
Research Article
Bayesian Fully Convolutional Networks for Brain
Image Registration

Kunpeng Cui,1,2 Panpan Fu,3 Yinghao Li ,3,4 and Yusong Lin 2,3,4

1School of Information Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
2Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, Henan, China
3School of Software, Zhengzhou University, Zhengzhou 450002, Henan, China
4Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, Henan, China

Correspondence should be addressed to Yinghao Li; yinghaoli@zzu.edu.cn and Yusong Lin; yslin@ha.edu.cn

Received 28 February 2021; Revised 17 June 2021; Accepted 13 July 2021; Published 27 July 2021

Academic Editor: Jialin Peng

Copyright © 2021 Kunpeng Cui et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*e purpose of medical image registration is to find geometric transformations that align two medical images so that the
corresponding voxels on two images are spatially consistent. Nonrigid medical image registration is a key step in medical image
processing, such as image comparison, data fusion, target recognition, and pathological change analysis. Existing registration
methods only consider registration accuracy but largely neglect the uncertainty of registration results. In this work, a method
based on the Bayesian fully convolutional neural network is proposed for nonrigid medical image registration. *e proposed
method can generate a geometric uncertainty map to calculate the uncertainty of registration results. *is uncertainty can be
interpreted as a confidence interval, which is essential for judging whether the source data are abnormal. Moreover, the proposed
method introduces group normalization, which is conducive to the network convergence of the Bayesian neural network. Some
representative learning-based image registration methods are compared with the proposed method on different image datasets.
Experimental results show that the registration accuracy of the proposed method is better than that of the methods, and its
antifolding performance is comparable to that of fast image registration and VoxelMorph. Furthermore, the proposedmethod can
evaluate the uncertainty of registration results.

1. Introduction

Image registration is an image-processing process that aligns
two or more images of the same scene captured at different
times and different perspectives or by using different sensors
[1, 2]. Nonrigid medical image registration is a key step in
medical image processing. In clinical diagnosis, it can judge
a patient’s progress by aligning the brainmagnetic resonance
images of the patient with Alzheimer’s disease at different
periods [3, 4]. In tumor surgery, rapid medical image reg-
istration can aid doctors in surgical navigation [5–7]. In
demography research, image registration is helpful for
studying differences in the brain tissue structures of people
from different countries.

With the advances in medical image registration tech-
nology, various registration methods have been developed,

such as elastic body models [8–10], viscous fluid flowmodels
[11–13], diffusion models [14], curvature registration [15],
statistical parameter mapping [16], free-form deformation
with b-spline [17], discrete method [18, 19], and demons
[20] for registration model construction. Many optimization
algorithms have also been devised, such as gradient descent
methods [21], conjugate gradient methods [22, 23], Powell’s
conjugate direction method [24, 25], quasi-Newtonmethods
[26, 27], Gauss–Newton method [28, 29], and stochastic
gradient descent methods [30, 31]. Similarity measurement
methods, such as the sum of squared differences [32], the
sum of absolute differences, cross-correlation [33], and
mutual information [34], have been proposed.

However, traditional registration methods face real-time
challenges. Large amounts of input data must be processed
when performing nonrigid registrationmodeling on 3D data
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with high resolution, a step that requires a long time. *e
optimization part usually uses an iterative algorithm,
thereby further increasing the total time needed to obtain the
final result [35].

With the development of deep learning, several re-
searchers have proposed deep neural networks to learn
features of unregistered images. Registration methods based
on deep learning can be supervised [36, 37] or unsupervised
[38–40]. Most supervised registration methods rely on an-
atomical labels. However, marking anatomical labels is
difficult, a step that not only consumes a lot of time of
experts but also sometimes hardly guarantees accuracy. In
practice, supervised registration methods are restricted. In
their place, some scholars have proposed unsupervised
medical image registration methods.

Several unsupervised medical image registration
methods have been proposed. VoxelMorph, a recently
proposed unsupervised learning-based method for de-
formable medical image registration, has a better regis-
tration accuracy and a faster speed than other registration
methods [41]. Some researchers combined the advantages
of classical methods and learning-based methods to
produce a probabilistic generative model and derive a
diffeomorphic inference algorithm [42]. A registration
method called fast image registration (FAIM) for 3D
medical image registration has been proposed. Compared
with the registration network based on U-net, FAIM has
fewer trainable parameters to obtain a higher registration
accuracy. In addition, FAIM has less irreversible regions
because of the penalty loss for negative Jacobian deter-
minants [43]. Some scholars recently proposed the Pro-
bab-Mul registration method, which is a feature-level
probability model that can perform regularization on the
hidden layers of two deep convolutional neural networks
[44].

