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Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) has evolved vast antibiotic resistance.
These strains contain numerous virulence factors facilitating the development of severe infections.
Considering the costs, side effects, and time duration needed for the synthesis of novel drugs,
seeking efficient alternative approaches for the eradication of drug-resistant bacterial agents seems
to be an unmet requirement. Nickel nanoparticles (NiNPs) have been applied as prognostic and
therapeutic cheap agents to various aspects of biomedical sciences. Their antibacterial effects are
exerted via the disruption of the cell membrane, the deformation of proteins, and the inhibition
of DNA replication. NiNPs proper traits include high-level chemical stability and binding affinity,
ferromagnetic properties, ecofriendliness, and cost-effectiveness. They have outlined pleomorphic
and cubic structures. The combined application of NiNPs with CuO, ZnO, and CdO has enhanced
their anti-MRSA effects. The NiNPs at an approximate size of around 50 nm have exerted efficient anti-
MRSA effects, particularly at higher concentrations. NiNPs have conferred higher antibacterial effects
against MRSA than other nosocomial bacterial pathogens. The application of green synthesis and
low-cost materials such as albumin and chitosan enhance the efficacy of NPs for therapeutic purposes.

Keywords: methicillin-resistant Staphylococcus aureus; nickel nanoparticles; antibacterial effects

1. Background

Staphylococcus (S.) aureus is a ubiquitous pathogenic bacterium. Methicillin-resistant
S. aureus (MRSA) is among the leading causes of nosocomial pathogens which decipher
the multidrug-resistance (MDR) phenotype [1–3]. MRSA employs various mechanisms to
resist drugs, such as cell wall thickening, efflux of compounds, enzymatic destruction, and
target variation [4–6].

MRSA infections encompass a wide range of manifestations and are a major life-
threatening priority worldwide [7,8]. MRSA is resistant to β-lactam antibiotics. These
strains carry a modified penicillin-binding protein (PBP) known as PBP-2a (encoded by
either mecA or mecC gene) inherently exhibiting resistance to various β-lactams such as
oxacillin, methicillin, and cefoxitin [9]. MRSA is classified based on genotypic diversity and
according to various staphylococcal cassette chromosome mec (SCCmec) types including
SCCmec (I-XIII) as substantial markers of MRSA epidemiology. The SCCmec gene cassette
carries the mecA or mecC genes in addition to other genes associated with aminoglycosides,
macrolides, and fluoroquinolones resistance [10]. MRSA is classified into three main cate-
gories including healthcare (HA-MRSA), community (CA-MRSA), and livestock-associated
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(LA-MRSA) strains each with special virulence and resistance patterns [7,10]. HA-MRSA
is responsible for nosocomial infections globally and usually carries SCCmec types I, II,
or III. CA-MRSA has been recorded in patients without or by negligible contact with
healthcare settings. These strains usually carry SCCmec elements IV, V, and pvl genes.
The latter is associated with the Panton–Valentine leukocidin. The LA-MRSA isolates are
mainly associated with livestock origins and usually carry SCCmec IVa and SCCmec V
elements. Life-threatening infections caused by LA-MRSA have been previously recorded,
highlighting the possibility of zoonotic risk [11,12]. In humans, MRSA can cause severe
pyogenic infections of the skin and soft tissue, endocarditis, septic arthritis, pneumonia,
osteomyelitis, and otitis media [9,13].

2. Pathogenicity of MRSA

Although the colonization of S. aureus on host surfaces is not harmful, overcoming
the host’s innate immunity leads to invasive deep infections. MRSA causes various cuta-
neous and deep infections such as folliculitis, impetigo, cutaneous abscesses, pyomyositis,
necrotizing pneumonia, and fasciitis [14]. HA-MRSA causes implant or surgical site and
catheter-associated infections. Bacteremia-related infections include disseminated infec-
tions such as descending urinary tract infections, endocarditis, and osteomyelitis. Thereby,
the eradication of the bacterium is a concern considering recurrent infections. The bac-
terium virulence regulation is exerted by a set of global regulatory circuits (two-component
systems, TCS, accessory gene regulatory, Agr, and quorum-sensing, QS) which affect gene
expression following environmental signals. Additionally, S. aureus responds to inter-
nal stimuli in the form of QS autoinduced signaling. AgrBDCA regulates RNA effector
RNAIII [15,16].

