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Synovial sarcoma (SS) is a highly aggressive soft tissue tumor with high risk of local
recurrence and metastasis. However, the mechanisms underlying SS metastasis are
still largely unclear. The purpose of this study is to screen metastasis-associated
biomarkers in SS by integrated bioinformatics analysis. Two mRNA datasets (GSE40018
and GSE40021) were selected to analyze the differentially expressed genes (DEGs).
Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and
gene set enrichment analysis (GSEA), functional and pathway enrichment analyses
were performed for DEGs. Then, the protein-protein interaction (PPI) network was
constructed via the Search Tool for the Retrieval of Interacting Genes (STRING)
database. The module analysis of the PPI network and hub genes validation were
performed using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis of the hub genes were performed
using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt). The expression levels
and survival analysis of hub genes were further assessed through Gene Expression
Profiling Interactive Analysis (GEPIA) and the Kaplan-Meier plotter database. In total,
213 overlapping DEGs were identified, of which 109 were upregulated and 104 were
downregulated. GO analysis revealed that the DEGs were predominantly involved in
mitosis and cell division. KEGG pathways analysis demonstrated that most DEGs were
significantly enriched in cell cycle pathway. GSEA revealed that the DEGs were mainly
enriched in oocyte meiosis, cell cycle and DNA replication pathways. A key module
was identified and 10 hub genes (CENPF, KIF11, KIF23, TTK, MKI67, TOP2A, CDC45,
MELK, AURKB, and BUB1) were screened out. The expression and survival analysis

Frontiers in Genetics | www.frontiersin.org 1 September 2020 | Volume 11 | Article 530892

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.530892
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.530892
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.530892&domain=pdf&date_stamp=2020-09-11
https://www.frontiersin.org/articles/10.3389/fgene.2020.530892/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-530892 September 10, 2020 Time: 12:35 # 2

Song et al. Identification of Metastasis-Associated Biomarkers

disclosed that the 10 hub genes were upregulated in SS patients and could result in
significantly reduced survival. Our study identified a series of metastasis-associated
biomarkers involved in the progression of SS, and may provide novel therapeutic targets
for SS metastasis.

Keywords: synovial sarcoma (SS), bioinformatics analysis, differentially expressed genes (DEGs), protein-protein
interaction (PPI), hub genes, survival analysis

INTRODUCTION

Synovial sarcoma (SS) ranks the fourth most common form
of soft tissue sarcoma (STS), comprising nearly 10% of total
STSs worldwide. As an aggressive high-grade malignancy, SS
predominantly affects children, adolescents and young adults. SS
harbors the unique chromosomal translocation t(X;18) (p11.2;
q11.2) which results in the formation of a fusion protein, SS18-
SSX (Svejstrup, 2013). It has been demonstrated that the SS18-
SSX fusion protein is the oncogenic driver in the development
of SS (Nagai et al., 2001). And the underlying mechanism is
considered to be that this fusion protein preferentially affects the
cell growth, cell proliferation, cell invasion and metastasis, TP53
pathway, and chromatin remodeling mechanisms (Przybyl et al.,
2012). Nowadays, radical surgery combined with radiotherapy
and/or chemotherapy is the mainstay of therapy for localized SS
(Desar et al., 2018). Despite the improvements in these treatments
in the past two decades, about 49% of SS patients eventually
develop local recurrence and/or distant metastasis (Krieg et al.,
2011). Thus, it is urgent to identify the molecules that regulate SS
metastasis, which would provide novel therapeutic targets for the
treatment of SS.

To date, there are a variety of biomarkers considered to
play important roles in SS metastasis, nevertheless, only few of
them have been externally identified as statistically significant
predictors of survival for SS patients, such as SS18-SSX (Sun
et al., 2009), P300 (Liu et al., 2019), SHCBP1 (Peng et al., 2017),
VEGF (Feng et al., 2018), SUZ12 (Cho et al., 2018), EDD1 (Cho
et al., 2018), EZH2 (Yalcinkaya et al., 2017), FOXM1 (Maekawa
et al., 2016), IGFBP7 (Benassi et al., 2015), MRP1 (Martin-
Broto et al., 2014), p27 (Kawauchi et al., 2001), E-cadherin (Saito
et al., 2000), HGF/c-MET (Oda et al., 2000), etc. Moreover, the
interactions among these biomarkers in SS are not investigated by
integrated analysis. More importantly, the differential expression
of metastasis-associated genes between SS patients with and
without metastasis is not explored.