*e focus of the present study is mainly on the accuracy
of registration methods and barely on the uncertainty of
their registration results. *e uncertainty of registration
results is very important in clinical applications as it can be
used to judge whether the registration result is meaningful.
For example, if a model is modeling normal human brain
images, it will never see abnormal brain images that have
brain tumors, malformations, and edema. When the un-
certainty of a registration result is higher than a certain
threshold, the source image can be judged as an abnormal
brain image. During testing, the Bayesian neural network
can obtain the uncertainty of results. Bayesian neural net-
works are used in autonomous driving, classification tasks,
and segmentation tasks. Some researchers recently applied
Bayesian neural networks to image registration. Deshpande
et al. employed a Bayesian deep learning approach for de-
formable medical image registration. *ey reported that this
approach has a better performance than existing state-of-
the-art approaches [45]. Khawaled et al. developed a fully
Bayesian framework for unsupervised deep learning-based
deformable image registration. *eir approach provided
better estimates of the deformation field, thereby improving
registration accuracy [46]. However, these aforementioned
methods do not sufficiently consider and discuss the

uncertainty of registration results. Furthermore, they are
suitable for 2D images only.

In this paper, a method based on Bayesian fully con-
volutional networks is proposed for image registration. *e
proposed method generates a geometric uncertainty map to
measure the uncertainty of registration results. *us, when
the source image obtained is abnormal data, the model will
provide a hint that the source image is problematic instead of
immediately accepting the registration result of the model.
Group normalization (GN) is also added in networks. GN
groups channel similar features into one group. Hence, GN
can make the model easier to optimize and converge to
improve registration accuracy. *e performance of the
registration model in evaluating uncertainty is determined.

*is paper is organized as follows. Section 2 introduces
the principle of the proposedmethod. Section 3 describes the
experimental setup. Section 4 discusses the experimental
results. Finally, Section 5 summarizes the results of the study
and considers directions for future work.

2. Methods

Figure 1 presents an overview of the proposed method. We
used CNN to model the function gc(S, T) � u, where c is the
parameter of the convolutional layers, S is the source image,
T is the target image, and u is the displacement field between
the source image and the target image. S and T are defined
over a 3D spatial domainΩ ⊂ R3. For each voxel p ∈Ω, u(p)

is the displacement, where the map ϕ � Id + u is formed
using an identity transform and u.*e network takes S and T
as the input and uses a set of parameters c to calculate ϕ. We
used a spatial transformation function to warp S to S ∘ϕ and
evaluate the similarity between S ∘ϕ and T. During testing,
given the images T and S of the test set, we obtained the
registration field by evaluating gc(S, T).

2.1. Architecture. In this section, the architecture of the
convolutional neural network used in the proposed method
is described in detail (Figure 2). During training, the moving
image and the target image are stacked together as the input
fed into the Bayesian fully convolutional network module
(BFCNM) [43]. *e first layer is inspired by Google’s in-
ception module. *e purpose of this layer is to compare and
capture information on different spatial scales of later
registration. Parametric rectified linear unit [47] activation is
utilized at the end of each convolution block, and linear
activation is employed in the last layer to generate the
displacement field. Instead of inserting max-pooling layers, a
kernel stride of 2 is used to reduce image size. *ree “add”
skip connections are present in downsampling and
upsampling [43]. *e “add” skip connection is conducive to
the fusion of upsampling information and its corresponding
downsampling information. During the upsampling phase,
two Bayesian blocks are used. *e Bayesian blocks are
composed of a transposed convolutional layer, a convolu-
tional layer, PReLU, a group normalization layer, and a
Dropout layer. *e detail of the Bayesian block is shown in
Figure 2(b). In this paper, Monte Carlo Dropout (MC-
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Figure 2: Convolution network architecture implementing BFCNM (gc(S, T)). (a) Highest-level view, showing sequential Conv3D and
Bayesian block. (b) Details of Bayesian block.
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Dropout) is introduced; it is interpreted as a Bayesian ap-
proximation of Gaussian processes.