Biofilm formation is an indispensable mechanism of resistance to antimicrobials and
for the environment of host responses. The polysaccharide intercellular adhesin (PIA)
mediates the bacterial binding to host cells. Some other major surface adhesin proteins
include fibrinogen binding protein (FnBP) A and B, surface binding protein A (Spa), cell
wall-anchored proteins (CWP), clumping factors (Clfs) A and B, and surface binding protein
(SasG) [17–20].

Following the bacterial attachment to the cells and colonization, pathogenesis is
initiated and developed via the production of toxins, exoenzymes such as exfoliative
toxins (ETs), Panton–Valentine leukocidin (PVL), toxic shock syndrome toxin1 (TSST1),
phenol-soluble modulins, leukotoxin and haemolysin, lipases, proteases and nucleases,
and immunomodulators or immune evasion gene clusters (IEC1 and IEC2) [21].

Phenol-soluble modulins, leukotoxin, and haemolysin are known as pore-forming
toxins which lyse the host cells. α-, β-, γ-, and δ-hemolysins of S. aureus cause the lysis of
erythrocytes, epithelial and endothelial cells, monocytes, damage of the epithelium, and
induction of apoptosis. Leukotoxins or PVL target and destroy white blood cells such
as macrophages, monocytes, and neutrophils. These include LukDE, LukAB, LukS-PV,
and LukF-PV. PVL is associated with soft tissue and skin infections in both MSSA and
MRSA [22,23].

Phenol-soluble modulins (PSMs) including PSMα1–PSMα4 play a substantial role
in bacterial pathogenesis via cell lysis, inflammation, immune regulation, and biofilm
formation or detachment [24]. Exfoliative toxins (ETA-ETD) cause staphylococcal scaled
skin syndrome (SSSS) which is associated with dehydration, loss of superficial skin layers,
and secondary infections which are not significantly different from MSSA and MRSA [25].
Staphylococcal enterotoxins (SEs) and TSST-1 act as superantigens which are T-cells mito-
gens. SEs cause food poisoning and gastrointestinal problems such as emesis. TSST1 causes
the release of extraordinary amounts of pro-inflammatory cytokines [26]. In addition to
humans, MRSA has long been recognized globally to colonize numerous wild and domes-
ticated livestock animals and develop infections [27–31]. The widespread distribution of
MRSA among livestock is largely due to the indiscriminate prescription/consumption of
antimicrobials for animal breeding or agricultural activities. For example, it has impacted
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more than 40% of pig farms, 20% of cattle farms, and 20% to 90% of turkey farms in Ger-
many. Numerous studies have shown that there is a high risk of MRSA colonization and
infection in humans who come into contact with livestock [32,33]. MRSA is repeatedly
recorded in dairy farms as a cause of mastitis with failure in elimination due to its resistance
against β-lactam antibiotics employed for related infections [34].

MRSA strains employ various virulence factors to invade the host and develop resis-
tance [6]. The development of resistance to last-resort antimicrobial treatments such as
glycopeptides (vancomycin and teicoplanin) is a crisis in the eradication of vancomycin-
intermediate S. aureus (VISA) or vancomycin-resistant S. aureus (VRSA) [17,35]. For skin
infections (impetigo) of MRSA, mupirocin and fusidic acid or alternative 1% hydrogen per-
oxide (H2O2) are recommended. For abscesses, in conditions of neutropenia, cell-mediated
immunity deficiency, or severe infection, there is a need for co-trimoxazole or clindamycin
treatment. For cellulitis and soft tissue infections, glycopeptides, tigecycline, and linezolid
are useful. Susceptibility testing is strongly recommended prior to the utilization of antimi-
crobial drugs. Antimicrobial therapy necessity should be evaluated when infections are
observed due to costs and risk of resistance evolution. The term “superbug” is defined as a
strain developing vast antibiotic resistance [36].