Based on bioinformatics analysis, the present study aimed
at screening critical metastasis-associated biomarkers of SS,
identifying hub genes in protein-protein interaction (PPI)
networks, and evaluating their prognostic significance for
predicting survival and metastasis in patients with SS. Two
mRNA datasets (GSE40018 and GSE40021) were selected
to screen the differentially expressed genes (DEGs) between
metastasis SS samples and non-metastasis SS samples. To
assess the underlying molecular mechanism that regulates SS
metastasis, the DEGs were further analyzed by Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway, using the Database for Annotation, Visualization and

Integrated Discovery (DAVID) and gene set enrichment analysis
(GSEA). By constructing PPI network and using the Search Tool
for the Retrieval of Interacting Genes (STRING) database and
Cytoscape software, a key module was then screened out from
the whole network, and based on the key module, the hub
genes were identified. Subsequently, GO and KEGG pathway
analysis of the identified hub genes were performed using the
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) online
tool. Finally, the expression and survival analysis of the hub
genes were carried out by Gene Expression Profiling Interactive
Analysis (GEPIA) and Kaplan-Meier plotter (KM plotter) online
database, respectively. This study identified several potentially
critical metastasis-associated biomarkers involved in the progress
of SS, which may provide novel targets for anti-metastatic
therapeutics in SS.

MATERIALS AND METHODS

Microarray Data
The microarray expression data of GSE40018 and GSE40021
were obtained from the Gene Expression Omnibus database
(GEO1). The dataset GSE40018 based on the platform of
GPL13497 platform (Agilent-026652 Whole Human Genome
Microarray 4 × 44K v2) including 17 non-metastasis SS
samples and 17 metastasis SS samples. The dataset GSE40021
based on the platform of GPL6480 platform (Agilent-014850
Whole Human Genome Microarray 4 × 44K G4112F)
containing 30 non-metastasis SS samples and 28 metastasis
SS samples.

DEGs Analysis
To screen the DEGs between non-metastasis SS samples and
metastasis SS samples, we used the GEO2R online web tool2,
which allows users to compare different gene expression data of
two or more groups of samples. Adjusted p-value < 0.05 and
| log (FC)| ≥ 1.0 were set as the thresholds for identifying
DEGs. DEGs with logFC > 0 were considered as upregulated
genes, and those with logFC < 0 were classified as downregulated
genes. To identify the intersectional genes between GSE40018
and GSE40021, the Venny 2.1 online web tool3 was used to
create a Venn diagram. Heatmaps of the DEGs were generated
by HemI software (Version 1.0.3.7) (Deng et al., 2014), a toolkit
for illustrating heatmaps.

1https://www.ncbi.nlm.nih.gov/geo/
2http://www.ncbi.nlm.nih.gov/geo/geo2r
3http://bioinfogp.cnb.csic.es/tools/venny/
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Go Functional and Pathway Enrichment
Analyses
Based on the DAVID database4 (Version 6.8), we analyzed GO
and KEGG pathway enrichment analyses for the DEGs. GO terms
enrichment analysis were categorized into biological process
(BP), cellular component (CC), and molecular function (MF).
Benjamini-Hochberg false discovery rate (FDR) < 0.05 was
specified for statistical significance.

GSEA
GO and KEGG pathway enrichment analyses for the
DEGs were further performed using GSEA 4.0 software,
which was downloaded from GSEA home5 and run in a
Java environment. The GSEA analysis was carried out as
previously described (Subramanian et al., 2005). Samples
from GSE40021 were classified into two groups as metastasis
group and non-metastasis group, and meanwhile the DEGs
were also separated into two groups as upregulated group and
downregulated group. The number and type of permutations
was defined as “1000” and “phenotype,” respectively. After
that the c5.bp.v7.0.symbols.gmt, c5.cc.v7.0.symbols.gmt,
c5.mf.v7.0.symbols.gmt and c2.cp.kegg.v7.0.symbols.gmt
downloaded from the Molecular Signatures Database (MSigDB)
(Liberzon et al., 2015) were chosen as the reference gene sets to
perform GSEA analysis. The cut-off criteria were set as nominal
P < 0.05, FDR q-value < 0.25 and enrichment score (ES) > 0.6.