2.2. Spatial Transformation Function. *e spatial transfor-
mation function uses the ϕ generated by BFCNM to
resample S and obtain the warped image S ∘ϕ. *e proposed
method learns the optimal parameter values by minimizing
the difference between S ∘ϕ and T. A differentiable operation
is constructed on the basis of the spatial transformer net-
work [41, 48] via the standard gradient-based method to
calculate S ∘ϕ. For each voxel p, a voxel position
p′ � p+ u(p) is calculated in the source image. *e image
values are only defined in integer positions. *us, linear
interpolation is performed at eight adjacent voxels:

S ∘ϕ(p) � 􏽘

q∈Z p′( )

S(q) 􏽙

d∈ x,y,z{ }

1 − pd
′ − qd

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑.

(1)

where Z(p′) is the voxel neighbors of p′ and d is iterated in
the dimension of Ω. Errors can be backpropagated during
the optimization process because gradients or subgradients
can be calculated.

2.3. Loss Function. *e total training loss is the sum of an
image dissimilarity term Limage and the regularization terms,
as shown in Table 1. *e loss function [43] is defined as
follows:

Ltotal � Limage(S, T) + αR1(u) + βR2(u). (2)

*e main loss Limage with cross-correlation (CC) in this
paper is for the similarity between the warped source image
and the target image. *e definition of CC is as follows:

CC(t, s ∘ϕ) �
􏽐x∈Ω(t(x) − t(x))(s ∘ϕ(x) − s ∘ϕ(x))􏼐 􏼑

2

􏽐x∈Ω(t(x) − t(x))
2

􏼐 􏼑 􏽐x∈Ω(s ∘ϕ(x) − s ∘ϕ(x))
2

􏼐 􏼑
,

(3)

where t(x) is the grey value of the target image, t(x) is the
average grey value of the target image, s ∘ϕ(x) is the grey
value of the warped image, and s ∘ϕ(x) is the average grey
value of the warped image.

*e first regularization term R1 regularizes the overall
smoothness of the predicted displacements. *e parameter
of the regular term is α, and its value is always 1.*e purpose
of the second regularization is to penalize transformations
that have many negative Jacobian determinants. *e pa-
rameter of the regular term is β. *e transformations of all
nonnegative Jacobian determinants will not be penalized. If
the Jacobian determinant is negative, then the transfor-
mation result will be folded, which is physically unrealistic.

2.4. Group Normalization. Group normalization (GN) is a
feature-normalization technique that is inserted into the
architecture of deep neural networks as a trainable process.
*e purpose of GN is to reduce internal covariant shifts. With
training iterations, the distribution of features often contin-
uously changes. Under this condition, the parameters in the

convolutional layer must be continuously updated to adapt to
the changes in distribution. GN normalizes the feature to a
fixed distribution (mean value is zero, and the standard
deviation is 1) and then adjusts the feature to an ideal dis-
tribution, which is learned in the training process [48].

Here, x is the feature computed by a layer, and i is an
index. In the case of 3D images, i � (iN, iC, iD, iH, iW) is a 5D
vector indexing the features in (N, C, D, H,W) order, where
N is the batch axis; C is the channel axis; andD,H, andW are
the spatial depth, height, and width axes, respectively.

Formally, the group normalization layer must compute
for mean µ and standard deviation σ in a set Si. Si is a group
and defined as follows:

Si � k|kN � iN, ⌊
kC

C/G
⌋ � ⌊

iC

C/G
⌋􏼨 􏼩, (4)

where G is the number of groups, which is a predefined
hyperparameter; C/G is the number of channels in each
group; ⌊ · ⌋ represents floor operation; 􏼄kC/(C/G)􏼅 � 􏼄iC/
(C/G)􏼅 means that the indexes i and k are in the same group
of channels, assuming that each group of channels is stored
in sequential order along theC axis; and Si contains all voxels
along the (D, H, W) axes and along with a group of (C/G)

channels.
*e mean μi and standard deviation σi of Si are com-

puted as follows:

μi �
1
m

􏽘
k∈Si

xk,

σi �

����������������

1
m

􏽘
k∈Si

xk − μi( 􏼁
2

+ ε

􏽶
􏽴

,

(5)

where ε is a small constant, and m is the size of set Si. GN
then performs the following computation:

􏽢xi �
1
σi

xi − μi( 􏼁, (6)

GN learns a per-channel linear transform to compensate
for the possible loss of representational ability:

yi � c􏽢xi + β, (7)

where c and β are trainable scale and shift, respectively.
Given the Si in (4), the GN layer is defined by equations
(5)–(7). Specifically, the voxels in the same group are
normalized by the same μi and σi. GN also learns the c and β
of each channel.

