
Adaptive group sequential survival
comparisons based on log-rank and
pointwise test statistics

Jannik Feld , Andreas Faldum and Rene Schmidt

Abstract
Whereas the theory of confirmatory adaptive designs is well understood for uncensored data, implementation of adaptive

designs in the context of survival trials remains challenging. Commonly used adaptive survival tests are based on the inde-

pendent increments structure of the log-rank statistic. This implies some relevant limitations: On the one hand, essentially

only the interim log-rank statistic may be used for design modifications (such as data-dependent sample size recalcula-

tion). Furthermore, the treatment arm allocation ratio in these classical methods is assumed to be constant throughout

the trial period. Here, we propose an extension of the independent increments approach to adaptive survival tests that

addresses some of these limitations. We present a confirmatory adaptive two-sample log-rank test that allows rejection

regions and sample size recalculation rules to be based not only on the interim log-rank statistic, but also on point-wise

survival rate estimates, simultaneously. In addition, the possibility is opened to adapt the treatment arm allocation ratio

after each interim analysis in a data-dependent way. The ability to include point-wise survival rate estimators in the rejec-

tion region of a test for comparing survival curves might be attractive, e.g., for seamless phase II/III designs. Data-depend-

ent adaptation of the allocation ratio could be helpful in multi-arm trials in order to successively steer recruitment into

the study arms with the greatest chances of success. The methodology is motivated by the LOGGIC Europe Trial from

pediatric oncology. Distributional properties are derived using martingale techniques in the large sample limit. Small sam-

ple properties are studied by simulation.

Keywords
Adaptive design, phase II trial, phase III trial, sample size recalculation, survival analysis, log–rank, Nelson–Aalen, bivariate,
seamless design

Introduction
The log-rank test1 is presently the gold standard method for analysing differences in survival data in randomised clinical
trials. For this reason adaptive survival tests are commonly based upon the log-rank test statistic and its independent
increments structure.2,3 However, these designs suffer from some limitations we want to address. One limitation is
that effectively only the interim log-rank statistic may be used for design modifications (such as data-dependent
sample size recalculation).4 Moreover, the treatment arm allocation ratio in these classical methods is assumed to be
constant throughout the whole trial period. However, in the context of seamless phase II/III designs or early phase
trials it may be desirable to include point-wise survival rates (e.g. 1 year survival rates) in the decision making,
since survival rates at a given time-point of interest are chosen as a primary endpoint regularly in such trials.
Likewise, data-dependent adaptations of the treatment arm allocation ratio could be helpful in multi-arm trials in
order to successively steer recruitment into the study arms with the greatest chances of success. Therefore we
propose an extension of the independent increments approach to adaptive survival tests, which can rely on both: (i)
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the pointwise Neelson Aalen type survival rates estimator and (ii) the log rank test statistic. More specifically our
approach extends the commonly used methodology by Wassmer,3 which neither supports the use of point-wise survival
rate estimates nor foresees data-dependent adaptations of the treatment arm allocation ratio. In doing so, our approach
avoids those difficulties associated with alternative methods based on the patient-wise separation principle, which have
the common disadvantage that the test procedure may either neglect part of the observed survival data or tend to be
conservative. We will show by simulation that our extended methodology maintains the performance of the current stan-
dard methodology while offering various new design possibilities.

The methodology presented here is motivated by the LOGGIC Europe trial (Eudra-CT: 2018-000636-10). LOGGIC
Europe is a randomized, international multicentre phase III therapy optimization trial for children and adolescents with
low–grade glioma. Primary endpoints of the trial are the progression-free survival (PFS) and the disease control rate
(DCR). PFS addresses long–term efficacy of treatment and is defined as time from randomization up to progression of
disease or death for all reasons whatever occurs first. DCR addresses short–term efficacy of treatment redand is essentially
defined as the PFS-rate at some early timepoint.

The paper is organized as follows. We start by settling notation and stochastic assumptions. Section ‘Joint martingale
representation of the log–rank statistic and cumulative hazard difference’ presents briefly the bivariate representation of
the two test statistics and its distributional properties. The design algorithm and corresponding planning methodology is
presented in section ‘Adaptive log–rank test with simultaneous use of interim log–rank statistic and cumulative hazard
rate difference’. In section ‘Example: A two–step log–rank test with futility criterion based on short–term survival rate’
we present some example use-case in order to illustrate practical implementation of our method. Small sample proper-
ties are studied by simulation in section ‘Simulation’. We conclude with a discussion of our findings and prospects for
future research. Mathematical proofs are shifted to the supplemental material.

Notation and stochastic assumptions
Let (Ω, F , P) denote the probability space upon which all random variables are defined. Unless otherwise specified,
random variables are denoted by capital Latin letters, whereas realizations of random variables are denoted by the corre-
sponding lower case Latin letters. We set 0/0 : = 0 whenever formal division of zero by zero occurs in sequel.

We consider the problem of testing the equality of survival distributions for two treatments A and B, say, based on accu-
mulating survival data across several stages of a sequential design. After each stage a confirmatory (interim) analysis is
performed with the possibility for interim decisions (e.g. binding futility stop or sample size recalculation) based on (i)
the observed interim log–rank statistic and (ii) interim estimates of s0-years survival rate differences for some prefixed
time-point s0 > 0.

In this context we will assume an initial trial design with l stages. The stages will recruit patients successively, i.e.
patients from stage k are recruited between calendar times

∑k−1
i=1 ai and

∑k
i=1 ai where ai > 0 are the recruitment period

lengths of the stages. We set a : = ∑l
i=1 ai as the overall recruitment period length. The final analysis will be per-

formed at calender time a+ f . Patients from stage k will therefore have at least a follow-up period length of
fk =

∑l
i=k+1 ai + f . An example timeline for l = 2 stages is given in Figure 1. The planned annual recruitment rate

is denoted with r.
For this purpose, let N x,k denote the set of patients from treatment group x = A, B, who entered the trial at stage k (i.e.

between calendar time
∑k−1

i=1 ai and
∑k

i=1 ai), and let nx,k : = #N x,k denote the number of such patients. LetN k : =
⋃

x N x,k

denote the set of all patients from stage k pooled over both treatment groups, and N : = ⋃
x,k N x,k the overall set of trial

patients. Let nk : =
∑

x nx,k and n : = ∑
x,k nx,k . The parameter n will index the arrival process and asymptotic results

will be derived in the limit n � ∞. Accordingly, we assume that group sizes grow uniformly as total sample size increases,
i.e. we assume there exist constants vk > 0 such that #N A,k/nk � 1

1+vk
and #N B,k/n � vk

1+vk
in probability as n � ∞. Thus

the constants vk are the asymptotic, stagewise allocation ratio between the treatment groups. We furthermore assume that the
stages also grow uniformly as total sample size increases, i.e. #N k/n = nk/n � ak/a in probability as n � ∞.

To patient i is associated a random triplet {Ei, Ci, Ti}. Ei is the entry time into the study, the possibly infinite random
variable Ci is the time of censoring after entry, and Ti is the survival time after entry. Our stochastic assumptions are as
follows: (1) Ti, Ci and Ei are mutually independent for fixed i, and (2) data from different patients are independent and
identical distributed within treatment groups.

