection of histograms. All linear
regression assumptions were met.

Descriptive Statistics
Descriptive characteristics of the sample stratified by
cardiorespiratory fitness levels are presented in Table 1. YA were
aged 18–30, mostly female (24/35), and most were categorized
as good sleepers (23/34). Older adults were aged 66–76 years
old; half were female (13/26), most were categorized as good
sleepers by the PSQI (18/25), and all were well educated (23/26
having >12 years of education). Overall, OA had lower fitness,
higher BMI, and lower levels of depression compared to YA.
Older adults also performed worse on tests of high-interference
memory but had similar MoCA scores, general recognition
memory scores, and years of education compared to YA. YA slept
worse than OA, in that YA had more nighttime awakenings than
OA [t(52.82) = 2.65, p = 0.011, d = 0.51]. Sleep duration was
also significantly shorter in YA than in OA [t(55.81) = −2.08,
p = 0.042, d = 0.83]. No significant differences were found for
sleep efficiency or PSQI scores.

When comparing between cardiorespiratory fitness
levels (Table 1), as expected, higher fit adults had higher

cardiorespiratory fitness in both YA and OA. Furthermore,
higher fit adults had lower BMI, but this was only observed for
OA. No other group differences were observed.

The Moderating Effect of
Cardiorespiratory Fitness on Sleep and
Memory
Table 2 presents regression values for the moderating effect of
cardiorespiratory fitness on sleep and high-interference memory
in OA. Cardiorespiratory fitness significantly moderated that
relationship between high-interference memory performance
with nighttime awakenings, sleep efficiency and WASO. Three
findings emerged. First, low fit OA with more nighttime
awakenings had poorer high-interference memory (b = −3.94,
SE b = 1.12, p = 0.0018). This same negative association between
nighttime awakening and memory was not observed in high fit
OA, but instead a positive association was present (b = 1.56,
SE b = 0.69, p = 0.04). Second, low fit OA who slept more
efficiently had better high-interference memory (b = 3.77, SE
b = 1.65, p = 0.037) Figure 2. Again, this same positive association
between sleep efficiency and memory was not observed in high
fit OA (b = −2.81, SE b = 1.71, p = 0.12). Finally, there
was no significant relationship between WASO and memory
performance in both low fit (b = −0.49, SE b = 0.28, p = 0.09)
and high fit (b = 0.48, SE b = 0.29, p = 0.12) OA. There was
no significant moderating effect of cardiorespiratory fitness and
sleep on general recognition memory in OA.

Table 3 presents regression values for the moderating effect
of cardiorespiratory fitness on sleep and high-interference
memory in YA. In contrast to OA, there were no significant
interactions between cardiorespiratory fitness and sleep with
high-interference memory or general recognition memory in YA.

DISCUSSION

The objective of this study was to examine the moderating
effect of cardiorespiratory fitness on sleep and memory. We
hypothesized that OA with poor sleep would have worse memory
if they were low fit, but not if they were high fit; thus, pointing
to the neuroprotective role of cardiorespiratory fitness in aging.
Indeed, this is what we observed. Among low fit OA, high-
interference memory performance was directly related to their
sleep quality, such that every nighttime awakening was associated
with a ∼4% decrease in high-interference memory; likewise,
every 1% decrease in sleep efficiency was associated with a ∼4%
decrease in high-interference memory. Critically these results
were only observed for low fit OA and not for high fit OA
suggesting that higher fitness in OA may protect against memory
impairment from poor sleep.

Notably, we only observed associations for high-interference
memory and not for general recognition memory. A critical
difference between these two types of memory is that high-
interference memory is more dependent on hippocampal
structures (Yassa and Stark, 2011), than recognition memory
(Yonelinas et al., 2005; Neufang et al., 2006), because of this, high-
interference memory may be more dependent on hippocampus
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TABLE 1 | Descriptive characteristics of the present sample.