PPI Network Construction and Module
Analysis
The STRING database6 was used to characterize the PPI network
of DEGs, and the combined score > 0.4 was used as the cut-
off criteria. The PPI network was then mapped using Cytoscape
software (Version 3.7.2). In order to screen the most significant
module of PPI network, the Molecular Complex Detection

4https://david.ncifcrf.gov/
5https://www.gsea-msigdb.org/gsea/index.jsp
6https://string-db.org/

(MCODE) plugin (Version 1.6.1) in Cytoscape was carried out
with MCODE scores > 5, degree cut-off = 2, node score cut-
off = 0.2, k-core = 2 and max. depth = 100 (Bader and Hogue,
2003). After that, GO functional analysis of DEGs in the most
significant module was performed using Cytoscape ClueGO
(Version 2.5.7) and CluePedia (Version 1.5.7) plugins with a
threshold value of FDR < 0.05 and κ-coefficient of 0.4 (Bindea
et al., 2009, 2013).

Hub Genes Selection and Analysis
The hub genes were selected from the above most significant
module network using the Cytoscape CytoHubba plugin
(Version 0.1). Genes with a degree ≥ 10 were defined as hub
genes. Also, if an adjusted p-value < 0.05, the selection of the
hub genes is considered statistically significant. Here, the genes
with the top 10 highest degree values were considered as real hub
genes. Meanwhile, GO and KEGG pathway enrichment analyses
were carried out for the top 10 hub genes using the WebGestalt7

with a threshold of FDR < 0.05.

Survival Analysis
The comparison of the identified hub genes expression between
tumor and normal samples of SS was analyzed through GEPIA8

(Tang et al., 2017), a public database for cancer and normal
gene expression profiling and interactive analyses. A difference
or result with p-value < 0.05 and |Log2FC| > 1 was regarded
as statistically significant. The prognostic values of these hub
genes for SS patients were further validated through KM plotter
database9. Database including 259 patients with relapse-free and
overall survival information was used for validation. Briefly,
patients were categorized into two groups (high expression and
low expression) according to the median of each hub gene
expression. Subsequently, the identified hub genes were imported
into the database, and the Kaplan-Meier survival plots were

7http://www.webgestalt.org/
8http://gepia.cancer-pku.cn/index.html
9http://kmplot.com/

FIGURE 1 | Volcano plots of DEGs detected from the datasets of GSE40018 and GSE40021. (A) GSE40018, (B) GSE40021. The red dots represent upregulated
DEGs; the green dots mean downregulated DEGs; the black dots denote no differentially expressed genes.
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FIGURE 2 | Identification of DEGs associated with SS metastasis. (A) Venn diagram demonstrates the crossed genes shared by GSE40018 and GSE40021
datasets. Left panel represents the upregulated co-differentially expressed genes between GSE40018 and GSE40021 datasets, whereas the right panel represents
the downregulated intersectional genes between the two datasets. (B) Heatmap of the top 213 DEGs associated with SS metastasis in the two datasets. Left,
GSE40018; right, GSE40021.

then generated and the hazard ratio (HR) and its associated
95% confidence intervals (CI) and log rank test P value were
calculated. Log-rank test results with P < 0.05 were considered
as statistically significant.

RESULTS

Identification of DEGs
By using the GEO2R online tool from the GEO, we found
that there were 804 DEGs (317 upregulated and 487
downregulated) in GSE40018, 1200 DEGs (374 upregulated
and 826 downregulated) in GSE40021, which were differentially
expressed between metastasis SS samples and non-metastasis
SS samples as shown by volcano plots in Figures 1A,B. Further

analysis of these DEGs by using Venn diagram, we found that
there were 213 overlapping DEGs including 109 upregulated and
104 downregulated genes between the two datasets (Figure 2A;
Table 1), which were identified according to the cut-off criteria
(adjusted p-value < 0.05 and | logFC| ≥ 1). Meanwhile, the 213
overlapping DEGs in GSE40018 and GSE40021 were displayed
in a heatmap (Figure 2B).