Combination therapies have demonstrated substantial bactericidal effects against
MRSA. The combination of carbapenems with linezolid, and each of imipenem/fosfomycin/
gentamicin/oxacillin/rifampin and daptomycin have deciphered acceptable anti-MRSA
effects [37–39]. A β-lactams and daptomycin combination facilitates its binding and mit-
igates resistance development [40,41]. Additionally, the combination of gentamicin/β-
lactams/rifampin and vancomycin has outlined significant effects [42,43]. However, the
combination of vancomycin and β-lactams has had nephrotoxicity according to clinical
trials [44–46].

Natural combination therapies using Polysporin and Neosporin peptides have also
exerted anti-MRSA effects [47]. Major chemotherapy approaches to combat MRSA have
included telavancin, teicoplanin, ceftaroline, vancomycin, and oxazolidinones [48,49].
The combination of β-lactam and either arbekacin or vancomycin is recommended against
MRSA. Notably, granulocyte counts are also recommended for antibiotics consumption [50,51].
Ceftaroline fosamil has exhibited substantial anti-MRSA effects [52–54]. Daptomycin and
ceftaroline have exhibited higher bactericidal effects and linezolid has exerted strong effects
on bacteremia.

As the first clinically applied anti-MRSA oxazolidinones, linezolid is a promising
antibiotic with low resistance development to MRSA. However, epidemiological data have
unraveled that linezolid resistance among MRSA isolates is in enhancement alongside
novel antimicrobials quinupristin/dalfopristin (Q/D), daptomycin, and tigecycline [55,56].
Major drawbacks in the conventional approaches to MRSA eradication using antibiotics
include non-specific effects which kill human beneficial bacteria, adverse/toxic effects, drug
resistance development, and the high cost and time-consuming development of new drugs.

3. Nanoparticle Applications to Combat MRSA

The efficient, non-toxic, proper, accurate, and cost-effective eradication of MRSA infec-
tions has been recently achieved through the application of nanocarriers or nanoparticles
(NPs) [57,58]. NPs have a size range of 1 to 100 nm. The physicochemical properties of NPs
and lower costs are gaining attention for use as antimicrobial agents [59–62]. NPs have
exhibited antimicrobial effects, particularly those synthesized using green methods [6]. NPs
can also be used for the detection of MRSA [63]. The main mechanisms of NP antibacterial
effects include an impairment in metabolism or bacterial integrity (CuNPs), replication and
transcription disruption, tRNA, ATPases, membrane-bound enzymes and biofilm inhibi-
tion, protein denaturation (AgNPs), and reactive oxygen species (ROS) production [64–66].
Various NPs such as silver (Ag), gold (Au), and lower-cost NPs such as nickel (Ni), titanium-
oxide, (TiO), zinc oxide (ZnO), silica (SiO2), and bismuth (Bi) NPs have deciphered efficient
bactericidal effects against MRSA in vitro and in vivo [67–71]. Various methods of NP
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delivery to cells for antibacterial activity include polymeric NPs, liposomes, carbon NPs,
and metal or metal-oxide NPs. ZnO could eliminate MRSA skin infection at 1875 mg/mL
possibly via amino acid synthesis inhibition [70]. TiO2 NPs produce free radicals which
kill MRSA [72]. Cu-doped ZnO nanorods have exhibited more potential effects than that
of ZnO singly [73]. Cefotax-based magnetic NPs have exhibited promising anti-MRSA
effects against isolates originating from livestock and dairy sources [58]. Interestingly,
S,N-GQDs/NiO nanocomposites have exerted extraordinary anti-S. aureus effects in vitro
with minimum inhibitory (MIC) and bactericidal (MBC) concentrations values of 0.4 and
0.8 mg/mL, respectively [74]. Nickel oxide nanoparticles (NiO NPs) exhibit promising
traits such as biocompatibility, thermal and chemical stability, and interesting optical char-
acteristics. The development of NiO nanocomposites has improved their bactericidal effects.
The simple synthesis of a CdO–NiO–ZnO nanocomposite using the microwave method
also exhibited antibacterial effects against Gram-positive and Gram-negative species [75,76].
In addition, NiOCuO-10%RGO also demonstrated substantial antibacterial activity [74].
NPs can specifically carry drugs and enter into cells via endocytosis. A few NPs for the
eradication of MRSA have been used for clinical trials. PLGA-rifampicin NPs have de-
creased the MIC against MRSA from 0.0008 to 0.002 µg/mL [77]. Vancomycin-loaded
hydroxyapatite increased the vancomycin release and improved bone regeneration [78].
The combination of levofloxacin and AgNPs unraveled a synergistic effect with 0.5 and
10 µM against control strains and MRSA, respectively [79]. The application of liposome-
albumin-vancomycin has decreased toxicity and improved the anti-MRSA activity [80].
The liposomal formulation of amphotericin-b (AmBisome®) has also enhanced anti-MRSA
efficiency and mitigated nephrotoxicity [81]. Various NP-based drug delivery systems used
for skin treatment have included solid lipid nanoparticles, nanostructured lipid carriers,
liposomes, niosomes, and nanoemulsions [82].