Young adults Older adults

Lower fit Higher fit Lower fit Higher fit

N 18 17 12 14

AGE (years) 21.50 (3.65) 20.35 (2.37) 71.4 (3.03) 70.14 (2.56)

EDUCATION (years) 17.72 (2.42) 16.94 (2.66) 17.91 (3.09) 17.54 (3.19)

BMI 23.39 (4.07) 21.66 (2.47) 27.3 (3.77) 24.28 (2.33)*

MOCA 26.94 (1.06) 26.94 (2.05) 27 (1.95) 27.07 (2.23)

BDI 8.56 (6.47) 6.70 (5.33) 3.00 (1.60) 3.38 (4.01)

High-interference memory (% correct) 39.95 (14.05) 21.18 (24.44) 21.18 (24.44) 10.19 (16.42)

GENERAL RECOGNITION MEMORY 82.78 (7.19) 80.69 (9.53) 81.5 (8.33) 78.50 (12.23)

ESTIMATED VO2 42.63 (5.20) 49.40*** (3.89) 21.30 (5.20) 27.76 (4.12)**

NIGHTTIME AWAKENINGS (NUMBER OF AWAKENINGS) 18.98 (5.24) 19.89 (6.35) 15.05 (5.08) 15.69 (6.82)

SLEEP EFFICIENCY (%) 90.43 (3.54) 88.04 (4.43) 88.42 (3.95) 90.40 (3.35)

TST (minutes) 433.10 (52.61) 453.59 (54.31) 453.59 (54.31) 442.52 (31.65)

WASO 45.75 (14.22) 60.50 (23.49) 60.50 (23.49) 47.76 (19.77)

PSQI global score 4.94 (1.66) 4.44 (1.90) 4.83 (2.29) 4.00 (2.68)

BMI, body mass index; MoCA, Montreal Cognitive Assessment; BDI, Beck Depression Inventory; TST, total sleep time; WASO, wake after sleep onset; PSQI, Pittsburgh
Sleep Quality Index. p-Value denotes results of independent t-test comparing high fit to low fit adults in their respective age groups. Sleep variables reflect the average
values between visit one and two. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 2 | Regression coefficients of the moderating effect of cardiorespiratory fitness and sleep on high-interference memory, in older adults.

1 R2 b SE b 95% CIs p

0.43 0.0047

Nighttime awakenings −3.94 1.05 (−6.17, −1.70) 0.0118

Estimated VO2 −93.10 21.40 (−138.47, −47.73) 0.0005

Interaction 5.50 1.31 (2.72, 8.28) 0.0007

0.27 0.068

Sleep efficiency 3.77 1.65 (0.263, 7.28) 0.037

Estimated VO2 586.34 221.37 (117.06, 1055.62) 0.018

Interaction −6.58 2.44 (−11.75, −1.42) 0.016

0.23 0.13

WASO −0.49 0.28 (−1.076, 0.103) 0.099

Estimated VO2 −56.32 21.93 (−102.80, −9.83) 0.021

Interaction 0.96 0.41 (0.10, 1.82) 0.031

0.12 0.42

TST 0.08 0.12 (−0.18, 0.34) 0.54

Estimated VO2 −83.25 105.88 (−307.69, 141.20) 0.44

Interaction 0.17 0.23 (−0.33, 0.66) 0.48

0.28 0.09

PSQI – global score 2.40 2.85 (−3.68, 8.48) 0.41

Estimated VO2 22.92 18.59 (−16.71, 62.54) 0.24

Interaction −6.85 −1.97 (−14.27, 0.56) 0.067

WASO, wake after sleep onset; TST, total sleep time; PSQI, Pittsburgh Sleep Quality Index. In all moderation models, cardiorespiratory fitness (estimated VO2) served as
the moderator, sleep acted as the independent variable, and memory performance acted the dependent variable. Covariates included sex, age, BMI, depression, and
years of education. Bold values were to indicate that these were statistically significant (P < 0.05).

neurogenesis, which declines with age (Kuhn et al., 1996;
Apple et al., 2017) and increases with exercise (Van Praag et al.,
1999; Creer et al., 2010). In the context of the present study, these
prior results suggest that high fitness in OA may protect against
hippocampal-related memory impairment from poor sleep, as
was observed here. Though it should be noted that the results
observed here for high-interference memory are similar those

found by Lambiase et al. (2014), who examined physical activity
levels are EF, suggesting this relationship may exist in other
aspects of cognition.