Functional Enrichment Analysis of DEGs
To obtain further investigation of the functions of identified 213
overlapping DEGs, we used the DAVID database to perform
GO and KEGG pathway enrichment analyses of DEGs. It was
found that according to biological process, the identified 213
overlapping DEGs were mainly enriched in mitotic nuclear
division, sister chromatid cohesion and cell division (Figure 3A;
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TABLE 1 | Identification of DEGs associated with SS metastasis.

Regulation Genes

Upregulated
(n = 109)

KNL1, ORC6, DTL, CDCA5, CEP55, KIAA0101, GINS2,
BIRC5, TOP2A, BUB1, CLSPN, AURKB, AURKA, MND1,
KIFC1, AGMO, CDK1, MYBL2, KIF4A, TROAP, FOXM1,
PLK4, MEST, BRIP1, AUNIP, DIAPH3, BUB1B, PTTG2,
PRC1, FANCA, UHRF1, TACC3, POLQ, EXO1, HIST1H1B,
GALNT9, CENPE, CENPU, KIF20A, TTK, HOXB9,
FAM83D, ESPL1, DPYSL4, TICRR, NEK2, ANLN, E2F8,
HIST1H2AL, CDCA8, HOXD10, CDCA2, CKAP2L, E2F2,
PIF1, HOXD9, KIF23, TYMS, NDC80, CENPO, SPC25,
ASPM, CDC45, GTSE1, CCNA2, CCNB2, GSG2, TPX2,
HMMR, CDC25C, RAD54L, NUF2, PTTG1, KIF15,
DLGAP5, NR2F2, BLM, RAD51, SPAG5, MELK, ERCC6L,
RAD51AP1, SAPCD2, CCDC150, CDCA3, RRM2, SGO1,
KIF11, ZNF695, ARHGAP11A, SPC24, SKA1, ESCO2,
MKI67, CDC25A, CENPM, LPCAT1, CENPA, CENPI,
NR2F2-AS1, CENPF, ZFHX4-AS1, FOXN4, ATG9B, E2F7,
DKFZP434L187, PBK, FANCI, SHCBP1

Downregulated
(n = 104)

ROM1, DIO3, ADAMTSL4, ACKR1, PLA2G16, PLA2G4A,
HDC, CYP11A1, SELP, SERPING1, CTSG, ACP5, FBLN2,
S100A16, FGG, ICAM1, MAMDC2, ZMYND12, ADIRF,
NAALAD2, HSPB2, ASPA, SCRG1, ITM2A, MS4A6A,
RNASE4, ADGRG1, TMEM246, NFKBIZ, PPP2R2B,
SERPINB1, PID1, PERP, CCL14, C1S, ECM2, PHYHD1,
HLA-DPA1, IL33, ADRA1B, MYOF, CASP4, MET, CTSZ,
ANKRD29, GSAP, HLA-DRB5, PLA2G4C, SLC18A2,
GBP1, IFIH1, PLSCR1, GPAT3, CD74, TNFRSF11B,
SMPDL3A, MFSD7, IFITM1, PDE4B, MSLN, HLA-DQB1,
FAM107A, TCEAL2, GBP2, IFITM3, CD69, TLR2,
C1orf186, SELE, MEDAG, HS6ST2, KITLG, DPYSL3,
IFITM4P, HLA-DPB1, PARM1, CRB1, CRYAB, NMNAT3,
GMPR, GOLT1A, IFITM2, HLA-DPB2, HLA-DRB1, NT5E,
SP100, WFIKKN2, ADGRG6, EMB, PTN, CFI, THEM4,
APOL6, PCDH11Y, DMRTC1, UBXN10, DLG2, HLA-DOA,
NUDT9P1, PQLC2L, BEX5, FAM19A4, FGF14-AS2,
HLA-DRA

Table 2). For cellular component, it was uncovered that most
DEGs were enriched in condensed chromosome kinetochore,
midbody and spindle (Figure 3B; Table 2). In terms of molecular
function, it was revealed that DEGs were mainly enriched in
MHC class II receptor activity, protein binding and peptide
antigen binding (Figure 3C; Table 2). For KEGG pathway
analysis, significantly enriched pathways of DEGs were enriched
in staphylococcus aureus infection, cell cycle and rheumatoid
arthritis signaling pathways (Figure 3D; Table 3).