It was revealed that Chitosan/Gold Nanoparticle/Graphene Oxide could separate,
identify, and eradicate MRSA superbugs within water contaminants. Chitosan has a
positive charge and can trap these strains. In a study by Gupta, engineered polymer NPs
exerted anti-biofilm effects against MRSA strains at non-toxic levels [83].

Mesoporous silica nanoparticles (MSNs) carrying enzymes have exhibited anti-biofilm
(dispersal) effects against S. aureus, decreasing the bacterial cells efficiently after 24 and
48 h [84], respectively.

4. Advantages and Disadvantages of Nanoparticles

The reduced size of particles provides higher surface accessibility for ligand bind-
ing, easy and size adoptive production, rapid penetration and accumulation into cells,
absorption and carriage of various compounds, higher drug deposition rates, and a lower
rate of clearance from the body [85,86]. The facilitated and rapid penetration and long-
lasting deposition of NP drugs are promising in regard to the control of MRSA infections.
However, permeation enhancers may disrupt the lipids of the stratum corneum. Further
challenges are considerable for various formulations of NPs such as drug expelling, en-
capsulation, physical stability, controlled release, transdermal delivery challenges (lipid
carriers), viscosity differences, skin penetration, costs and large-scale production (nio-
somes), agglomeration, more frequent doses, systemic adsorption (nanocrystals), and risk
of toxicity (polymeric NPs) [87,88]. It is worth mentioning that interactions of NPs with
the human body enzymes and cytosol may affect host cells, as demonstrated for CuNPs
compared to NiNPs, which necessitates the further evaluation of corresponding effects [89].

This review assessed published data between 2015 and 2022 discussing the involve-
ment of NiNP or NiO NP applications in the treatment of MRSA infections. Found pub-
lications were screened based on their titles, abstracts, and full-text availability. English
language texts were included herein. The flowchart of publications selection and content of
this review is illustrated in Figure 1.
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5. Nanoparticle Features and Synthesis