2.5. Bayesian Neural Network. In this section, the registra-
tion network based on Bayesian inference is introduced. *e
credibility of the results is important in solving medical

Table 1: Loss and regularization functions used.

Limage(S, T): 1 − CC(S ∘ϕ− 1, T)

Regularization :R1(u) � ‖Du‖2
Regularization :R2(u) � 0.5(|det(Dϕ− 1)| − det(Dϕ− 1))
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problems. Several researchers proposed a Bayesian neural
network by studying the uncertainty of deep learning
[49, 50]. *e Bayesian neural network is a statistical model
derived from the perspective of probability. *e parameters
in the model are initialized by an a priori distribution, and
the parameters are further optimized by Bayesian inference.
In the Bayesian neural network, given the data set D and
weightW, the datasetD contains data X and label Y.*e goal
of Bayesian neural network training is to optimize the pa-
rameters, that is, to seek the posterior distribution of weight
W. According to Bayesian criterion, the posterior distri-
bution of weight W is written as

p(W|D) �
p(D|W)p(W)

p(D)

�
p(y|x, W)p(W)

p(y|x)
,

(8)

where x and y are the data in the training set and the
corresponding label, respectively, and p(W) is the initial
value of the parameter (i.e., the prior distribution). *e
posterior distribution of the labels predicted by the Bayesian
neural network can then be calculated as follows [51]:

p y
∗
|x
∗
, D( 􏼁 � Ep(W|D) p y

∗
|x
∗
, W( 􏼁􏼂 􏼃

� 􏽚 p y
∗
|x
∗
, W( 􏼁p(W|D)dW.

(9)

In equation (9), the weight parameter W in the network
is used to predict the unknown distribution of label y∗. In
the Bayesian neural network model, the solution of the
posterior distribution p(W|D) of the parameters is the key
to the entire model. However, this solution is computa-
tionally intractable for neural networks of any size. *ere-
fore, many researchers use approximate methods to obtain
the solution [52, 53].

A common approach is to use variational inference to
approximate the posterior distribution of the weights. *is
method introduces the variational distribution qθ(W) of
weight w, which is parameterized on θ. *e approximate
posterior distribution qθ(W) is obtained by minimizing the
Kullback-Leibler (KL) divergence between qθ(W) and the
true posterior distribution p(W|D).

KL qθ(W)
����p(W|D)􏼐 􏼑. (10)

Minimizing KL divergence is equivalent to minimizing
the Negative Evidence Lower Bound (NELBO):

NELBO � Eqθ
[−log p(Y|X, W)]

+ KL qθ(W)
����p(W)􏼐 􏼑

� − 􏽚 qθ(W)log p(Y|X, W)dW

+ KL qθ(W)
����p(W)􏼐 􏼑,

(11)

with respect to the variational parameter θ. *e first term
(commonly referred to as the expected log-likelihood)
encourages qθ(W) to place its mass on the configurations

of the latent variable that explains the observed data.
However, the second term (referred to as prior KL) en-
courages qθ(W) to be similar to the prior distribution
p(W), preventing the model from overfitting. *e goal is
to develop an explicit and accurate approximation for the
expectation.

Our approach uses Bernoulli approximating variational
inference and Monte Carlo sampling [54]. In practice,
Dropout is used for Bayesian neural network approximation.

When Dropout [55] is applied to the output of a layer,
the output can be written as

a
DO
i � σ zi ⊙ Wiv( 􏼁( 􏼁. (12)

where, for a single Ki−1 dimensional input v, the ith layer of a
neural network with Ki units would output a Ki dimensional
activation vector; wi is the Ki × Ki−1 weight matrix; σ(·) is
the nonlinear activation function; ⊙ signifies the Hadamard
product; zi is a Ki dimensional binary vector with its ele-
ments drawn independently from z

(k)
i ∼ Bernoulli(pi)

k � 1,. . ., Ki; and pi is the probability of keeping the output
activation.