GSEA Analysis
Based on GO and KEGG pathway enrichment analyses
of DEGs, GSEA software was also used to identify
the potential molecular mechanisms underlying SS
metastasis. In agreement with the above results of DAVID,
GSEA results indicated that DEGs were significantly
involved in GO_ SISTER_CHROMATID_SEGREGATION,
GO_MITOTIC_SPINDLE_ORGANIZATION and GO_
CHROMOSOME_SEGREGATION (BP) (Supplementary
Figure S1A); and GO_CONDENSED_CHROMOSOME,
GO_KINETOCHORE and GO_CHROMOSOME_CENTRO-
MERIC_REGION (CC) (Supplementary Figure S1B); and
GO_DNA_DIRECTED_DNA_POLYMERASE_ACTIVITY, GO_

SINGLE_STRANDED_DNA_BINDING and GO_N_ACYLTR-
ANSFERASE_ACTIVITY (MF) (Supplementary Figure S1C).
For KEGG pathway, significantly enriched pathways of DEGs
were enriched in oocyte meiosis, cell cycle and DNA replication
signaling pathways (Supplementary Figure S1D).

PPI Network and Module Analysis
In order to explore the interaction between the screened 213
DEGs, we used the STRING database to construct the PPI
network. As shown in Figure 4A, a relevant PPI network was
successfully constructed, which contained 204 nodes and 3210
edges. Then, this PPI network was visualized using Cytoscape
software (Figure 4B). Module analysis was then conducted
using the MCODE plugin of Cytoscape based on the whole
network. As shown in Figure 4C, the identified key module
from the whole network was detected with 77 nodes and
2650 edges. Next, the DEGs in this key module were then
subjected to perform GO and KEGG pathway enrichment
analyses using Cytoscape plugins ClueGO and CluePedia, and
the results revealed that most DEGs were significantly enriched
in mitotic nuclear division 36.54%, negative regulation of sister
chromatid segregation 6.98%, and regulation of mitotic sister
chromatid segregation 6.64% for BP (Figure 5A; Supplementary
Figure S2A); and chromosome, centromeric region 32.35%,
midbody 23.53%, and spindle 14.71% for CC (Figure 5B;
Supplementary Figure S2B); and microtubule motor activity
66.67% and histone kinase activity 33.33% for MF (Figure 5C;
Supplementary Figure S2C).

Hub Genes Selection and Survival
Analysis
The top 10 hub genes were identified using degrees > 10. The
top 10 hub genes were filtered out from the key module using
the CytoHubba plugin, including CENPF, KIF11, KIF23, TTK,
MKI67, TOP2A, CDC45, MELK, AURKB, and BUB1 (Figure 6A;
Table 4). Then, the online tool WebGestalt was employed to
further discover the GO and KEGG pathway enrichment analyses
for the identified 10 hub genes. It was found that the 10 hub genes
were significantly enriched in mitotic cell cycle process, cellular
component organization, nuclear division, cell cycle process,
and organelle fission for BP (Figure 6B; Supplementary
Table S1); and condensed chromosome, chromosome,
spindle, microtubule cytoskeleton, and kinetochore for CC
(Figure 6C; Supplementary Table S2); and ATP binding,
adenyl ribonucleotide binding, adenyl nucleotide binding, drug
binding, and purine ribonucleoside triphosphate binding for
MF (Figure 6D; Supplementary Table S3). In terms of KEGG
pathway, the 10 hub genes were significantly enriched in cell
cycle (Figure 6E; Supplementary Table S4).