The diverse applications of NPs in medicine, environment, agriculture, catalysis,
biosensing, and cancer theranostics have attracted interest for their synthesis using chemi-
cal, physical, and biological methods. NPs are synthesized through various approaches
according to corresponding features of morphology, size, stability, and biocompatibility.
These are commonly synthesized by microemulsion, hydrothermal, coprecipitation, sol-gel,
ball milling, and biological methods [90]. In the physical method of synthesis, NP size and
morphology are difficult to adjust, whereas, in chemical methods, it is possible by alter-
ations in reaction conditions [91]. A hydrothermal method is the most suitable chemical
method for NP synthesis owing to its easy and versatile nature and controllable synthesis
of high crystalline and homogenous particles [92]. Noticeably, chemical methods leave
adverse health and environmental effects and also consume large energy. Considering
these, green synthesis (microbial and plant extracts) is promising in terms of considerably
lower cost, pollution and toxicity, and health and environmental benefits [93]. In spite of
seasonal and geographical limitations of herbs, low purity and amounts, green synthesis is
preferred for the chemical synthesis of NPs [94].

6. Importance of Nickel and Nickel-Oxide Nanoparticles

Nickel nanoparticles (NiNPs) including magnetic metal intermediate-cost particles
have been studied vastly thanks to their myriad applications such as for magnetic sen-
sors [95], memory devices [96], and for biomolecular separation [97]. The eventual profi-
ciency of each material or NP reflects and depends on the structure, shape, size, and purity
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of NiNPs or derived materials. Nickel oxide (NiO) is an inevitably crucial part of today’s
nanotechnology and intermediate-cost metal oxide is a cubical lattice structure [98]. The ex-
traordinary chemical stability, high binding affinity, and ferromagnetic properties of NiNPs
provide an indispensable field of study which includes their synthesis and application.
They are applied mostly because of cost-effectiveness catalysts considering vast natural
resource existence and driving reactions by alternate routes. These NPs contain numerous
biomedical usages, including cell isolation, medicine delivery, magnetic resonance imaging,
biomedical diagnostics, and more [99]. Considerable antibacterial attributes have been
reported against Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella pneumoniae, S. aureus,
and many other microorganisms [100] (Figure 2). In addition, various forms of NP delivery
have been represented in Figure 3.
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7. Mechanism of Action of Nickel Nanoparticles

Antibacterial activities of NiNPs are related to nickel ion content which interpenetrate
the bacterial cell and reach the surface of the bacterial cell membrane and intracellular
milieu. This influx of nickel cations destroys organelles like ribosomes and affects bacterial
metabolism. A study of the literature unravels how all of this happens, due to electrostatic
attraction and the use of negatively charged intercellular microbial cells and positively
charged nickel ions [103,104]. Nanoparticles exhibit great surface activity due to the large
surface-to-volume proportion. Exposure of E. coli to NiNPs disrupts membrane morphology
and transport. Nickel’s high affinity to sulfur- and phosphor-containing components such
as DNA and proteins disrupts DNA replication and causes protein deformation [105].

8. Recent Data Regarding NiONP Effects against MRSA

Haghshenas, Leila, et al. [106] appraised the antibacterial efficacy of gold (AuNPs)
and NiNPs separately and in combination with E. coli and S. aurous in milk. Transmission
electron microscopy (TEM) and Uv-vis spectroscopy were used to measure the size and
shape of these NPs. A broth microdilution procedure was used to assess the minimum
inhibitory concentration (MIC) of the NPs. Then, the NPs’ effect on milk was investigated
individually and in combination at 25 ◦C and 50 ◦C, respectively. These results displayed
that AuNPs and NiNPs with mean sizes of 10 nm and 50 nm had a favorable bactericidal
effect (p ≤ 0.05) against E. coli and S. aureus. MICs of AuNPs and NiNPs against S. aurous
included 0.42 and 0.21 µg mL−1 and 0.84 and 0.42 µg mL−1 for E. coli, respectively. The data
of this study revealed that the antibacterial effect of NPs in milk is temperature- and dose-
dependent, and the greatest degree of effect was observed in the combined concentration at
50 ◦C. NiNPs were found to have a stronger antibacterial effect than AuNPs. Accordingly,
S. aureus was more sensitive to NPs than E. coli. AuNPs and NiNPs were proposed as
effective candidates for combating pathogens in the food system. This may be due to the
charge of the cell wall surface which has a higher affinity for NiNPs.