Based on the observed data, we will calculate the number of events in stage k from treatment group x = A, B up to study
time s ≥ 0 as

Dx,k(s) : =
∑
i∈N x,k

Di(s), Di(s) : = I(Ti ≤ s, Ti ≤ Ci), (1)

Feld et al. 2563



and the number at risk by study time s ≥ 0 in stage k and treatment group x = A, B as

Yx,k(s) : =
∑
i∈N x,k

I (Ti ∧ Ci ≥ s). (2)

Finally, let Jx,k(s) : = I(Yx,k(s) > 0) and Lk(s) the log-rank weight factor

Lk (s) : = YA,k(s) · YB,k (s)
YA,k (s)+ YB,k (s)

. (3)

For each s ≥ 0, let F s be the σ–algebra generated by

I{Ti ≤ s ∧ Ci}, Ti · I{Ti ≤ s ∧ Ci},

I{Ci ≤ s ∧ Ti}, Ci · I{Ci ≤ s ∧ Ti},
(4)

for i ∈ N . We consider Dx,k , Yx,k , Jx,k , Lk as stochastic process in study time s ≥ 0, adapted to the filtration (F s)s≥0. The
filtration (F s)s≥0 comprises the information that is observed in the study. Whenever we want to emphasize the dependence
of above processes on n ∈ N, we will index them additionally by n e.g. Dn

x,k instead of Dx,k .
As usual, we let λx(s) : = limδ�0 P(s ≤ Ti < s+ δ|Ti ≥ s)/δ denote the hazard of a patient i from treatment group

x = A, B. We denote by Λx(s) : =
�s
0λx(u)du and Sx(s) : = exp (− Λx(s)) ≡ P(Ti > s) the corresponding cumulative

hazard and survival functions for treatment group x = A, B, respectively.
In this context, we consider testing the two–sided null hypothesis

H0 : SA(s) = SB(s) for all 0 ≤ s ≤ smax (5)

that the survival functions in the two treatment arms coincide within some prefixed interval [0, smax].
We proceed as follows to test H0. Using martingale techniques, we will first derive the joint distribution of (i) the

stage–wise log–rank test statistics and (ii) the stage–wise difference in the Nelsen–Aalen estimates between the two
treatment arms evaluated at some prefixed study time s0. On this basis, we provide a confirmatory adaptive two–
sample log–rank test where provision is made for interim decision making and design modifications based on both
(i) the interim log–rank statistic and (ii) interim estimates of the cumulative hazard rate differences at timepoint s0.
With a view to practical application, sample size recalculation is one of the most common design modifications.
Therefore, sample size recalculation based on conditional power will be elaborated and studied in detail, analytically
and by simulation.

Joint martingale representation of the log–rank statistic and cumulative hazard
difference
The weighted two–sample log–rank statistic in stage k is defined as

LRk(s) : =
∑

i∈N A,kDi(s)=1

Lk(Ti)

YA,k (Ti)
−

∑
i∈N B,kDi(s)=1

Lk (Ti)

YB,k(Ti)
, (6)

Figure 1. Initial time schedule. At time of the final analysis, first stage patients would have a minimum follow-up of f1 = a2 + f > s1
years under the initial time schedule. Second stage patients would have a minimum follow-up of f2 = f at time of the final analysis.
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where Lk is the weight from equation (3). The difference of the group–wise Nelson–Aalen estimates in stage k is given as

Δk(s) : =
∑

i∈N A,kDi(s)=1

JA,k(Ti)

YA,k(Ti)
−

∑
i∈N B,kDi(s)=1

JB,k (Ti)

YB,k (Ti)
, (7)

which are both F s–adapted processes. It follows from theorem A2, that under mild regularity assumptions and the propor-
tional hazards assumption λB = ωλA for some ω > 0, the following distributional approximation holds:

n−1/2
k LRk (s)�������
[MLR

k ](s)
√
n1/2k Δk (s)������
[MΔ

k ](s)
√

⎛⎜⎝
⎞⎟⎠D≈ N

( − ���
nk

√
log (ω) · σLR,k(s)

− ���
nk

√
log (ω) · ΛA(s)

σΔ,k (s)

( )
,

1 ΛA(s)
σLR,k (s)σΔ,k (s)

ΛA(s)
σLR,k (s)σΔ,k (s)

1

( ))
, (8)

where σ2LR,k(s) : = plimnk�∞Dk(s)/nk · vk
(1−vk )

2 and σ2Δ,k (s) are some deterministic functions (see equations (14) and (13)

below) and

[MLR
k ](s) : = n−1

k

∑
i∈N A,kDi(s)=1

Lk (Ti)
2

YA,k (Ti)
2 + n−1

k

∑
i∈N B,kDi(s)=1

Lk (Ti)
2

YB,k(Ti)
2 ,

[MΔ
k ](s) : = nk

∑
i∈N A,kDi(s)=1

JA,k(Ti)

YA,k (Ti)
2 + nk

∑
i∈N B,kDi(s)=1

JB,k(Ti)

YB,k (Ti)
2 .

(9)

The left hand side of (8) has also approximately independent, bivariate normal distributed increments as stated in theorem
A2.

For given ω > 0 we set

μk : = − ���
nk

√
log (ω). (10)

In practice the time-dependant correlation parameter on the right hand side of (8) is unknown. However, for a fixed time
point s0 > 0 it can be consistently estimated at time of the interim analysis (see (24)). Under further planing assumptions it
is possible to deduce closed formulas for the functions σLR,k and σΔ,k . Assuming (in addition to above mentioned mild reg-
ularity conditions of theorem A2):
• No loss to follow-up:

∀i ∈ N k :Ei + Ci ≡ a+ f (11)

• Uniform recruitment:

∀i ∈ N k :Ei ∼ U([
∑k−1

i=1

ai,
∑k
i=1

ai]) (12)

the following two equations hold (see appendix for proofs):

σ2Δ,k(s) =
(1+vk )

2

vk
1

SA(s)
− 1

( )
, if s ≤ fk

(1+vk )
2

vk
1

SA(fk )
− 1+ �s

fk
λA(u)·ak

SA(u)·(ak+fk−u) du
( )

, if fk < s < ak + fk

⎧⎨⎩ (13)

σ2LR,k(s) =

vk
(1+vk )

2 (1− SA(s)), if s ≤ fk

vk
(1+vk )

2 1− ak+fk−s
ak

SA(s)− 1
ak

�s
fk
SA(u)du

( )
, if fk < s < ak + fk

vk
(1+vk )

2 1− 1
ak

�ak+fk
fk

SA(u)du
( )

, if s ≥ ak + fk

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (14)

Adaptive log–rank test with simultaneous use of interim log–rank statistic and
cumulative hazard rate difference

The design algorithm
For the sake of notational simplicity we will focus on two-step designs in the sequel (i.e. l = 2). The two–step adaptive
design will proceed as follows: Assume an initial design with accrual of patients between calender time 0 and a years,
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and a final analysis at calender time a+ f (corresponding to minimum follow–up period of f years). We assume that the
value of f is prefixed by clinical consideration. Choice of awill be detailed in section ‘Initial sample size calculation’ based
on power arguments. Patients recruited prior to calender time a > a1 > 0 define the set of first stage patients N 1, and
patients recruited between calendar time a1 and a : = a1 + a2 define the set of second stage patients N 2. The interim ana-
lysis will take place at time a1 + s1 for some 0 < s1 < a2 and will include the patients of stage one with their first s1 years of
follow-up.

At the interim analysis the log–rank statistic in stage 1 patients based on information up to study time s1

Z∗
1 : = Z11 : = n−1/2

1 · LR1(s1)�����������
[MLR

1 ](s1)
√ (15)

and the standardized cumulative hazard rate difference at some prefixed (early) study time 0 < s0 ≤ s1

B1 : = n1/21 · Δ1(s0)����������
[MΔ

1 ](s0)
√ (16)

will be calculated. B1 is an interim estimate of the difference in short–term response. More specifically, Δ1(s0) is an interim
estimate of log (SB(s0)/SA(s0)). The design algorithm is as follows: The design stops at the interim analysis with rejection of
H0 if the observed value z1 for Z∗

1 exceeds some critical value u1. The design stops for futility if either z1 falls below some
futility bound u0 or if the observed value b1 for B1 drops below some prefixed boundary b0. Otherwise, if u0 ≤ z1 < u1 and
B1 > b0, the design continues to stage two. At this time, the recruitment period length of stage two a2 can be data–depend-
ent recalculated. The recalculated recruitment period length a′2 : = a′2(Z

∗
1 , B1) of stage two is chosen in dependence of the

observed values for Z∗
1 and B1 subject to the constraint s1 < a′2 ≤ amax − a1. Here, amax > a1 denotes a maximum trial

recruitment period length that is fixed in advance in order to avoid unrealistic or unfeasible trial duration. We set a′ : =
a1 + a′2 and f ′1 : = a′2 + f .

