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Abstract

Current coronavirus disease-2019 (COVID-19) pandemic has caused massive loss of lives. Clinical trials of vaccines and
drugs are currently being conducted around the world; however, till now no effective drug is available for COVID-19.
Identification of key genes and perturbed pathways in COVID-19 may uncover potential drug targets and biomarkers. We
aimed to identify key gene modules and hub targets involved in COVID-19. We have analyzed SARS-CoV-2 infected
peripheral blood mononuclear cell (PBMC) transcriptomic data through gene coexpression analysis. We identified 1520 and
1733 differentially expressed genes (DEGs) from the GSE152418 and CRA002390 PBMC datasets, respectively (FDR < 0.05). We
found four key gene modules and hub gene signature based on module membership (MMhub) statistics and protein–protein
interaction (PPI) networks (PPIhub). Functional annotation by enrichment analysis of the genes of these modules
demonstrated immune and inflammatory response biological processes enriched by the DEGs. The pathway analysis
revealed the hub genes were enriched with the IL-17 signaling pathway, cytokine–cytokine receptor interaction pathways.
Then, we demonstrated the classification performance of hub genes (PLK1, AURKB, AURKA, CDK1, CDC20, KIF11, CCNB1,
KIF2C, DTL and CDC6) with accuracy >0.90 suggesting the biomarker potential of the hub genes. The regulatory network
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analysis showed transcription factors and microRNAs that target these hub genes. Finally, drug–gene interactions analysis
suggests amsacrine, BRD-K68548958, naproxol, palbociclib and teniposide as the top-scored repurposed drugs. The
identified biomarkers and pathways might be therapeutic targets to the COVID-19.

Key words: COVID-19; differentially expressed genes; gene coexpression network; systems biology; protein–protein
interaction; machine learning

Introduction
The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a newly evolved virus, first identified in Wuhan,
China in December 2019. Pneumonia caused by the SARS-CoV-2
was referred to as coronavirus disease (COVID-19), which was
declared as the COVID-19 as a pandemic by the World Health
Organization (WHO) [1]. The main symptoms of COVID-19 are
fever, cough, pneumonia and shortness of breath [2]. The SARS-
CoV-2 has infected almost 65 943 003 peoples with more than
1 519 137 deaths globally (as of 5 December 2020) [3].

The spread of the virus infection may be controlled through
early detection of COVID-19 patients. However, the currently
used methods including real-time polymerase chain reaction
(RT-PCR) are subject to limited sensitivity and specificity as well
as time-consuming. Moreover, careful sample collections and
preparations, and skilled manpower are required, which are
a tremendous drawback for developing countries. Thus, tran-
scriptomic analysis of SARS-CoV-2 PBMC may provide candi-
date biomarkers. Past studies have conducted a transcriptomic
analysis of various organs including lung epithelial cell [4–6],
PBMC [7, 8]. Most of the previous reports detected the hub genes
in COVID-19 from each module either via the PPI network or
module membership criterion [5, 9–13]. Extensive gene expres-
sion analysis to identify differentially expressed genes (DEGs)
and associated gene ontologies have been proposed by previous
reports [5, 9–13]. Detection of specific gene modules has not been
performed in COVID-19, and identification of key gene module
hubs and targeting those critical genes for drugs repurposing is
crucial to combat COVID-19. However, despite important find-
ings from those studies, integrative analysis is needed to detect
novel dysregulated genes and pathways for the pathogenesis of
COVID-19.

The weighted gene coexpression network analysis (WGCNA)
identifies significant modules (clusters) of highly correlated
genes [14]. It explains the correlation patterns within genes
and samples and biologically interprets the function of gene
modules. The hub genes of differentially coexpressed modules
provide more significance than the usual hub DEGs. WGCNA is
widely used for biomarkers identification in various diseases
[15–17], it has a great prospect in COVID-19. Identification of
repurposable drug candidates for COVID-19 may reverse the
DEGs of COVID-19, we have decided to utilize the anti-signature
approach [5]. Identification of this in silico based approach offer
opportunities to identify potential candidate drugs that might
be considered for drug repositioning for COVID-19 treatment.

In this study, we implemented a system biology approach to
key gene modules (identified via WGCNA) that were DEGs in
COVID-19 PBMC. The hub genes were then identified from the
key gene modules based on gene module membership (MMhub)
and protein–protein interaction network (PPIhub), respectively.
Then, we employed machine learning methods to determine the
validity of these hub genes. Finally, we identified several candi-
date drugs considering these hub genes as therapeutic targets.