Haider, Ali, et al. [107] developed a green plant (ginger and garlic) to replace the
bactericidal and synthetic catalyst in the textile industry, reducing NiO NPs. The synthesis
of NPs was corroborated using X-ray diffraction (XRD) and ultra-violet visible spectroscopy
(UV-Vis), which has a potent absorption at 350 nm with a size between 16 to 52 nm for
ginger and 11 to 59 nm for garlic. Scanning and transmission electron microscopy (SEM and
TEM, respectively) confirmed pleomorphism with cubic and spherical NPs. In addition,
the exact amounts of garlic and ginger extract (1:3.6 mL) combined for the synthesis of
NiO NPs were effectively confirmed using Fourier transform infrared spectroscopy (FTIR).
Garlic-reduced phytochemical NPs effectively degraded bactericidal activity against MRSA
at higher concentrations (0.5, 1.0 mg/50 µL) as well as methylene blue (MB) dye. Finally,
green synthesized NiO NPs were eminent factors for resolving drug resistance as well as
eco-friendly catalytic factors that may be selected on an industrial measure.

In a study, NiO NPs were synthesized using photolysis and their anti-biofilm property
was evaluated. XRD studies showed the presence of NiO NPs with high crystallinity. NiO
particle size ranged from 13 to 31 nm. There were 42 samples of medical waste from
various hospitals in Baghdad from 2 October to 12 October 2020. Isolation outcomes were
recorded from 15 isolates of S. aureus. The results of both methods (well propagation
method and PCR) showed that the percentages of MRSA in these two methods were 53.3%
and 73.4%, respectively. The outcomes of MRSA biofilm formation showed that only four
isolates (36.3%) were not able to produce biofilm using the plate microtiter method. On the
other hand, other isolates (63.7%) were able to produce biofilms. Antimicrobial activity of
various concentrations (10–100 µg/mL) ranged from 0–13 mm inhibition zones. The MIC
concentration was 265 µg/mL (63.7%) from seven MRSA isolates and 530 µg/mL (36.4%)
from four isolates. The results outlined that the hemolytic activity of 2.38%, 2.23%, 2.41%,
and 2.69% corresponded to 0, 0.01, 0.1 and 1 mg/mL of NiO NPs, respectively [108].

In another study, NiO with sulfur, and nitrogen co-doped-graphene quantum dots-
decorated NiO nanocomposites (S, N-GQDs/NiO) were synthesized using an easy hy-
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drothermal technique. Then, their antibacterial activity against E. coli, S. aureus, P. aeruginosa,
and MRSA was assessed. The prepared S,N-GQDs/NiO nanocomposites conferred the
highest antibacterial effect against S. aureus among these species. The S, N-GQDs/NiO
nanocomposite NPs exerted the highest effect against S. aureus (17 mm) in the disk diffusion
method. The attendance of graphene quantum spots in S,N-GQDs/NiO nanocomposites
comforts the ROS mechanism that leads to antibacterial activity [74].

A study inferred the structural and morphological properties of NiO NPs synthesized
by a novel, convenient, eco-friendly, and cost-effective ash-supported approach [109]. The
antibacterial property of NiNPs was attended using pathogenic strains including Gram-
negative and Gram-positive bacteria by the cup and well diffusion method. Raman analysis
confirmed the formation of pure NiO cubic phase at an annealing temperature of 700 ◦C.
The SEM illuminated the particle morphology and size of 40 to 90 nm. The antibacterial
activity of the NiO NPs was studied using three Gram-negative bacteria (Salmonella typhi,
Pseudomonas aeruginosa, E. coli) and one Gram-positive bacterium (MRSA). Accordingly,
MRSA was sensitive to NiONPs with a diameter of 26 mm inhibition zone [110].