Next, comparing the expression levels of hub genes was
performed using GEPIA database. It was found that the 10 hub
genes displayed significantly higher expression in SS patients
compared to the normal control subjects (Figure 7). Thereafter,
the effects of 10 hub genes on overall survival were conducted
using Kaplan Meier plots. As shown in Figure 8, SS patients with
high expression of CENPF, KIF11, KIF23, TTK, MKI67, TOP2A,
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FIGURE 3 | GO and KEGG pathway enrichment analyses of DEGs using the DAVID database. (A) Biological processes, (B) cellular components, (C) molecular
functions, (D) the signaling pathways from the GSE40018 and GSE40021 datasets.

TABLE 2 | The top 3 enriched GO terms of DEGs associated with SS metastasis.

Category Term Count FDR

OTERM_BP_DIRECT GO:0007067∼mitotic
nuclear division

32 3.91E–20

GOTERM_BP_DIRECT GO:0007062∼sister
chromatid cohesion

21 4.52E–16

GOTERM_BP_DIRECT GO:0051301∼cell division 31 1.07E–14

GOTERM_CC_DIRECT GO:0000777∼condensed
chromosome kinetochore

16 4.63E–11

GOTERM_CC_DIRECT GO:0030496∼midbody 16 1.75E–08

GOTERM_CC_DIRECT GO:0005819∼spindle 14 1.14E–06

GOTERM_MF_DIRECT GO:0032395∼MHC class II
receptor activity

6 5.53E–04

GOTERM_MF_DIRECT GO:0005515∼protein
binding

127 0.008032

GOTERM_MF_DIRECT GO:0042605∼peptide
antigen binding

6 0.016106

CDC45, MELK, AURKB, and BUB1 had worse overall survival.
Moreover, SS patients with high expression of CENPF, KIF11,
KIF23, TTK, MKI67, TOP2A, CDC45, MELK, AURKB, and BUB1
predicted worse recurrence-free survival (Figure 9).

TABLE 3 | The top 3 enriched KEGG pathways of DEGs associated with SS
metastasis.

Category Term Count FDR

KEGG_PATHWAY hsa05150:Staphylococcus
aureus infection

12 4.98E–08

KEGG_PATHWAY hsa04110:Cell cycle 14 4.36E–06

KEGG_PATHWAY hsa05323:Rheumatoid arthritis 10 0.001609

DISCUSSION

Here, we identified 213 DEGs that were associated with SS
metastasis from the GSE40018 and GSE40021 datasets, including
109 upregulated and 104 downregulated genes. According to
GO and KEGG pathway enrichment analyses of the 213 DEGs,
DEGs were found to be significantly enriched in mitosis, cell
division and cell cycle pathway. Through a PPI network, we
identified a key module containing 77 nodes and 2650 edges.
More importantly, based on this key module, we screened 10 hub
genes, which were further demonstrated to be closely related to
the progression and prognosis of SS.
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FIGURE 4 | PPI network analysis and identification of hub genes. (A) Protein-protein interactions of DEGs were analyzed using the STRING database. (B) The PPI
network of DEGs was established using Cytoscape software. The red nodes indicated upregulated genes, whereas the green nodes represented downregulated
genes. (C) The most significant module in the PPI network was identified using MCODE plugin. The size of the node represented the node degree. Nodes with
higher the degree represented more bigger size.

FIGURE 5 | GO analyses of DEGs in the most significant module using Cytoscape plugins ClueGO and CluePedia. (A) Percentages of biological processes terms
per group. (B) Percentages of cellular components terms per group. (C) Percentages of molecular functions terms per group.

Hub genes, namely CENPF, KIF11, KIF23, TTK, MKI67,
TOP2A, CDC45, MELK, AURKB and BUB1, were screened based
on the PPI network of DEGs, suggesting the 10 hub genes
may play key roles in SS metastasis. As a cell cycle-associated
nuclear antigen, CENPF is involved in chromosome segregation
during mitosis, and found to be related to tumor growth in
many human malignancies. CENPF has been reported to be
frequently expressed at high levels in hepatocellular carcinoma,
and suppression of CENPF leads to growth inhibition and cell
cycle arrest (Dai et al., 2013). Knockdown of CENPF attenuates
the cell growth and invasion of gastric cancer (Chen et al., 2019).
Increased expression of CENPF in prostate cancer suggests poor
prognosis of patients (Zhuo et al., 2015). Furthermore, CENPF
collaborates with FOXM1 to synergistically induce target gene
expression and leads to activation of crucial signaling pathways
correlated with tumor malignancy (Aytes et al., 2014).