Our results may provide novel insights into the pathogenesis of
COVID-19 and the potential molecular targets.

Materials and methods
RNA-sequencing datasets

In this study, we used two RNA-Sequencing PBMC datasets of
SARS-CoV-2 (COVID-19). One of the COVID-19 gene expression
raw counts dataset was obtained with the accession number
GSE152418 under the platform GPL24676 from the NCBI Gene
Expression Omnibus (GEO) [18]. Recently this dataset was
deposited by Arunachalam et al. [7] that contained 34 samples (17
COVID-19 samples and 17 healthy control samples). The other
dataset was obtained from the Chinese Academy of Science with
the accession number CRA002390 that contained PBMC samples
from three COVID-19 infected patients and three healthy donors
[6]. In this study, the GSE152418 discovery dataset was used
to analyze WGCNA, and the CRA002390 dataset was used for
independent validation.

Data preprocessing and differential gene expression
analysis

The transcriptomics dataset, GSE152418, of COVID-19 contained
a large number of genes (60 683 genes). For data preprocessing,
the low expressed genes (sum of the gene counts for all samples
<100) were excluded from this dataset. Then the differential
gene expression analysis of the dataset was carried out through
the DESeq2 package in the R language [19]. For the CRA002390
normalized count dataset, we used the limma package in R
[20] to identify the DEGs. We considered adjusted P-value with
Benjamini-Hochberg FDR correction techniques (FDR < 0.05) and
∣
∣
∣log2(FC)

∣
∣
∣ ≥ 1 statistical threshold parameters for DEGs identifi-

cation.

Weighted gene coexpression networks construction

The gene coexpression network construction was executed after
removing the outlier samples (if there exist). The cluster den-
drogram of the samples was constructed to check the outliers
through the hclust function in R. We used the WGCNA package in
R [25] to construct the weighted gene coexpression network. For
finding numerous soft-thresholding powers β over R2, we used
the pickSoftThreshold function. Then we picked the value of β

for which the value of R2 maximum. The adjacency matrix and
Topological Overlap Matrix (TOM) were then constructed using
this soft threshold power with the transformed gene expression
matrix. Then the dissimilarity of TOM (dissTOM) was computed
to construct a network heatmap plot and for further analyses.

For the detection of the module, the dendrogram of genes
was constructed with a dissTOM matrix using hclust function
with different colors. The Automerged technique was used to
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get modules using the parameters: deepSplit = 2 and minClus-
terSize = 30 for avoiding the generation of small or large mod-
ules. Here MEDissThres = 0.25 was taken for merging similar
modules [15].

Preservation analysis for the key module selection

To find the key modules, we used module preservation analysis.
The modulePreservation function [21] was used to evaluate each
of the modules whether it was robust and reproducible across
datasets or not. If preservation statistics Z summary>10, then
the module is considered as preserved [15]. It is apparent that the
module preservation and preservation statistics-median Rank
are negatively correlated and there is present a positive corre-
lation between Z summary statistic and module preservation.

Gene ontology and pathway enrichment analysis

The high connectivity of genes inside the coexpression modules
may represent crucial information about the similar biological
roles within the same module. The functional enrichment anal-
ysis of the genes was studied in each selected key modules
via Gene Ontology (GO) and pathway analysis [22, 23]. The GO
and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
enrichment analysis was executed via the Database for Anno-
tation, Visualization, and Integrated Discovery and visualized
(DAVID) tools [24] and the result was visualized through cluster-
Profiler package in R [25]. A statistical threshold criterion with an
adjusted P-value <0.05 was used to select significant GO terms
and KEGG pathways.

Identification and validation of hub genes

In a gene module, a series of genes with the greatest degree
of connectivity was detected as hub genes that investigate
the characteristics of a module. Also, a module’s connectivity
defining the hub genes was calculated using the absolute value
of the Pearson’s correlation (|cor.geneModuleMembership| > 0.8)
[15]. Furthermore, we uploaded all genes of the key modules into
the STRING database, choosing confidence score cutoff >900 to
construct protein–protein interaction (PPI). In the PPI network,
genes with a connectivity degree of ≥8 were also defined as hub
genes [26]. The present study further analyzed the CRA002390
validation dataset to confirm the role of these hub genes as
molecular signature genes for COVID-19. The common genes
among the MMhub, PPIhub and the DEGs of CRA002390 will be
considered for further network analyses.