*e solution of the posterior distribution p(W|D) of the
parameters is further improved after introducing the Ber-
noulli distribution into the weight parameters of our model.
*e Monte Carlo sampling method is used to estimate the
first item in (11):

Eqθ
log p(Y|X, W) � 􏽘

N

n�1
􏽚 qθ(W)log p yn|xn, W( 􏼁

�
1
N

􏽘

N

n�1
log p yn|xn, 􏽢Wn􏼐 􏼑,

(13)

where W
∧

n is not the maximum posterior estimation but the
random variable realizations from the Bernoulli distribu-
tion; and W

∧
n ∼ qθ(W), which is the same as applying

Dropout to the weights of the network. For the second item
in equation (11) (i.e., KL term), the approximate solution is
given in the literature [56]. *e KL term has been shown to
be equivalent to 􏽐

L
i�1 ‖Wi‖

2
2. *us, equation (11) can be

rewritten as

NELBO � −
1
N

􏽘

N

n�1
log p yn|xn, 􏽢Wn􏼐 􏼑 + 􏽘

L

i�1
Wi

����
����
2
2. (14)

Equation (14) is the unbiased estimation of equation
(11). Interestingly, it is the same as the loss function used in
standard neural networks with L2 weight regularization, and
Dropout is applied to all weights of the network. *erefore,
training such a neural network with stochastic gradient
descent has the same effect as minimizing the KL term in
(10).*is scheme is similar to a Bayesian neural network and
can generate a set of parameters that can best explain the
observed data while preventing overfitting.

Predictions in this model follow (9) replacing the pos-
terior p(W|D) with the approximate posterior qθ(W). *e
integral can be approximated with Monte Carlo integration
[51, 54]:
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p y
∗
|x
∗
,D( 􏼁 ≈ 􏽚 p y

∗
|x
∗
, W( 􏼁qθ(W)dW

≈
1
T

􏽘

T

t�1
log p yn|xn, 􏽢Wt􏼐 􏼑

≈ pMC y
∗
|x
∗

( 􏼁,

(15)

where W
∧

t ∼ qθ(W), which means that, at test time, the
Dropout layers are kept active to keep the Bernoulli dis-
tribution over the network weights. *is integration is re-
ferred to as the Monte Carlo Dropout.

*e Monte Carlo Dropout reflects the need to conduct
multiple forward propagation processes on the same input.
In this manner, the output of “different network structures”
can be obtained under the action of Dropout during testing.
*e prediction results and the uncertainty of the model can
be obtained by calculating the average and statistical vari-
ance of these outputs. *e advantage of Bayesian deep
learning is that Monte Carlo Dropout can give a prediction
value and the confidence of the predicted value.

2.6. Measuring Model Uncertainty. Uncertainties in a net-
work are a measure of how certain the model is with its
prediction. In general, Bayesian modeling has two types of
uncertainty. Model uncertainty, also known as Epistemic
uncertainty, measures what the model does not know owing
to the lack of training data. *is uncertainty can be reduced
with more data. During testing, model uncertainty can
measure whether the testing data exists in the distribution of
the training data. Aleatoric uncertainty measures the noise
inherent in the observation data and cannot be reduced by
collecting more data [51].

By computing the result of stochastic forward passes of
the Bayesian neural network, the model’s confidence of its
output can be estimated. In this paper, the mean μ and the
standard deviation σ of all displacements produced by
Monte Carlo sampling are calculated. *e mean μ is used in
the registration image, whereas the standard deviation σ
provides an estimate of the uncertainty of registration re-
sults. *e mean μ of the displacement fields is calculated as
follows:

μ �
1
M

􏽘

M

i�1
yi, (16)

where M represents the number of Monte Carlo sampling
(M� 48 in this paper). yi represents the displacement field
sampled by ith. After calculating the mean value of the
displacement fields, the standard variance of the displace-
ment fields can be calculated as follows:

σ �

����������������

1
M − 1

􏽘

M

i�1
yi − μ( 􏼁

2

􏽶
􏽴

, (17)

where σ can be expressed as the uncertainty of registration
results.