KIF11, belonging to the kinesin-5 family, is involved in the
tetrameric microtubule cross-linkage, cell mitosis, the cell cycle,
and differentiation (Roostalu et al., 2011). Studies have shown
that KIF11 is overexpressed in many cancers, such as gastric
cancer (Imai et al., 2017), breast cancer (Zhou et al., 2019),
oral cancer (Daigo et al., 2018), renal cell (Sun et al., 2013),
and astrocytic cancers (Liu et al., 2016). Similarly, KIF23, as
a key regulator of cytokinesis, is also found to be correlated
with poor prognosis for patients with hepatocellular carcinoma

(Sun et al., 2015), glioma (Sun et al., 2016), gastric cancer (Li
et al., 2019), and non-small-cell lung cancer (Vikberg et al., 2017).

Previous studies have revealed that TTK is highly expressed in
several malignant tumors, and its increased expression indicates
a poor prognosis. TTK contributes to the proliferation and
invasion of tumor cells via regulating the mitotic process (Yang
et al., 2010). MKI67, also known as Ki-67, acts as a biological
surfactant to disperse mitotic chromosomes (Cuylen et al.,
2016), which has been demonstrated in various carcinomas,
including gastric, esophageal, colonic, rectal, and esophageal
squamous cell carcinoma (Volkweis et al., 2012). Currently, a
high MKI67 expression predicts for poor prognosis in patients
with retroperitoneal soft tissue sarcomas (Morizawa et al.,
2016). TOP2A gene, residing on chromosome 17 (17q21-q22),
can regulate DNA replication, chromosome segregation, and
cell cycle progression (Zeng et al., 2019). An elevated TOP2A
expression is observed in many tumor tissues, and significantly
associated with MKI67 expression as well as tumor aggressiveness
and poor outcome (Brase et al., 2010).

Numerous evidences have shown that CDC45 is required
during the process of DNA replication, and CDC45
overexpression is also associated with cancer cell proliferation
(Pollok et al., 2007). MELK, as a member of kinases family
which is directly regulated by the FOXM1 transcription
factor, has been proven to function as an oncogenic gene
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FIGURE 6 | Significantly enriched GO and KEGG pathways for the 10 hub genes using the WebGestalt database. (A) Ten hub genes were identified from the most
significant module. (B) Biological process, (C) cellular component, (D) molecular function, (E) KEGG pathways for the 10 hub genes.

that is closely associated with mitotic progression as well as
the proliferation in multiple human cancers (Wang et al.,
2014, 2016). AURKB is highly expressed in many cancers. By
regulating the cell cycle progression and mitosis, AURKB is
thus involved in tumorigenesis and predicts poor prognosis in
numerous human tumors (Wan et al., 2019). BUB1, a mitotic
checkpoint serine/threonine kinase, regulates chromosome
segregation, and indicates a poor clinical outcome in many

TABLE 4 | Hub genes identified in the key module.

Genes Description Degree adj. P-value Log FC

CENPF Centromere Protein F 81 3.40E–04 1.56338

KIF11 Kinesin Family Member 11 90 0.001198 1.244453

KIF23 Kinesin Family Member 23 88 4.73E–04 1.355373

TTK TTK Protein Kinase 84 0.001272 1.507303

MKI67 Proliferation marker protein
Ki-67

79 4.74E–04 1.835864

TOP2A DNA topoisomerase II alpha 82 0.002458 1.434285

CDC45 Cell division control protein 45 84 4.74E–04 1.55918

MELK Maternal embryonic leucine
zipper kinase

80 0.003088 1.351395

AURKB Aurora Kinase B 83 0.003495 1.450697

BUB1 BUB1 mitotic checkpoint
serine/threonine kinase

85 9.10E–04 1.393907

cancers (Han et al., 2015). Taken together, our data revealed
that almost all the 10 hub genes were correlated with cell
cycle and mitosis.