Performance evaluation of the hub genes with
classification algorithms

To check the validity of the identified common hub genes in
two different analyses results (MMhub and PPIhub), the five
popular classification algorithms, support vector machine (SVM)
[27] radial basis kernel function, random forest (RF) [28], Poisson
linear discriminant analysis (PLDA) [29], negative binomial linear
discriminant analysis (NBLDA) [30] and voom-based diagonal
linear discriminant analysis (voomDLDA) [31] were conducted
through MLSeq package in R [32]. For the SVM and RF classifiers,
we used DESeq normalization and VST transformation on the
count dataset. Here, we considered the COVID-19 GSE152418
transcriptomic dataset for the classification analysis separately
with MMhub genes and PPIhub genes, respectively. We com-
puted four performance measures namely, accuracy, area under

the ROC curve (AUC), sensitivity and specificity based on the data
with MMhub and PPIhub genes, respectively.

PPI network analysis

The common genes among MMhub, PPIhub and DEGs of
CRA002390 were considered for further network analysis. The
PPI network for these genes was constructed via the STRING
web tools [33]. STRING provides the PPI network that shows
how the identified hub genes (proteins) interrelate functionally
and physically with each other through encoding the gene list
as input. Through the STRING information, the PPI network
was constructed via Cytoscape [34] which is an open-source
platform. The hub genes from this network were chosen based
on degree connectivity via Cytohubba in Cytoscape. These hub
genes were considered for final biomarkers of COVID-19.

Transcription factor and miRNAs identification

The significant transcription factors (TFs) were identified
through a freely accessible database of TFs repository-JASPAR
[35] by executing the interaction of the TFs-target genes via Net-
workAnalyst [36]. The significant miRNAs were identified from
miRNAs-target gene interaction analysis through the Tarbase
[37] and mirTarbase [38] database via NetworkAnalyst [36]. These
networks were visualized with Cytoscape and the significant
hub TFs and miRNAs were selected via the CytoHubba plugin in
Cytoscape based on the degree connectivity.

Drug–gene interaction analysis

To predict potential drugs for the treatment of COVID-19, we
performed a transcriptomic anti-signature approach [5, 39] using
the L1000FWD web-based tool [40], which measures the simi-
larity score between input DEGs and expression signature and
LINCS-L1000 data to detect drugs that may reverse the input
gene signature. LINCS-L1000 contained drugs induced gene sig-
nature of about 50 human cell lines in response to 20 000
compounds. The significant drugs were chosen based on the
criterion, q-value < 0.05.

Proposed bioinformatics pipeline

The workflow of the proposed bioinformatics methods to iden-
tify significant pathway and drug targets were illustrated in
Figure 1 with followings:

1. RNA-sequencing datasets: Differential gene expression
analysis was achieved using RNA-seq data. One dataset was
used to analyze the weighted gene coexpression network
and the other independent dataset was used for validation.

2. Coexpression network reconstruction: The weighted gene
coexpression network was constructed through the WGCNA
package in R.

3. Key module selection: The Module Preservation function
was used to identify robust and reproducible modules.

4. Enrichment analysis: Biological insights of key module
genes were determined via the DAVID tools.

5. Hub genes identification: Hub gene signature was identified
based on module membership (MMhub) statistics which
calculated using the absolute value of the Pearson’s correla-
tion and PPI networks (PPIhub) by using degree metrics. The
common genes as hub signature were selected among the
MMhub, PPIhub and the DEGs of CRA002390..



4 Auwul et al.

Figure 1. Flowchart of this study.

6. Validation analysis with machine learning methods: For
validation of hub signatures, the five popular classifica-
tion algorithms, SVM-radial basis kernel function, RF, PLDA,
NBLDA and voomDLDA were conducted through MLSeq
package in R.

7. Performance evaluation of hub genes: The performance
measures including accuracy, AUC, sensitivity and speci-
ficity of MMhub and PPIhub genes were calculated by using
an independent dataset.

8. Transcriptional regulator identification: Potential regulators
(i.e.: TF and miRNA) of hub gene signature were deter-
mined using JASPAR, Tarbase and mirTarbase databases via
NetworkAnalyst.

9. Candidate drug identification: LINCS-L1000 data were used
to detect significant putative drugs that may reverse the
input hub gene signature.

Results
DEGs identification

The discovery dataset (GSE152418) contained 60 683 genes with
17 COVID-19 and 17 health control samples. After excluding
the lowly expressed genes, we selected 20 251 genes for DEGs

identification. We identified a total of 1520 DEGs (1299 upreg-
ulated and 221 downregulated) from this dataset (FDR < 0.05)
that were considered for further weighted gene coexpression
network analysis. We identified 1733 DEGs (1139 upregulated
and 594 downregulated) from the validation dataset (CRA002390)
in the COVID-19 samples. Table 1 presented the information
regarding the datasets used in this study.