3. Experiment

3.1. Experimental Setup. *e dataset we adopted herein was
created by Arno et al. who based it on a collection of 101 T1-
weighted MRIs from healthy subjects [57]. In this paper, we
used brain images from the four subsets of Mindboggle101,
namely, NKI-RS-22, NKI-TRT-20, MMRR-21, and OASIS-
TRT-20, for a total of 83 images. *ese images are already
warped to MNI152 space. Each image had a dimension of
182× 218×182, each of which we truncated to 144×180×144.
In the preprocessing stage, we utilized the FMRIB Software
Library (FSL) to perform affine registration on NKI-RS-22,
NKI-TRT-20, MMRR-21, and OASIS-TRT-20. We initially
normalized the voxel intensity of each brain image and then
normalized voxel intensity to 0–255. Finally, we performed a
registration test on the five main anatomical regions of the
cerebral cortex.

3.2. Evaluation Metrics

3.2.1. Dice Scores. If the registration field ϕ represents an
accurate correspondence, then the corresponding anatom-
ical regions in T and S ∘ ϕ should overlap well. *erefore, we
evaluated registration accuracy by using the Dice score. *e
Dice score is defined as follows [43]:

DICE �
2∗ |X∩Y|

|X| + |Y|
. (18)

3.2.2. Regularized Penalty Folding. We also evaluated the
regularity of deformation fields. Specifically, the Jacobian
matrix captures the local properties of ϕ around voxel p. We
counted all nonbackground voxels where the Jacobian de-
terminant det(∇ϕ)< 0 is negative [43]:

N ≔ 􏽘 δ(det(Dϕ)< 0), (19)

where δ(·) indicates that if it is true, then the return value is
1.

3.2.3. Uncertainty Evaluation Metrics. We adopted the
method proposed in the literature to evaluate uncertainty
performance [51]. We used metrics that incorporate the
ground truth label, model prediction, and uncertainty value
to evaluate the performance of such models in estimating
uncertainty. Figure 3 shows the required processing steps to
prepare these quantities for our metrics in a registration
example. We computed the map of correct and incorrect
values by matching the ground truth labels and the model
predictions. We converted the uncertainty map into a map
of certain and uncertain predictions by setting the uncer-
tainty threshold T, which varies between the minimum and
the maximum uncertainty values in the entire test set. *e
following indicators can reflect the characteristics of a good
uncertainty estimator.

Negative predictive value (NPV): in the output of certain
results by the model, NPV is the percentage of voxels that is
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correctly predicted and can be written as a conditional
probability:

NPV �
P(correct, certain)

P(certain)
�

TN
TN + FN

. (20)

True positive rate (TPR): if a model is making an in-
correct prediction, then the proportion of uncertain voxels is
called TPR. TPR can be written as a conditional probability:

TPR �
P(uncertain, incorrect)

P(incorrect)
�

TP
TP + FN

. (21)

Uncertainty accuracy (UA): UA is the overall accuracy of
uncertainty estimation and can be measured as the ratio of
the desired cases explained above (TP and TN) over all
possible cases:

UA �
P(correct, certain) + P(uncertain, incorrect)

P(correct) + P(incorrect)

�
TP + TN

TP + TN + FP + FN
.

(22)

Clearly, in all the metrics proposed above, higher values
indicate that the model performs better. *e values of these
metrics depend on the uncertainty threshold.

3.3. Baseline Methods. In the comparative study, we used
FSL, a comprehensive library of analytical tools for fMRI,
MRI, and diffusion tensor imaging brain imaging data, as the
baseline to perform an affine registration experiment with 12
degrees of freedom on the test set. We used the second
baseline symmetric normalization (SyN) with mutual in-
formation as a similarity measure in the publicly available
Advanced Normalization Tools (ANTs) software package
[58]. We also tested the recently developed CNN-based
methods, namely, VoxelMorph [41], FAIM [43], and Pro-
bab-Mul [44], and compared their performance with that of

the proposed method. *e hyperparameters of the CNN-
based methods were consistent. Finally, we adopted various
methods for ablation study. *e method that only adds GN
was denoted as Our-GN, and the method that only adds
Dropout was labeled as Our-DO. *ese two methods were
consistent with our method in terms of hyperparameter
settings.