The final analysis will take place at calendar time a′ + f and will include both, patients of stage one N 1 with their full
follow-up data of at least f ′1 years and the set of second stage patientsN 2 with their follow-up time of at least f years. At the
time of the final analysis, the increment of the log–rank statistic in stage one patients beyond study time s1 will be calcu-
lated

Z12 : = n−1/2
1 · LR1(a′ + f )− LR1(s1)�����������������������������

[MLR
1 ](a′ + f )− [MLR

1 ](s1)
√ , (17)

as well as the log–rank statistic of stage two patients

Z22 : = n−1/2
2 · LR2(f ′1)�����������

[MLR
2 ](f ′1)

√ . (18)

Notice that Z12 and Z22 are conditionally independent given Z∗
1 and B1.

The null hypothesis H0 will be rejected at the final analysis if the second stage test statistic

Z∗
2 : =

����
η11

√ · Z11 + ����������
η12 − η11

√ · Z12 + ����
η22

√ · Z22����������
η12 + η22

√ (19)

exceeds some critical value u2, where the prefixed weight factors

η11 = σ2LR,1(s1), η12 = σ2LR,1(a1 + f1), η22 = σ2LR,2(f1), (20)

amount to the expected variance of the log–rank statistics under some initial planning alternative K1 (see section
‘Calculation of the critical bounds’). Their values are given in (13) and (14). The weights ηij have to be fixed in
advance and remain unchanged while the trial is ongoing.

The rejection region
The design algorithm described in section 4.1 corresponds to the rejection region

R : = {Z∗
1 ≥ u1} ∪ {B1 > b0, u0 ≤ Z∗

1 < u1, Z∗
2 ≥ u2} (21)
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of the null hypothesis H0. It is crucial that the design parameters b0, η11, η12, η22 and 0 < s0 ≤ s1 < f as well as the
critical bounds u0, u1 are prefixed and remain unchanged during the trial. Note that the critical bound u2 will be calcu-
lated at the interim analysis according to formula 22 when the correlation ρ of Z1 and B1 can be estimated to obtain a
rejection region which exhausts the full significance level. The calculation of the critical bounds b0, u0, u1, u2 is
elaborated next.

Calculation of the critical bounds
The rejection regionR defines a level α test of the null hypothesis H0 if the critical bounds b0, u0, u1, u2 are chosen accord-
ing to the proviso that PH0 (R) = α, i.e. such that

α = Φ(− u1)+
∫u1
u0

Φ
����
η11

√
z1 − ����������

η12 + η22
√

u2�����������������
η12 − η11 + η22

√
( )

Φ
ρz1 − b0�������
1− ρ2

√( )
ϕ(z1)dz1. (22)

Notice that the critical bounds depend on the nuisance parameter

ρ = ΛA(s0)

σΔ,1(s0)σLR,1(s1)
, (23)

which is in fact unknown during the trial if one does not know the true hazard function λA. However, it may be estimated
consistently at time of the interim analysis via

ρ̂ : = [MLR
1 , MΔ

1 ](s0)����������������������
[MΔ

1 ](s0) · [MLR
1 ](s1)

√ . (24)

Nevertheless there are infinite parameter combinations of the critical bounds which satisfy equation (22). It is therefore
crucial, that one parameter constellation (u0, b0, u1) is chosen in advance and remains unchanged during the trial. The crit-
ical bound u2 will then be calculated at the interim analysis as the unique solution to (22) with ρ̂ plugged in for ρ.

Initial sample size calculation
Initial sample size calculation is performed under the planning alternative hypothesis

K1 : SB = Sω0
A (25)

and under the assumption, that no sample size recalculation is performed i.e. a′2 = a2. For the initial sample size calculation
we need to fix the proportion π : = a1/a ∈ (0, 1) of accrual to stage 1. Note that the weights ηij are fixed in advance and
must not be changed while the trial is ongoing. In fact they have to be calculated simultaneously with the sample size. For
given weight factors ηij, the condition to reject null hypothesis H0 with probability 1− β under planning alternative K1 is
PK1 (R) = 1− β. Using the distribution approximation (8) this proviso is tantamount to

1− β = PK1 (Z
∗
1 ≥ u1)+ PK1 (B1 > b0, u0 ≤ Z∗

1 < u1, Z∗
2 ≥ u2). (26)

Notice that B1 and Z∗
2 are independent given Z∗

1 . Thus the right hand side of (26) equals

Φ(μ1σLR,1(s1)− u1)+
∫u1
u0

ϕ(z1 − μ1σLR,1(s1)) · PK1 (B1 > b0|Z∗
1 = z1) · PK1 (Z

∗
2 ≥ u2|Z∗

1 = z1)dz1. (27)

Using again the distribution approximation (8) we get the identities

PK1 (B1 > b0|Z∗
1 = z1) = Φ −

b0 − μk
ΛA(s0)

σΔ,1(s0)
− ρ(z1 − μ1σLR,1(s1))�������
1− ρ2

√
⎛⎜⎜⎝

⎞⎟⎟⎠ (28)
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and

PK1 (Z
∗
2 ≥ u2|Z∗

1 = z1)

= Φ −
u2 · ����������

η12 + η22
√ − ����

η11
√

z1 − ����������
η12 − η11

√ · (μ1
���������������������������
σ2LR,1(a1 + f1)− σ2LR,1(s1)

√
)− ����

η22
√

μ2σLR,2(f1)�����������������
η12 − η11 + η22

√
⎛⎝ ⎞⎠ (29)

Using the identities (28) and (29), formulas (13) and (14) for σLR,k(s) and σΔ,k (s) and the identity nk = r · ak in equation
(26), one can solve (26) and (22) numerically to obtain the critical bound u2 and the needed recruitment period lengths a1
and a2. We provide R syntax in the supplemental material to do so.

At the interim analysis, a2 and thus n2 may be modified in a data–dependent way to keep up adequate power perfor-
mance of the trial, as will be detailed in the next section.

Data–dependent sample size recalculation at the interim analysis based on conditional
power
At the interim analysis, we are free to revise the length of the stage two accrual period a2 in the light of Z∗

1 (interim log–rank
statistic) and B1 (observed difference in short–term response) without compromising type I error rate control. This is a con-
sequence of the independent increments structure of the bivariate process given by the left hand side of (8). For this
purpose, we will first calculate the required length of the accrual period aCP2 to achieve a desired conditional power. To
avoid unrealistic large trial duration, the revised length of the accrual period will finally be chosen as

a′2 : = max (min (aCP2 , amax − a1), s1). (30)

Recall that a1 + s1 is the calendar time of the interim analysis and amax is a prefixed maximum trial recruitment period
length.

Likewise, we are free to revise the allocation ratio between treatment groups in the light of Z∗
1 and B1. Let v′2 denote the

revised allocation ratio of stage two patients to treatment group B as referred to treatment group A. Furthermore we may use
an updated recruitment rate r′ to adjust for new experience.

To calculate aCP2 , we estimate the true hazard ratio ω via

ω̂ : = exp − 1

n

LR1(s1)

[MLR
1 ](s1)

( )
. (31)

Notice that LR1(s1) and N1(s1) are observed at the interim analysis. We can also estimate σLR,1(s1) consistently at the interim
analysis through the estimator σ̂2LR,1(s1) : = [MLR

1 ](s1). Sample size recalculation will be performed under the revised plan-
ning alternative

K ′
1 : SB = ŜωA (32)

suggested by the observed interim estimate ω̂ of the true hazard ratio. The condition to achieve a conditional power
PK ′

1
(Z∗

2 ≥ u2|Z∗
1 = z1, B1 = b1) of 1− β2 under the revised planning alternative K ′

1 is equivalent to

Φ−1(β2) =

u2
����������
η12 + η22

√ − ����
η11

√
z1 − ����������

η12 − η11
√ · μ̂1

����������������������������������
σ2LR,1(a1 + aCP2 + f )− σ̂2LR,1(s1)

√
− ����

η22
√ · μ̂2σLR,2(aCP2 + f ))�����������������

η12 − η12 + η22
√ ,

(33)

where μ̂k = − ���
nk

√ · log (ω̂) is the estimated drift. Plugging in the identities n2 = aCP2 · r′ and the formulas for σLR,2(aCP2 +
f ) and σLR,1(a1 + aCP2 + f ) given by (14) with updated values v2 → v′2 and r → r′, we can solve above equation (33) to
obtain aCP2 . Note that the equation can not be solved if ω̂ ≥ 1 holds. In this case we define aCP2 : = ∞.