Although the 10 hub genes have critical roles in the process
of a variety of tumors, they are not reported to participate in SS
progression. Based on the functions of the above identified 10 hub
genes, it is established that the 10 hub genes promote tumor
progression mainly by regulating the cell cycle or chromatin
replication. Recent studies have showed that in the process
of carcinogenesis, the cell cycle is critical and dysregulated
cell cycle may cause uncontrolled cell proliferation, survival
and differentiation which are essential for the early stages of
carcinogenesis (Scott et al., 2015). Consisted with the above
researches, our data from GO and KEGG enrichment as well
as GSEA analyses indicated that most DEGs were involved
in cell cycle, thus supporting the contribution of cell cycle
to SS progression and metastasis. In order to further validate
our results, the expression levels and the survival analysis of
the 10 hub genes in SS were assessed using GEPIA and the
Kaplan-Meier plotter database. As expected, all these hub gens
were significantly higher in SS samples compared to normal
samples, suggesting their crucial roles in carcinogenesis. More
importantly, in agreement with the above reports, the survival
analysis revealed that the 10 hub genes also had high prognostic
values for SS, which would provide novel prognostic biomarkers
for therapeutic targets for SS treatment.
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FIGURE 7 | Validation of the 10 hub genes overexpression in SS tissues using the GEPIA database. *P < 0.05, unpaired Student’s t-test.

FIGURE 8 | Kaplan Meier curves for overall survival analysis of the 10 hub genes in SS patients. Red line represented the high expression group, whereas black line
denoted the low expression group.

Metastasis is a complex multistep process, characterized by
a high rate of local invasion and early distant metastasis (Ren
et al., 2017). Genetic and epigenetic alterations that occur in
tumor cells are likely to contribute to tumor cell invasion and
metastasis (Gibson et al., 2016). Recent evidences have revealed
a key role of cell cycle arrest in cancer invasion and metastasis.
Iwasaki et al. (1995) demonstrated that hepatocellular carcinoma
cells acquire the ability to metastasize in the G1 phase of the

cell cycle. In prostate cancer, by inhibiting the G1-to-S phase
transition of the cell cycle, Runx2 promotes the invasiveness
and bone metastasis (Baniwal et al., 2010). Also, the significant
relationship between invasive cells and the G1/G0 cell cycle
state is observed in breast cancer metastasis (Qian et al., 2013).
However, to date, there were few researches regarding the effect
of cell cycle on tumor cell metastasis in SS. Herein, this study
reported that the identified 10 hub genes were mostly enriched in
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FIGURE 9 | Kaplan Meier curves for recurrence-free survival analysis of the 10 hub genes in SS patients. Red line represented the high expression group, whereas
black line denoted the low expression group.

cell cycle regulation, indicating their roles as prognostic markers
in SS metastasis.

In our study, a major limitation is that the expression and the
survival analyses of the identified 10 hub genes were validated
not in synovial sarcoma specifically, but for all sarcomas (GEPIA
dataset does not have subdivisions into sarcoma types). However,
despite this limitation, considering the data of GEPIA are from
The Cancer Genome Atlas (TCGA), and because the expression
of the 10 hub genes in Sarcoma-TCGA dataset is higher than
normal tissues (data not shown), the results are still significant.
For survival analysis, because only nine SS tissue samples were
found in Sarcoma-TCGA dataset, the sample size is too small
to supply meaningful statistical results. For this reason, the
survival analyses were performed in all sarcoma dataset. When
the amount of available SS samples will become large enough,
the survival analyses of the identified 10 hub genes should be
performed. Therefore, additional confirmation of our findings
should be reserved for future studies.

CONCLUSION

In summary, based on the bioinformatics analysis of DEGs in
SS metastasis samples and non-metastasis samples, this research
successfully identified 10 hub genes (CENPF, KIF11, KIF23, TTK,
MKI67, TOP2A, CDC45, MELK, AURKB, and BUB1). The critical
pathway enriched in the 10 hub genes was cell cycle, which would
uncover mechanistic insights into SS metastasis, thus promoting
the development for the treatment of SS.
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