3.4. Implementation. We divided the data set into training
and test image sets. *e training set consisted of all ordered
brain image pairs from the union of the NKI-RS-22, NKI-
TRT-20, and MMRR-21 subsets, which comprised 3906
pairs in total. *e test set consisted of all ordered pairs from
the OASIS-TRT-20 subset with 380 pairs in total. We trained
FAIM, VoxelMorph, Probab-Mul, and our method on all
pairs of images from the training set and then examined
their predicted deformations by using the pairs of images
from the testing set.

We implemented our method using Keras [59] with a
Tensorflow backend [60]. We used the Adam optimizer. We
trained three networks with the same hyperparameters:
batch size� 1, learning rate� 10− 4, epochs� 10, and α� 1.

4. Results and Discussion

In this experiment, we separately trained the proposed
networks with different β values. We optimized the pa-
rameters by the validation set and reported results in our test
set. *e predicted deformation field could not guarantee
diffeomorphism; therefore, the transformation of irrevers-
ible regions caused an image to “fold” on itself. In these
regions, the determinant of the Jacobian matrix of the de-
formation field was negative (Figure 4). However, spatial
folding is physically impossible; hence, this phenomenon
causes registration errors in clinical applications. *e fre-
quency of such errors limits the application of neural net-
works in image registration.
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Figure 3: Overview of the metrics for the evaluation of the uncertainty quality in a registration example.
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4.1. Dice Scores. *e mean Dice scores of the different
methods across all predicted labels with their corresponding
target labels are shown in Table 2. We selected five scales of
regularization strength β from 0 to 10−2. Results showed that
FSL was not suitable for fine registration because of its few
registration parameters in the affine registration with 12
degrees of freedom. ANT (SyN) is a nonrigid registration
method, and its registration accuracy was found to be higher
than that of affine registration. *e Dice scores of FAIM
slightly decreased as β increased, and its Dice scores were
higher than those of VoxelMorph. *e registration accuracy
of Probab-Mul was slightly better than that of FAIM. *e
proposed method achieved the highest registration accuracy
under all β values.

*e results of the ablation study revealed that the Dice
score of Our-GN was higher than FAIM by 2.8% on average
(Table 2). Experimental results showed that GN could im-
prove the accuracy of registration. Moreover, the registra-
tion accuracy of Our-DO was slightly lower than that of
FAIM (Table 2), illustrating that adding a Dropout layer had
little impact on registration accuracy.

When β takes 0, 10− 5, 10− 410− 3, and 10− 2, the Dice
scores of our method were higher than those of FAIM by
2.63%, 2.80%, 2.84%, 2.50%, and 3.37%, respectively, higher
than those of Probab-Mul by 2.31%, 2.49%, 2.55%, 2.05%,
and 2.88%, respectively, and higher than those of Vox-
elMorph by 4.78%, 5.17%, 5.27%, 5.21%, and 5.90%, re-
spectively (Table 2). *is result implied that inserting GN
layers into the network architecture could indeed enable the
network to learn better parameters and could make the
network easier to optimize and converge, thereby improving
registration accuracy. During training, we set epochs� 10,
and each epoch took about 100min to perform 2900
iterations.

Figure 5 presents the boxplot of the Dice scores of the five
main anatomical regions of the cerebral cortex when β� 10−3.
*e Dice scores of ANTs in each label were quite different,
indicating that ANTs were unstable. *e flatness of the
boxplots indicated that the stability of the proposed method
was comparable to that of other deep learning methods. *e
proposed method achieved the highest registration accuracy
in the five regions of the cerebral cortex.

Figure 6 shows the mean Dice scores corresponding to
the different β values of all methods. *e accuracy of the
proposed method was relatively consistent with different β
values and was higher than that of the other methods.

4.2. Data-Regularized Penalty Folding. Figure 7 visualizes
the effects of the second regularization term R2 (u), which
directly penalized “foldings” during training. β� 0 means
the regularization was not used, and multiple locations were
visible in the transformation whose Jacobian determinants
were negative. *e number of “foldings” voxels greatly re-
duced when β� 10−5. Only several “folding” voxels were
observed when β� 10−4. *e number of “folding” voxels was
almost eliminated when β� 10−3.

We listed the mean values of the number of voxels of
different methods whose Jacobian determinants were neg-
ative in Table 3. *e proposed method had a lower number
of “foldings” in the predicted deformations as β increased.