The revised length of accrual a′2 is finally chosen according to (30). We will provide R syntax to do so in the supple-
mentary material.
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Example: A two–step log–rank test with futility criterion based on short–term survival
rate
In this section, we illustrate application of our methodology using the example of a two-step log-rank test with binding
futility criterion based on a short-term survival rates and sample size recalculation based on conditional power. Recall
that the underlying null hypothesis is H0 : SA(s) = SB(s) for all 0 ≤ s ≤ smax for some prefixed smax > 0. The underlying
physical units of s will be ”years”.

In general, our two-step test of H0 depends on a set of design parameters that have to be fixed in advance:
(a) parameters b0, u0, u1, u2 defining the rejection region acc. to (22),
(b) parameters s0 and s1 steering the amount of follow-up included into interim decision making,
(c) parameters a1, a2, f defining the initially planned lengths of stage one accrual, stage two accrual, and follow-up

period
(d) parameters r, v1, v2 defining the initial accrual rate, and stage-wise treatment arm allocation ratios
(e) weights η11, η12 and η22 of the stage-wise log-rank increments acc. to (20) and (14).
More specifically, let us assume that we aim for a two-step, Pocock-type log-rank test of H0 with binding stopping for

futility if the observed 6 months survival rate in the experimental arm is worse than in the standard arm. This futility con-
dition is realized by choosing b0 = 0, u0 = −∞, and s0 = 0.5. The Pocock condition means choosing u1 = u2.

5 Note that
an uncountable number of alternative functional relationships between u1 and u2 could have been chosen. The difference s1
- s0 is the interval between the time when the short-term endpoint B1 becomes known and the date of the interim analysis.
For practical reasons, s1 − s0 ≥ 0 should not be chosen too large. On the other hand, s1 should be sufficiently large such
that the interim log-rank statistic Z1 is informative. In our exemplary setting, we consider s1 = 1 as sensible choice. The
parameters f and r are determined by the clinical frame conditions. Let us assume a desired follow-up period of f = 2
years, and an annual overall accrual rate of r = 75. Also assume that we aim for equal randomization to both arm (i.e.
v1 = v2 = 1) as well as an interim analysis after half of the planned overall accrual period, i.e.
π : = a1/(a1 + a2) = 0.5. Finally, assume that we set a significance level of 5%, that we aim for a power of 80% if the
true hazard ratio ω0 equals 2/3 (planning alternative hypothesis), and that there are exponentially distributed survival
times with scale parameter of λ = 1 to a good approximation in the standard therapy arm.

With these specifications, the parameters u1 and a1 remain as the only unknown from the parameters listed under a)-d).
Whereas the weight η11 is also fixed by above specifications, the weights η12 and η22 remain as functions in a1 acc. to equa-
tion (20), since s1 = 1, a1 + f1 = 2 · a1 + f , f1 = a1 + f . We are now in a position to determine the rejection region (see
Section ‘The rejection region’) and to perform the initial sample-size calculation (see Section ‘Calculation of the critical
bounds’). Using b0 = 0, u0 = −∞, u1 = u2 and ρ acc to (8) the equations (22) and (26) may be solved simultaneously for
the two remaining free parameters u1 and a1. Doing so, yields a stage-one recruitment period length of a1 = 1.7 years (cor-
responding to n1 = r · a1 = 125 patients), together with a stage-one critical boundary u1 = 2.18. On this basis, the weights
may be calculated as η11 = 0.158, η12 = 0.247, η22 = 0.233 using (20) and (14). To ensure that the rejection region does
not depend on our initial planning assumptions regarding ρ, the value of the critical bound u2 will be updated and ultimately
fixed as described below at the time of the interim analysis, when an estimate of ρ becomes available.

After 1.7+ 0.5 = 2.3 years, instead of B1 can be evaluated. Assume that we find a value of instead of
B1 = 1.08 > 0 = b0, which concludes that the trial can continue (no stopping for futility). After 1.7+ 1.0 = 2.7 years,
the interim log-rank statistic Z11 becomes known and the interim analysis has to be performed. Let us assume that a
test statistic of Z11 = 1.34 < 2.18 = u1 is observed as well as an estimated hazard ratio of ω̂ = 0.731. In this case the
trial continuous to stage two and the sample-size can be adapted in the light of this new information.

In a first step we now estimate the covariance parameter ρ according to (24) in the light of the interim data. Assume
that we find an estimated value of ρ̂ = 0.733. With this estimate we calculate the final value of the stage–two critical
boundary u2 by solving (25) with our estimate plugged in as ρ, and all remaining parameters as specified as above.
Doing so yields in the value u2 = 2.17 and ensures that the rejection region does not depend on our initial planing
assumptions regarding ρ.

Having determined the final rejection region, let us now recalculate the sample-size such that a conditional power of 1−
β2 = 0.8 is achieved, say, under the constraint that the overall accrual period is at least a1 + s1 = 2.7 years, but must not
exceed amax = 5 years. Notice that it is principally possible to adapt the recruitment rate r or the allocation ratio v2 depend-
ing on B1 or Z11 at time of the interim analysis. For simplicity, we here assume that neither accrual rate nor allocation ratio
shall be adapted, i.e. we choose r′ = r and v′2 = v2. In order to carry out sample size recalculation according to these spe-
cification, we first calculate the required length aCP2 of the second stage accrual period to realize the desired conditional
power of 1− β2 = 0.8. This can be done by solving equation (33) for the only remaining indeterminate aCP2 , which in
our case yields aCP2 = 3.0. To implement the constraint on the minimum and maximum length of accrual, the revised
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length a′2 of the second stage accrual period is finally chosen according to (30). With amax = 5, a1 = 1.7, s1 = 1 equation
(30) yields a′2 = aCP2 = 3.0, corresponding to n2 = 226 patients in stage two.

Finally after 1.7+ 3.0+ 2.0 = 6.7 years after start of the trial, the final analysis is due. At this time the test statistics Z12
and Z22 become known. Assuming that Z12 = 1.67 and Z22 = 3.14 are observed, we finally obtain the final test statistic Z∗

2
according to (19)

Z∗
2 =

�������
0.158

√ · 1.34+ ����������������
0.247− 0.158

√ · 1.67+ �������
0.233

√ · 3.14����������������
0.247+ 0.233

√ = 3.67 > 2.17 = u′2,

which concludes a successful trial with rejection of H0 after stage two.
We will present an example design for a seamless phase II/III trial in detail in the supplemental material.

Simulation

Design of the main scenario
We consider testing the hypothesis formulated in equation (5) H0 : SA(s) = SB(s) for all 0 ≤ s ≤ smax using the two-step
adaptive design presented in section 4.1.

In the context of the LOGGIC Europe trial, it was of interest to show a positive effect on the short term PFS-rate at an
interim analysis to obtain the preliminary conditional marketing authorisation. Only with this conditional marketing author-
ization it was desired to continue recruitment of patients and to additionally test the effect on the long-term progression free
survival.

More specifically, a design with rejection region of the form

R : = {Z∗
1 ≥ u1} ∪ {B1 > 0, Z∗

1 < u1, Z∗
2 ≥ u2}

would have been of interest. Notice that we set the critical boundaries b0 = 0 and u0 = −∞. We set s0 = s1 = 1.5, f = 2
and π = 0.5. This corresponds to a two–step log–rank test with binding futility criterion based on the 18-months response rate.

The following frame conditions were chosen as the main scenario for this simulation study: Patients are allocated
equally to both treatment arms (allocation ratio v1 = v2 = 1). Survival times are Weibull distributed with scale parameter
of m = 1/log(2) and shape parameter k = 1, which corresponds to a scaled exponential distribution with median survival
of 1 year. To study the performance of our algorithm we ran also simulations with shape parameters k = 0.5 and k = 2.
Planing was done under the planing alternative SB(s) = SA(s)

ω1 , where ω1 = 2/3. We also ran simulations with ω1 = 4/5.
We let the true hazard ratio ω range between 0.5 and 1 in steps of 1/15. The one sided type 1 error rate was set to α = 0.025
and the desired power was set to 1− β = 0.8. We set the conditional power parameter β2 such that it satisfies the equation

PK1 (Z
∗
1 ≥ u1)+ PK1 (Z

∗
1 < u1, B1 ≥ b0) · (1− β2) = 1− β. (34)

This choice tries to stabilize the power of the whole trial despite the adaptation. The recruitment rate was set to r = 60. The
maximal trial duration amax was set as PF = 1.5 times the duration of a corresponding single–step two–sample log–rank
test.1 In some of our scenarios (Figure 2) we let the parameter PF vary in the set [1.25, 1.75] as a fine-tuning parameter.