Why might sleep quality relate to high-interference memory
performance? To answer this question, it is important to examine
the aspect of sleep affected. Here, we found that poorer memory
in OA was associated with greater nighttime awakenings and low
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TABLE 3 | Regression coefficients of the moderating effect of cardiorespiratory fitness and sleep on high-interference memory, in young adults.

1 R2 b SE b 95% CIs p

0.10 0.35

Nighttime awakenings −0.65 1.00 (−2.71, 1.4) 0.53

Estimated VO2 13.22 21.48 (−30.94, 57.4) 0.54

Interaction −0.17 1.190 (−2.44, 2.1) 0.88

0.07 0.53

Sleep efficiency 0.90 1.85 (−2.9, 4.7) 0.63

Estimated VO2 73.39 156.50 (−248.31, 395.09) 0.64

Interaction −0.71 1.73 (−4.25, 2.84) 0.69

0.07 0.51

WASO −0.14 0.48 (−1.13, 0.84) 0.77

Estimated VO2 −1.62 20.32 (−43.41, 40.17) 0.94

Interaction 0.48 0.23 (−0.71, 1.13) 0.64

0.17 0.12

TST 0.08 0.09 (−0.10, 0.26) 0.37

Estimated VO2 −86.34 71.99 (−234.32, 61.64) 0.24

Interaction 0.23 0.17 (−0.12, 0.58) 0.19

0.11 0.52

PSQI – global score 2.29 2.60 (−3.07, 7.7) 0.39

Estimated VO2 20.04 18.38 (−17.81, 57.9) 0.29

Interaction −2.71 3.77 (−10.47, 5.0) 0.48

WASO, wake after sleep onset; TST, total sleep time; PSQI, Pittsburgh Sleep Quality Index. In all moderation models, cardiorespiratory fitness (estimated VO2) served as
the moderator, sleep acted as the independent variable, and memory performance acted the dependent variable. Covariates included sex, age, BMI, depression, and
years of education.

sleep efficiency, but not WASO. This suggests that the frequency
of sleep disturbance (i.e., the number of nighttime awakenings)
may have a greater impact on cognitive functioning than the
duration of time spent awake during these disturbances (i.e.,
the total duration of WASO) (Bonnet, 1986). This may reflect
a decrease in the opportunity for OA to enter SWS, which is
the most restorative aspect of sleep that is important for the
processing memories (Walker, 2009). While diminishing SWS
is often reported with aging (Ohayon et al., 2004; Moraes et al.,
2014; Mander et al., 2017), SWS is also reduced in individuals
with sleep apnea, who often experienced disrupted sleep due to
nighttime cessations in breathing (Redline et al., 2004; Peregrim
et al., 2019; Ren et al., 2020) and are at an increased their risk of
dementia. That is because SWS plays a critical role in preventing
the accumulation of beta-amyloid (Xie et al., 2013; Fultz et al.,
2019; Ju et al., 2019)—a hallmark pathology in Alzheimer’s
disease (Lucey and Bateman, 2014; Lucey, 2020).

An important implication of these findings is that low fit
individuals may be able to improve their memory by improving
their sleep quality. This is good news for people who are unable
to be sufficiently active for good health due to pain, risk of
falls, or other mobility limitations. Although physical activity is
one way to improve sleep quality (Kredlow et al., 2015; Dolezal
et al., 2017), it is not the only way. Other lifestyle interventions
such as cognitive behavioral therapy or mindfulness practice have
been shown to improve sleep in OA (MacLeod et al., 2018).
In combination with these practices, engaging in other habits,
behaviors, and environmental factors that promote sleep can
also improve OA’ sleep hygiene and overall quality of sleep
(MacLeod et al., 2018).