NiO NPs with a green approach were synthesized using Eucalyptus globulus leaf extract
and their bactericidal traits were measured. The synthesized NiO NPs were pleomorphic
and ranged in size from 10 to 20 nm. The X-ray diffraction (XRD) analysis outlined an
average size of NiO NPs as 19 nm. The bioactivity experiment showed the antibacterial
and anti-biofilm properties of NiO NPs against extended spectrum beta lactamase (ESβL
(+))-producing E. coli, P. aeruginosa, and S. aureus. The growth inhibition method showed a
time-dependent decrease in the concentration of NiO NPs in the survival of treated cells.
The inhibition of NiO NPs-induced biofilms was demonstrated using a sharp increase in
the red fluorescence characteristic of propidium iodide (PI) when SEM illustrations of NiO
NPs-treated cells were reduced and distorted by obvious depressions/indentations. In
general, E. globulus leaf extract can be safely used to synthesize eco-friendly NiO NPs with
the potential for the elimination of infections affecting human health (Table 1) [111].

Table 1. NiNP concentrations and conditions against MRSA in vitro.

Nanoparticle MIC Mechanism of Action Conditions Reference

NiNPs 0.21 (µg/mL) ND In vitro [106]

NiO NPs 1 mg/50 µL ND In vitro [107]

NiO NPs 265 µg/mL ND In vitro [108]

(S,N-GQDs/NiO) NPs ND * ND In vitro [74]

NiO NPs ND ** ND In vitro [110]

NiO NPs 0.8 mg/mL *** ND In vitro [111]
MIC: minimum inhibitory concentration, ND: not determined, ND *: disk diffusion test (17 mm), ND **: disk
diffusion test (17 mm), *** MBC: (minimum bactericidal concentration) included 1.6 mg/mL.

In a study, Superparamagnetic Ni@2D-MoS2 nanosheets exerted anti-biofilm and
antibacterial effects against MRSA and E. faecalis demonstrating the selective removal of
these infections [112].

9. Future Prospects

Metal NPs such as Au, Ag, Zn, and Cu are believed to be toxic to eukaryotic cells
at high levels. Hence proper and target-specific delivery is crucial. Since the stability of
metal or metal oxide NPs is not ensured and even PEGylated NPs are removed from the
bloodstream, their use for topical infections is more promising. Low-toxic or non-toxic
materials such as albumin and chitosan are considerable for the carriage of drugs [113,114].
Considering the low costs of NiNPs, more investigations are needed to assess their efficiency
in vivo and in clinical trials. In addition, combination therapies using NiNPs can be helpful
for the eradication of extreme drug-resistant strains. As metal NPs have exerted acceptable
anti-MRSA effects, the interactions of NPs with human body enzymes and cell structures
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need to be evaluated by further experiments to uncover their possible detrimental effects
on the host [115].

10. Conclusions

Considering the drawbacks in MRSA infection eradication due to vast antibiotic re-
sistance and the expression of numerous virulence factors to develop severe infections,
particularly among vulnerable individuals, novel treatment choices are warranted. In addi-
tion, MRSA develops resistance to last-resort antibiotics during a time span, owing to a
non-adherence to the prescription and consumption of antibiotics. Due to the high costs,
side effects, and time duration needed for the synthesis of synthesized drugs, seeking
efficient alternative approaches for the eradication of drug-resistant bacterial agents seems
to be an unmet requirement. NPs have been applied as prognostic and therapeutic agents
in various aspects of biomedical sciences. Lower-cost NPs such as NiNPs and their formula-
tions have been utilized as antibacterial agents against MRSA infections. The application of
green synthesis and low-cost materials such as albumin and chitosan enhance the efficacy
of NPs for therapeutic purposes. NiNPs’ precise mechanism of action can be predicted and
understood via in silico, in vitro, and in vivo studies.
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