No loss to follow–up was assumed as well as block-randomization and uniform recruitment assumptions as required by
theorem A2.

For each simulation the required recruitment period lengths of stage one a1 and stage two a2 were calculated according
to section ‘Initial sample size calculation’. In our simulations we additionally distinguished between (i) a Pocock-type
design with u1 = u2 and (ii) a design without early stopping where u1 : = ∞. Note that the critical bounds b0 and u1
have to be fixed in advance, whereas the value for u2 is calculated according to equation (22) at the interim analysis,
when the estimator ρ̂ for ρ becomes available. Thus the theoretical equality ”u1 = u2” in the Pocock setting is effectively
only realized approximately.

With above values for r, a1, a2 and f , the weights η11, η12, η22 were calculated according to equations (20).
Then r · a1 patients were simulated as first stage patients, with preliminary censoring at study time s1, which represents

the data we are allowed to use at the interim analysis. Based on this simulated data the interim statistics Z∗
1 , B1, N1, ρ̂ and ω̂

were calculated.
The test statistics Z∗

1 and B1 were then compared to the prefixed critical bounds b0 and u1 to determine whether early
successful stopping or stopping for futility has occurred.

In the case of an ongoing trial, i.e. B1 > b0 and Z∗
1 < u1, the critical bound u2 is obtained by solving equation (22) with

the estimator ρ̂ plugged in. Additionally, the required recruitment period length of stage two aCP2 was calculated such that a
conditional power of 1− β2 is achieved under the revised planing alternative hypothesis K

′
1 : SB = ŜωA corresponding to the
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observed hazard ratio ω̂. The actual recruitment period length of stage two patients a′2 was then updated as stated in (30), to
stipulate the boundary conditions.

We then proceeded (i) to simulate a′2 · r patients of stage two and (ii) to update the censoring date of stage one patients to
calendar time a′ + f .

Finally the test-statistic Z∗
2 was calculated according to (19) and compared to the critical bound u2 derived at the interim

analysis to obtain the final test decision.
The above presented simulation algorithm was run 10,000 times for each scenario.

Results
The simulation results are presented briefly in Table 1. Reassuringly the designs hold the aimed significance level of 2.5%,
even in the small sample size case. Note that with 10,000 simulations per scenario the estimated accuracy of our type one
error rate estimator given through 95%-confidence intervals is ±0.31%. Accordingly in no scenario the empirical type I
error rate exceeded the aimed significance level of 2.5% in a statistically noticeable way.

The empirical power however shows a little more variation. This is due to the fact, that the initial sample size calculation
does not factor in the randomness introduced by ω̂, which effects the sample size recalculation based on conditional power.
This is a well-known effect of such adaptive designs.

Main simulation scenario. The strength of adaptive designs is undoubtedly the possibility for correction when the initial
planning assumptions seem to be wrong. When the treatment effect is small one can stop for futility or increase the sample
size to hold on the desired power. Conversely when the treatment effect is larger than expected one can decrease the sample
size while still holding the desired power.

Figure 2. Average sample size, standard deviation of sample size and empirical power of the main scenario (k = 1, ω1 = 2/3, r =
60, b0 = 0, u0 = −∞, u1 = ∞) and some variations true hazard ratio ω ranging between 0.5 and 1.0, compared to a standard adaptive

design with stop for futility. The solid lines represent our new methodology and the dashed lines the standard methodology, where the

monotone decreasing lines starting at nearly 1 and ending by 0.025 represent the empirical power. The remaining upper lines show the

average sample size and the lower lines the standard deviation of the sample size. Notice that the latter lines overlap considerably and

are therefore difficult to distinguish. The vertical dotted line represents the value for ω used as planing alternative. The dotted,

horizontal line represents the aimed power of 80%. Figure A is the main scenario, Figure B the variation with k = 0.5, Figure C the

variation with k = 2.0, Figure D the variation with ω = 0.8 and Figure E is the variation Pocock boundaries. The value of the fine-tune

parameter PF is presented in the table on the bottom right for each scenario variation.
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We simulated our main scenario (k = 1, ω1 = 2/3, r = 60, u1 = ∞) with some variations. We used the parameter
PF ∈ [1.25, 1.75] as a fine-tuning parameter to level out the variation introduced by ω̂ and to match the aimed 80%
power quite exactly. The choice of these fine-tuning parameter is presented in the table within Figure 2.

We compare our test algorithm with a standard adaptive design based on the standard methodology by Wassmer.3 To
assure comparability we implemented a futility stop, when the short term log-rank test Z1 based on the first half of patients
shows a negative result. More specifically in the non Pocock designs, we compared our design to an adaptive design with
rejection region

Rsimple,1 : = {Z1 ≥ 0, Z∗
2 ≥ Γ1}, (35)

where Γ1 is chosen such that PH0 (Rsimple,1) = α. In the Pocock scenario we compared our design to a design with rejection
region

Rsimple,2 : = {Z1 ≥ Γ2} ∪ {0 ≤ Z1 < Γ2, Z∗
2 ≥ Γ2}, (36)

where Γ2 is chosen such that PH0 (Rsimple,2) = α. These are rejection regions, which can be used within the methodology of
Wassmer and are included in our methodology.

We set the required sample size such that the standard design also holds the desired power of 1− β = 80% under the
planing hypothesis K1.

The operating characteristic of our test algorithm in the main simulation scenario (k = 1, ω1 = 2/3, u1 = ∞) is pre-
sented in Figure 2 together with some variations of the scenario.

Across all scenario variations, the power and sample-size performance of our test statistic fits the performance of the
standard methodology quite well.

In the main scenario the mean sample-size difference between the standard methodology and our new methodology is
0.74% at maximum. Under the planing hypothesis the maximal increase of the mean sample-size across all scenario var-
iations was 0.5%, while in some cases the new design reduced the mean sample-size about 1.0%.

This suggests the use of easily interpretable survival rate differences as an interesting option for interim decision making
in survival trials.

By using various Weibull shape parameters, planning hypothesis and design types we assured that the performance con-
sistency is not dependant on our specific scenario assumptions.

Discussion
The confirmatory adaptive two–step log–rank test proposed here extends the one proposed by Wassmer.3 Whereas the
test proposed by Wassmer essentially only allows the use of the interim log–rank statistic for data–dependent design
modifications, our approach allows simultaneous use of the interim log–rank statistic and observed differences in
cumulative hazard rates at time s0 for interim decision making, while avoiding those problems arising with
methods based on patient wise separation.6–8 Next to an adaptation of sample size, our approach also allows modifica-
tion of the allocation ratio between the treatment arms or the recruitment rate, which neither has been described by

Table 1. Empirical type I error rate and power in the simulation scenarios. Empirical type I error rate (TOE) was obtained from

simulations where the true hazard ratio ω = 1. Empirical power was obtained by simulations where the true hazard ratio equals the

planing hazard ratio (ω = ω1). For further simulation details see section 6.

k ω u1 Average n Emp. TOE Emp. power

0.5 2/3 ∞ 279.453 0.027 0.838

Pocock 283.680 0.024 0.817

4/5 ∞ 738.387 0.024 0.798

Pocock 755.432 0.025 0.804

1.0 2/3 ∞ 249.870 0.026 0.839

Pocock 256.583 0.025 0.815

4/5 ∞ 671.721 0.025 0.793

Pocock 690.295 0.026 0.799

2.0 2/3 ∞ 232.490 0.024 0.847

Pocock 239.399 0.024 0.814

4/5 ∞ 651.614 0.026 0.793

Pocock 672.480 0.026 0.796
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Wassmer3 nor Jenkins.6 This is of importance when thinking about application of our methodology in a multiarm,
multistage setting. Even though the focus of this paper was on a trial design with two treatment arms and two analyses,
the generalization to more than two arms and more than two analyses is straightforward using the methodology
described by Hommel et al.9

Our adaptive two–step log–rank test exploits the independent increments structure of the limiting Gaussian process of
the joint bivariate process defined by the log–rank statistic and the Nelson–Aalen difference at some time s0. Therefore, we
emphasize that the full use of arbitrary interim data for design modifications is still not admissible here.4 However, our
approach makes provision for the simultaneous use of (i) the interim log–rank statistic and (ii) differences in cumulative
hazard rates at an arbitrary time s0.