Interestingly, we did not see this same relationship between
good sleep and memory in low fit YA, suggesting that the
neuroprotective effects of sleep and fitness may be more
pronounced later in life. This may not be too surprising given
that YA are likely at the peak of their cognitive abilities, including
stronger memory and hippocampal integrity compared to OA
(Raz et al., 2005, 2010; Salthouse, 2019); their robust brain
functioning may be less affected by lifestyle (Bullock et al., 2018).
This seems to be especially true when examined cross-sectionally
as done here. In contrast, an acute bout of exercise can alter
cognition in YA but often elicits only immediate effects in the
acute phase following exercise, when neurotrophic factors like
brain-derived neurotrophic factor (BDNF) peak (Etnier et al.,
2016; García-Suárez et al., 2021). BDNF promotes hippocampal
neuroplasticity (Erickson et al., 2011; Ruscheweyh et al., 2011;
Leckie et al., 2014), and exercise helps staves off the typically
decline in neuroplasticity and BDNF that is associated with
aging and poor sleep. Interestingly, animal models show that
rodents who engage in regularly physical activity maintain high
levels of BDNF despite being sleep deprived, and this protects
them from the expected poor sleep-related memory impairment
(Zagaar et al., 2013a,b; Zagaar, 2019). Taken together, these
results suggests that fitness-related benefits on the brain may
help counteract the typical deleterious effects of aging and poor
sleep on memory.

Strengths and Limitations
The use of actigraphy provides mixed strengths and limitations
to this study. It is a more accurate and reliable measure of sleep
than subjective measurements of sleep, such as the PSQI, which
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are often uncorrelated with objective measures of sleep (Buysse
et al., 2008) and highly dependent on one’s mental health status
(Buysse et al., 2008; Dietch et al., 2016). Another strength of
actigraphy is that it can measure sleep naturalistically and over an
extended period. A limitation of actigraphy is it can only detect
the differences between wakefulness and sleep but cannot capture
aspects of sleep architecture like SWS.

Another limitation of the study is its small sample size;
unfortunately, the study was forced to end prematurely due
to the COVID-19 pandemic restriction on human research.
Nevertheless, it is worth noting that the significant relationships
observed here ranged from medium (f 2 = 0.14) to large (f 2 = 0.75)
(Cohen, 1988).

CONCLUSION

In conclusion, the present study suggests that sleep and
cardiorespiratory fitness may interact to enhance memory, and
that this effect may be specific to OA. While poor sleep was
associated with worse memory in low fit OA, the detriment of
poor sleep on memory was negated (and even enhanced) in
OA who were high fit. These results suggest cardiorespiratory
fitness may protect OA from sleep-deficits in memory. Moreover,
some low fit OA had good quality sleep which was associated
with better memory performance, this suggesting OA who
do not exercise may be able to promote their memory by
focusing on other factors that promote good sleep. Finally, we
did not see an association between cardiorespiratory fitness
or sleep for cognition in YA, suggesting that the interplay
between cardiorespiratory fitness, sleep and memory may be
more pronounced as we get older.

STATEMENT OF SIGNIFICANCE

Aging is accompanied by a gradual decline in sleep. Poor sleep
impairs cognition and may account for some of the age-related
changes in memory. Exercise improves both sleep and cognition.
Yet, very little work has examined the interplay between the
three. Our results suggest that physical fitness may protect older
adults’ memory from poorer sleep. Lower fit older adults who
had poorer sleep also had worse memory, but memory was
improved with better sleep. In contrast, high fit older adults who
slept poorly still had good memory. The effect was exclusive to
older adults, and not seen in younger adults. These results have

important implications for research and clinicians interested in
lifestyle approaches that promote cognition across the lifespan,
as these results suggest that living a physically active lifestyle
may counteract the deleterious effects of poor sleep on memory.
Additionally, it also suggests that in adults who do not or cannot
be physically active, finding ways to promote good sleep quality
may help protect their memory, such as engaging in cognitive
behavioral therapy or promoting sleep hygiene. In all, these
results show lifestyle factors interact with one another to promote
healthy cognitive aging.
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