4.3. Uncertainty Measure. In this section, the performance
of the registration model in estimating uncertainty was
evaluated. Figure 8 shows the results of uncertainty evalu-
ation by the proposed method. In the experiment, the
Dropout rate of the Dropout layer was set to 0.5. During the
test, the Dropout layer was always on, and 48 Monte Carlo
samplings were performed. *e threshold T of the uncer-
tainty map had an impact on the uncertainty measure. We
set the threshold between 0 and 1 with an interval of 0.1. As
the threshold increased, the proportion of the uncertain part

(a) (b) (c) (d)

Figure 4:*e first and last images are the source and target images, respectively, and the third image is the deformed image produced by the
method. *e second image shows the values of the Jacobian determinant of the predicted deformation with “folding” locations (negative
determinant) marked in red. *e deformed grids illustrate parts of the deformation. (a) Source, (b) deformation, (c) deformed, and
(d) target.

Table 2: Mean Dice scores with different β values.

Mean Dice β� 0 β� 10− 5 β� 10− 4 β� 10− 3 β � 10− 2

FSL (Affine) 0.4357 — — — —
ANTs(SyN) 0.5139 — — — —
VoxelMorph 0.5255 0.5203 0.5165 0.5091 0.4908
FAIM 0.5470 0.5440 0.5408 0.5362 0.5161
Probab-Mul 0.5502 0.5471 0.5437 0.5407 0.5210
Our-DO 0.5459 0.5421 0.5380 0.5323 0.5149
Our-GN 0.5729 0.5709 0.5679 0.5591 0.5410
Our method 0.5733 0.5720 0.5692 0.5612 0.5498
Bold values mean the optimal dice score of all methods at the same β value.
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of the uncertainty map decreased; hence, the TPR curve
gradually decreased. *e maximum value of 0.756 in the
NPVmeasurement was obtained at the threshold of 0.1. *is
value slightly decreased as the threshold further increased
but still greater than 0.72. If the model was certain about its
prediction, then the accuracy of the prediction was higher.
Uncertainty accuracy was also the largest (0.77) when the
threshold was 0.1 and slightly declined as the threshold
further increased. It remained greater than 0.712. Uncer-
tainty accuracy is the overall accuracy of uncertainty mea-
surements. It shows the ratio of the cases we desired in all
possible cases. *e uncertainty accuracy of our model was
relatively high (Figure 8).

5. Conclusion

We developed an unsupervised 3D medical image regis-
tration method that uses Bayesian fully convolutional net-
works for registration. *e proposed method introduces
probability distributions for network weights and obtains
the uncertainty of registration results. We introduced GN
into the neural network architecture, which is conducive to

the optimization and convergence of the neural network.
*e experimental results showed that the proposed method
can obtain higher registration Dice scores than other state-
of-the-art models and achieve an antifolding performance
comparable to that of FAIM and VoxelMorph.*e proposed
method can also estimate the uncertainty of registration
results. Although penalty folding can reduce the irreversible
area of registration result, it cannot guarantee that the ir-
reversible area is zero. *us, the nonrigid registration of
diffeomorphism with high accuracy is one of our research
directions in the future.

Data Availability

All datasets used to support the findings of this study were
supplied by the publicly available Mindboggle101 database.
*e URL to access this data is https://osf.io/yhkde/.

Conflicts of Interest

*e authors declare that they have no conflicts of interest
regarding the publication of this work.

(a) (b) (c) (d)

Figure 7: Locations where det(∇ϕ)< 0 (marked in dark blue) with different β shown on one slice. Predictions were done using the proposed
method. (a) 0, (b) β� 10−5, (c) β� 10−4, and (d) β� 10−3.

Table 3: Mean number of “folding” locations with different β values.

Mean N β� 0 β� 10− 5 β� 10− 4 β� 10− 3 β� 10− 2

VoxelMorph 33733 1400 232 60 13
FAIM 39377 1531 234 26 3
Probab-Mul 39905 1700 241 28 6
Our method 39842 1680 240 25 3
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Figure 8: Quantitative uncertainty estimation performance for registration task using the evaluation metrics. *e abscissa is the threshold
(T). *e ordinate is negative predictive value (NPV), true positive rate (TPR), and uncertainty accuracy (UA), respectively.
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