The calculation of rejection regions and sample size formulas were based on distributional approximation of the bivari-
ate test statistic in the large sample limit. Our methodology used mild regularity assumptions as well as the proportional
hazards assumption. It is well known, that the log–rank test is less efficient and its distribution depends on the distribution
of censoring times, when the proportional hazards assumption is violated.10 This is likely to be inherited by our method.
The small sample properties were studied by simulations. The validity of the proposed design does not depend on specific
model assumptions underlying these simulations such as exponentially distributed survival times. In view of the flexibility
offered by our approach, however, applicants are recommended to assess different choices of design parameters in order to
identify those parameter constellations with best operating characteristics as compared to a standard single–step two–
sample log–rank test. For this purpose, we provide an R program in the supplemental material that enables easy assessment
of operating characteristics and thus optimal calibration of the design parameters in a specific trial setting. The R program
also underlies our simulation.
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Appendix A
We will now deduce the distributional approximation presented in (8). The proofs presented here are formulated for a
single-step design. However, the extension to a multi-step design is straight forward using the independent increments
structure. We therefore drop the stage indices k for notational simplicity.

It is well known that for a patient i from treatment group x = A, B,

Mi(s) : = Di(s)−
∫s
0
I (Ti ∧ Ci ≥ u)λx(u)du (37)

is an F s–martingale.11 In particular, with Mx(s) : =
∑

i∈N x
Mi(s) and for any F s–adapted left–continuous process

H(s),

(H •Mx)(s): =
∫s
0
H(u)dMx(u)

=
∫s
0
H(u)dDx(u)−

∫s
0
H(u)Yx(u)λx(u)du

is an F s–martingale with optional and predictable covariation process12

[H •Mx](s) =
∫s
0
H2(u)dDx(u),

〈H •Mx〉(s) =
∫s
0
H2(u)Yx(u)λx(u)du.

We aim for the joint distribution of the weighted two–sample log–rank statistic, which has the integral
representation

LR(s) =
∫s
0

L(u)

YA(u)
dNA(u)−

∫s
0

L(u)

YB(u)
dNB(u)

and the difference of the group–wise Nelsen–Aalen estimates

Δ(s) =
∫s
0

JA(u)

YA(u)
dNA(u)−

∫s
0

JB(u)

YB(u)
dNB(u)

as F s–adapted processes, i.e. we aim for the distribution of the bivariate process

Ψ(s) : = n−1/2LR(s)

n1/2Δ(s)

( )
.

Introducing the bivariate drift process

μ(s) : = n−1/2
�s
0L(u){λA(u)− λB(u)}du

n1/2
�s
0{JA(u)λA(u)− JB(u)λB(u)}du

( )
,

it follows from (37) that

MLR(s)

MΔ(s)

( )
: = M(s) : = Ψ(s)− μ(s)

is a bivariate mean–zero F s–martingale. Since [Mx] = Nx and [MA, MB] = 0, the optional covariation matrix [M](s) of M
has components
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[MLR](s) = n−1
∫s
0

L(u)2

YA(u)
2 dNA(u)+ n−1

∫s
0

L(u)2

YB(u)
2 dNB(u),

[MLR, MΔ](s) =
∫s
0

L(u)

YA(u)
2 dNA(u)+

∫s
0

L(u)

YB(u)
2 dNB(u),

[MΔ](s) = n

∫s
0

JA(u)

YA(u)
2 dNA(u)+ n

∫s
0

JB(u)

YB(u)
2 dNB(u).

Since 〈Mx〉(s) =
�s
0Yx(u)λx(u)du and 〈MA, MB〉 = 0, the predictable covariation matrix 〈M〉(s) of M has components

〈MLR〉(s) = n−1
∫s
0

L(u)2

YA(u)
λA(u)du+ n−1

∫s
0

L(u)2

YB(u)
λB(u)du,

〈MLR, MΔ〉(s) =
∫s
0

L(u)

YA(u)
λA(u)du+

∫s
0

L(u)

YB(u)
λB(u)du,

〈MΔ〉(s) = n

∫s
0

JA(u)

YA(u)
λA(u)du+ n

∫s
0

JB(u)

YB(u)
λB(u)du.

Above equations are easily checked (see Aalen et al.13 Sec. 2.2.5). On this basis we may deduce the distributional proper-
ties of the bivariate processΨ(s) = M(s)+ μ(s) in the large sample limit, as stated in the following theorems. The proofs of
the theorems A1, A2 and equations (13) and (14) are presented after some additional results, which we need.

Theorem A1 Fix smax > 0 and assume that the hazard functions λA and λB are bounded on the interval [0, smax] and
P(Ci > smax) > 0. Assume furthermore that the treatment group allocation is done by block randomisation i.e. there
exists a constant BL ∈ N, that for all n ∈ N it holds

‖#N n
A −

1

1+ v
· n

⌊ ⌋
‖ ∨ ‖#N n

B −
v

1+ v
· n

⌊ ⌋
‖ < BL.

Then for all s ∈ [0, smax] the limit Σ(s) : = plimn�∞[M](s) exists and there is a Gaussian mean zero martingale M∞(s)
with covariance matrix Σ(s) s.t.

M
D

n � ∞
M∞.

In particular, the following distributional approximation holds:

(i) M(s2)−M(s1)and M(s1)are independent for all 0 ≤ s1 ≤ s2 ≤ smax.

(ii) M(s) ∼ N (0, Σ(s)) for all s ∈ [0, smax].

(iii) M(s2)−M(s1) ∼ N (0, Σ(s2)− Σ(s1))for all}0 ≤ s1 ≤ s2 ≤ smax.

Theorem A2 Assume the conditions from theorem 1. Then, under the contiguous alternatives ΛB(s) = ωnΛA(s) with
ωn : = e−n−1/2γ for γ ≥ 0, we have

Σ(s) = σ2LR(s) ΛA(s)

ΛA(s) σ2Δ(s)

( )
and lim

n�∞
μ(s) = γ · σ2LR(s)

γ · ΛA(s)

( )
,

for some continuous variance functions σ2LR(s) and σ2Δ(s). More explicit we have σLR(s) =
�����
π(s)

√ �
v

√
1+v, where

π(s) : = plimn�∞N (s)/n. In particular the limit π(s) exists.
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Since Ψ(s) = M(s)+ μ(s), we conclude that the processes in (38) below have independent increments with the follow-
ing distributional large sample approximation:

n−1/2LR(s)

n1/2Δ(s)

( )
D≈ N

(
γ · σ2LR(s)
γ · ΛA(s)

( )
,

σ2LR(s) ΛA(s)

ΛA(s) σ2Δ(s)

( ))
,

n−1/2LR(s)�������
[MLR](s)

√
n1/2Δ(s)������
[MΔ](s)

√

⎛⎜⎝
⎞⎟⎠D≈ N

( − ��
n

√
log (ω) · σLR(s)

− ��
n

√
log (ω) · ΛA(s)

σΔ(s)

( )
,

1 ΛA(s)
σLR(s)σΔ(s)

ΛA(s)
σLR(s)σΔ(s)

1

( ))
.

(38)

Using the independence of increments we get for 0 < s0 ≤ s1 ≤ smax

n−1/2LR(s1)��������
[MLR](s1)

√
n1/2Δ(s0)�������
[MΔ](s0)

√

⎛⎜⎝
⎞⎟⎠D≈ N

(
− ��

n
√

log (ω) · σLR(s1)
− ��

n
√

log (ω) · ΛA(s0)
σΔ(s0)

( )
,

1 ΛA(s0)
σLR(s1)σΔ(s0)

ΛA(s0)
σLR(s1)σΔ(s0)

1

( ))
,

which is the distributional approximation we stated in (8).
To prove our theorems we need some additional results.

Proposition A3 Let (Xn(s))n∈N be a sequence of stochastic processes, f a borel measurable function and smax > 0 with

(1) Xn(s) P
n�∞ f (s),

(2)
�smax

0 |f (s)| <∞,

which also satisfy one of the following conditions.

(a) It exists a constant c > 0, that for all n ∈ N and for all s ∈ [0, smax] it holds

|Xn(s)| < c a.s..

(b) It exists a sequence of stochastic processes (X̃ n(s))n∈N, a function h and an integrable function g with

(i) |X̃ n(s)| is monotone in s for all n ∈ N a.s.,
(ii) |X̃ n(s)| P

n�∞ h(s) for all s ∈ [0, smax],

(iii) |Xn(s)| ≤ |X̃ n(s) · g(s)| for all s ∈ [0, smax] a.s..

Then it holds ∫s
0
Xn(u)du

P

n � ∞

∫s
0
f (u)du for all s ∈ [0, smax].

Proof. We will show that conditions (1),(2) and (a) are sufficient to satisfy the preconditions of Hellands proposition12

Prop. II.5.2 and that conditions (1),(2) and (b) are sufficient to satisfy the preconditions of Gills proposition12 Prop.
II.5.3 .

Assume conditions (1),(2) and (a) are satisfied. Then for any c′ > c it holds
1{|Xn(s)|>c′} = 0 a.s. and furthermore

sup
n∈N

E |Xn(s)|1{|Xn(s)|>c′}
[ ] = 0.

With k(s) : = c it holds

E |Xn(s)|
[ ]

≤ E[c] = c = k(s).

Therefore the preconditions of Hellands proposition are satisfied.
Assume now that conditions (1),(2) and (b) are satisfied. Without loss of generality we can assume, that |X̃ n(s)| is mono-

tone increasing in s. Otherwise we transition to |X̃ n(smax − s)|. For arbitrary δ > 0 we choose some arbitrary but fixed ϵ > 0
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and define kδ(s) : = |{h(smax)+ ϵ} · g(s)|. It holds
P
(|Xn(s)| ≤ kδ(s)for all s ∈ [0, smax]

)
=P

(|Xn(s)| ≤ |{h(smax)+ ϵ} · g(s)|for all s ∈ [0, smax]
)

≥P
(|X̃ n(s) · g(s)| ≤ |{h(smax)+ ϵ} · g(s)|for all s ∈ [0, smax]

)
≥P

(|X̃ n(s)| ≤ |{h(smax)+ ϵ}|for all s ∈ [0, smax]
)

=P
(|X̃ n(smax)| ≤ |{h(smax)+ ϵ}|)

n � ∞
1 > 1− δ.

In the last equality we used, that |X̃ n(s)| is monotone increasing in s. The convergence holds because of the convergence of
|X̃ n(s)| in probability. Above inequality yields in the preconditions of Gills proposition. □

Lemma A4 (Simple weak law of large numbers)Let (μn)n∈N be a sequence in [0, 1] with limn�∞ μn = μ ∈ [0, 1] and let
(X (n)

i )i=1,...,n be a sequence of independent Ber(μn) distributed random variables.
Then it holds ∑n

i=1 X
(n)
i

n

P−−−−→
n�∞

μ.

Proof. We will proof the convergence in probability by showing, that the convergence holds in L2. Define
Sn : =

∑n
i=1 X

(n)
i , then it holds

E
Sn
n
− μ

( )2
[ ]

=E
Sn
n
− μn + μn − μ

( )2
[ ]

=E
Sn
n
− μn

( )2
[ ]

+ 2E
Sn
n
− μn

( )
μn − μ

( )[ ]
+ E μn − μ

( )2[ ]
= 1

n2
Var(Sn)+ 2E

Sn
n
− μn

[ ]
· μn − μ
( )+ μn − μ

( )2
= 1

n2
nμn(1− μn)+ μn − μ

( )2� 0 □

Lemma A5 (Weak law of large numbers) Let (#n)n∈N be an infinite sequence of N -valued, monotone in n ∈ N increasing
random variables, which satisfy the following conditions

• ∀n ∈ N : #n ≤ n,

• ∃c ∈ [0, 1] : #n

n
P−−−→

n�∞
c,

• ∃BL ∈ N : ∀n ∈ N : ‖#n − ⌊cn⌋‖ < BL.

Let furthermore (μn)n∈N be a sequence in [0, 1] with limn�∞ μn = μ ∈ [0, 1] and (X (n)
i )i=1,...,n a sequence of independent

Ber(μn) distributed random variables. Then it holds∑#n

i=1 X
(n)
i

n

P−−−→
n�∞

c · μ.

Proof. We will show the convergence in L2. Define Zn : =
∑#n

i=1 X
(n)
i and Sn : =

∑⌊cn⌋
i=1 X (n)

i . Then it holds
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E
Zn
cn

− μ

( )2
[ ]

=E
Zn
cn

− Sn
cn

+ Sn
cn

−−μ

( )2
[ ]

=E
Zn − Sn

cn

( )2
[ ]

+ 2E
Zn − Sn

cn

( )
Sn
cn

− μ

( )[ ]
+ E

Sn
cn

− μ

( )2
[ ]

.

The first summand satisfies the inequality

Zn − Sn
cn

∣∣∣∣ ∣∣∣∣2≤ #n − ⌊cn⌋
cn

∣∣∣∣ ∣∣∣∣2≤ BL

cn

∣∣∣∣ ∣∣∣∣2−−−→
n�∞

0.

For the second summand it holds

2E
Zn − Sn

cn

( )
Sn
cn

− μ

( )[ ]
≤ 2E

Zn − Sn
cn

∣∣∣∣ ∣∣∣∣ Sncn− μ

∣∣∣∣ ∣∣∣∣[ ]
≤ 2

BL

cn
E

Sn
cn

− μ

∣∣∣∣ ∣∣∣∣[ ]
−−−→
n�∞

0.

For the convergence we used, that the second factor is bounded. The last summand vanishes analogously to the proof of
prior lemma in the limit. Therefore the whole sum converges to 0. Multiplying both sides with c concludes the assertion.
□

Proof of theorem A1. We want to show, that plimn�∞〈M〉(s) exists. For this purpose we first take a closer look at the
random variables Yn

A (u) and Y
n
B (u) for some fixed u ∈ R+. If patient i ∈ N is under treatment A we use the notation PA : =

P (analogously PB : = P) to emphasize the stochastic influence of the treatment. It holds

Yn
A (u) =

∑
i∈N n

A

1{Ti>u,Ci>u}

and furthermore

PA(Ti > u, Ci > u) = PA(Ti > u) · P(Ci > u) = SA(u) · P(Ci > u).

In the first equation we used the independence of Ti and Ci. With the independence of patients, it follows

Yn
A (u) ∼ Bin #N n

A, SA(u) · P(Ci > u)
( )

,

analogously it follows, that

Yn
B (u) ∼ Bin #N n

B, SB(u) · P(Ci > u)
( )

. (39)

Because of block randomisation, the convergences #N n
A

n

P
−−−→
n�∞

1
1+v and

#N n
B

n

P
−−−→
n�∞

v
1+v hold and we can apply the weak law of large

numbers to get the convergences

Yn
A (u)

n
−−−→
n�∞

1

1+ v
· SA(u) · P(Ci > u) = : yA(u),

Yn
B (u)

n
−−−→
n�∞

v

1+ v
· SB(u) · P(Ci > u) = : yB(u).

(40)

For the sake of readability we introduce the Notation −A : = B and −B : = A. Then 〈M〉(s) has components

MΔ
n

〈 〉
(s) =

∑
x=A,B

n

∫s
0

J nx (u)

Yn
x (u)

λx(u)du, (41)

MLR
n

〈 〉
(s) =

∑
x=A,B

n−1
∫s
0

Yn
x (u) · Yn

−x(u)
2

{Yn
x (u)+ Yn−x(u)}

2 λx(u)du, (42)
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MΔ
n , M

LR
n

〈 〉
(s) =

∑
x=A,B

∫s
0

Yn
−x(u)

Yn
x (u)+ Yn−x(u)

λx(u)du. (43)

The limit in probability of the integrals can be computed with use of proposition A3. The integrands in (41) satisfy the
preconditions (b) via

X̃
n
x (u) = n · J

n
x (u)

Yn
x (u)

+ n · 1{Jnx (u)=0}
P

−−−−→
n�∞

cx
1

yx(u)
and g(u) = λx(u),

with cA = (1+ v) and cB = (1+ v)/v. Note that the convergence holds because of Slutsky’s theorem and equation (40).
The integrands in (42) and (43) satisfy the precondition (a) of proposition A3, because they are bounded by
supu∈[0,smax] λx(u) <∞. It follows in probability as n � ∞

(44)
• 〈MLR

n 〉(s) � ∑
x=A,B

�s
0

yx(u)y−x(u)
2

{yx(u)+y−x(u)}
2 λx(u)du,

• 〈MΔ
n , M

LR
n 〉(s) � ∑

x=A,B

�s
0

yx(u)
yx(u)+y−x(u)

λx(u)du,

• 〈MΔ
n 〉(s) �

∑
x=A,B

�s
0

1
yx(u)

λx(u)du.

Moreover, the jumpsize ofM(s) is of order n−1/2 (and thus vanishes in the limit n � ∞), because Nx has jumpsize 1 and Yx
is of order n. Thus, by a multivariate version of Rebolledo’s martingale central limit theorem12 (theorem II.5.1),
plimn�∞[M](s) exists and coincides with plimn�∞〈M〉(s), and [M(s)]s≥0 converges to a mean zero Gaussian process
[M(∞)(t)]t≥0 with independent increments and covariance matrix Σ(s) = : plimn�∞[M](s). □

Proof of theorem A2. Let y(u) : = (1+ v) · yA(u), with yA as in (40). Analogously to (39) it follows, that

Yn
B (u) ∼ Bin #N n

B, S
ωn
A (u) · P(Ci > u)

( )
.

Using the weak law of large numbers, we therefore conclude

Yn
B (u)

n
−−−−→
n�∞

v

1+ v
· SA(u) · P(Ci > u) = v · yA(u). (45)

We will now calculate the limit π and thus show its existence. Recalling that
n−1/2MA(s)D�N (0, 1), we have in the limit n � ∞ in probability

N (s)

n
= 1

n
M (s)+ 1

n

∫s
0
YA(u)λA(u)du+ 1

n

∫s
0
YB(u)λB(u)du

= 1

n
M (s)+ 1

n

∫s
0
YA(u)λA(u)du+ e−n−1/2γ · 1

n

∫s
0
YB(u)λA(u)du

� 0+
∫s
0
yA(u)λA(u)du+

∫s
0
yB(u)λA(u)du =

∫s
0
y(u)λA(u)du.

(46)

The convergence of the integrals holds using (40), Slutsky theorem and proposition A3 (a). To prove the assertion regard-
ing μk (s), notice that in the limit n � ∞ in probability

n−1/2
∫s
0
L(u){λA(u)− λB(u)}du

= n1/2(1− e−n−1/2γ)

∫s
0

YB(u)/n

YA(u)/n+ YB(u)/n

YA(u)

n
λA(u)du

� γ · v
(1+ v)2

∫s
0
y(u)λA(u)du = γ · v

(1+ v)2
· π(s).

The convergence of the integrals holds again using (40), Slutsky theorem and proposition A3 (a). In the last equality we
made use of (46). Since JA(u) � 1 and JB(u) � 1 as n � ∞, we likewise conclude
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lim
n�∞

n1/2
∫s
0
{JA(u)λA(u)− JB(u)λB(u)}du

= lim
n�∞

{n1/2(1− e−n−1/2γ)}

∫s
0
λA(u)du = γΛA(s).

With similar arguments, we used to show (44), we can conclude

〈MLR, MΔ〉(s) =
∑
x=A,B

∫s
0

Y−x(u)/n

YA(u)/n+ YB(u)/n
λx(u)du

� v

1+ v

∫s
0
λA(u)du+ 1

1+ v

∫s
0
λA(u)du = ΛA(s)

as well as

〈MLR〉(s) =
∑
x=A,B

∫s
0

Y−x(u)/n

YA(u)/n+ YB(u)/n

{ }2

{Yx(u)/n} · λx(u)du

� v

1+ v

( )2∫s
0

y(u)

1+ v
λA(u)du+ 1

1+ v

( )2∫s
0

v · y(u)
1+ v

λA(u)du

= v

(1+ v)2

∫s
0
y(u)λA(u)du = v

(1+ v)2
π(s).

(47)

In the last equality, we made use of (46). □

Proof of equations (13) and (14). Our preliminary work enables a quick calculation of σLR(s) and σΔ(s). For this purpose we
first take a closer look at yA(u). Under the no loss to follow up and uniform recruitment assumptions, it holds

P(Ci > u) = P(Ci + Ei > u+ Ei) = P(a+ f − u > Ei) =
1 u ≤ f
0 u ≥ a+ f
a+f−u

a else.

⎧⎪⎪⎨⎪⎪⎩ (48)

Analogue to proof of theorem 1 and with use of (45) it holds

MΔ
n

〈 〉
(s)

P

n � ∞
(1+ v)2

v

∫s
0

λA(u)

SA(u) · P(Ci > u)
du (49)

Using equation (48), the identity λA(u) = −S′A(u)/SA(u) and the substitution z = SA(u), we get equation (13).
With (47) and (48), we also conclude

MLR
n

〈 〉
(s)

P

n � ∞
v

(1+ v)2

∫s
0
SA(u) · P(Ci > u)λA(u)du

Using the same identities and substitution as in (49), we get equation (14). □

A seamless phase II/III design
In this section we elaborate application of our design algorithm in the context of a two–armed randomized seamless phase
II/III survival trial. In the phase II part, we assume that the two treatments are compared regarding the short–term endpoint
survival rate at time s0. I.e. as phase II part, we consider a local level α test of the confirmatory null hypothesis
H0,1 : SA(s0) = SB(s0) on the s0 survival rates using the rejection region

R1 : = {B1 >Φ−1(1− α)}. (50)

R1 realizes a single step test of H0,1. Only in the case of rejection of H0,1 (i.e. B1 >Φ−1(1− α)), we continue the trial in
order to compare the two treatments also regarding long–term survival. I.e. as phase III part, we consider a local level α test
of the confirmatory null hypothesis H0,2 : SA(s) = SB(s) for all 0 ≤ s ≤ smax for some prefixed smax > 0 using the rejection
region
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R2 : = {Z∗
1 ≥ u1} ∪ {Z∗

1 < u1, Z∗
2 ≥ u2}. (51)

R2 realizes a two-step test of H0,2. It makes sense to synchronize the analysis of H0,1 with the interim analysis of H0,2.
Notice that, we may choose u1 : = ∞ if we wish to refrain from testing H0,2 already at the interim analysis and that adjust-
ment to multiple testing is done by hierarchical testing in the order H0,1 followed by H0,2, i.e. we reject H0,2 to the multiple
level α if and only if H0,1 and H0,2 are both rejected by their local level α tests. H0,1 can be rejected to the multiple level α if
H0,1 is rejected locally.

At the interim analysis, we are free to perform a data–dependent sample size recalculation based on the observed interim
log–rank statistic Z∗

1 and the observed difference in the short term response B1.
For a sample size calculation algorithm we have to apply the methodology presented in section ‘Initial sample size cal-

culation’ to the rejection region

R3 : = R1 ∩ R2 = {B1 >Φ−1(1− α), Z∗
1 ≥ u1} ∪ {B1 >Φ−1(1− α), Z∗

1 < u1, Z∗
2 ≥ u2} (52)

with power defined by the probability PK (R3) under some planing alternative K.

Feld et al. 2581


	 Introduction
	 Notation and stochastic assumptions
	 Joint martingale representation of the log–rank statistic and cumulative hazard difference
	 Adaptive log–rank test with simultaneous use of interim log–rank statistic and cumulative hazard rate difference
	 The design algorithm
	 The rejection region
	 Calculation of the critical bounds
	 Initial sample size calculation
	 Data–dependent sample size recalculation at the interim analysis based on conditional power

	 Example: A two–step log–rank test with futility criterion based on short–term survival rate
	 Simulation
	 Design of the main scenario
	 Results

	 Discussion
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