Weighted gene coexpression networks and module
preservation analysis

The gene coexpression network analyses were performed with
identified 1520 DEGs of 16 COVID-19 samples in the GSE152418
dataset. The cluster dendrogram of these samples was visual-
ized in Figure 2A that revealed, no outlying samples presented
in this dataset. We selected the optimized soft-thresholding
power, β = 6 with R2 = 0.90 as the scale-free topology criteria
(Figure 2B). The coexpression networks were then constructed
with this soft threshold power β = 6 and obtained 10 coexpressed
modules namely, black, blue, brown, green, gray, magenta, pink,
red, turquoise and yellow. The cluster dendrogram of these 10
modules presented in Figure 2D. We observed 63, 273, 259, 95, 46,
58, 77, 426 and 198 genes for black, blue, brown, green, magenta,
pink, red, turquoise and yellow modules, respectively. The gray
module contained 25 genes that were tied up as noncoexpressed.
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Table 1. Overview of the COVID-19 datasets used in this study

Data accession No. Tissue sources # of identified DEGs # of Samples # of Control # of Case

GSE152418 PBMC 1520 34 17 17 (one outlier sample)
CRA002390 PBMC 1733 6 3 3

Figure 2. Construction of WGCNA coexpression modules and hub modules selection. (A) The cluster dendrogram of COVID-19 infected samples. (B) Analysis of the

scale-free fit index (left) and the mean connectivity (right) for various soft-thresholding powers. (C) Heatmap plot of all genes. (D) Dendrogram of all differentially

expressed genes clustered based on a dissimilarity measure (1-TOM). (E) Module eigengene dendrogram and eigengene network heatmap summarize the modules

yielded in the clustering analysis. (F) The median rank of the modules; the rank value close to zero indicates a high degree of module preservation. (G) The Z summary

statistics plot over each module; the blue and green dashed lines indicate the thresholds Z = 2 and Z = 10, indicate moderate and strong preservation thresholds,

respectively.

Figure 2C showed the network heatmap of all genes with these
nine modules. The interactions among these coexpressed mod-
ules were presented with the module eigengene dendrogram
and eigengene network heatmap (Figure 2E).

In the module preservation analysis, we used the GSE152418
dataset with 17 health control samples as the test dataset. We
identified turquoise, blue, brown and pink modules as the most
stable through preservation analysis. The remaining modules
were considered nonstable since their Z summary statistic <10
(Figure 2G). Figure 2F presented that the turquoise, blue, brown

and pink modules were the best-preserved among all modules
since their medianRank statistic were minimum than other
modules.

Biological insights of the four-module genes

To obtain further biological insight into the genes of the
selected four modules, the GO and KEGG pathway analysis was
conducted in this study. The significant biological process (BP)
mainly enriched in the immune response, division and fission
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Figure 3. GO and KEGG enrichment analysis for four key modules. (A) biological process, (B) molecular function, (C) cellular components and (D) KEGG enrichment

analysis.

related BP (Figure 3A). The significant molecular function (MF)
mainly enriched in the binding related functions (Figure 3B). The
most significant cellular components (CC) for the four modules
are enriched in several cell compartments (Figure 3C).

The KEGG pathways for the genes of four modules signifi-
cantly enriched in several pathways such as infection-related
pathways (i.e: herpes simplex virus 1 infection, human papillo-
mavirus infection), autoimmune diseases related pathways (i.e.:
systemic lupus erythematosus, rheumatoid arthritis, type I dia-
betes mellitus), ECM-receptor interaction, IL-17 signaling path-
way and p53 signaling pathway (Figure 3D and Table 2). Inter-
estingly, alcoholism and systemic lupus erythematosus were
significantly enriched for the genes of these four modules.

Identification and validation of hub genes

We identified 422 hub genes (MMhub) in turquoise, blue, brown
and pink modules with high connectivity using the module
connectivity threshold criterion |cor.geneModuleMembership

| > 0.8. Additionally, we identified 240 hub genes (PPIhub) for the
four modules from the PPI through the STRING database with
a connectivity degree ≥8. The present study further analyzed
the CRA002390 validation set to confirm the role of these hub
genes as candidate biomarker genes for COVID-19. We identified
52 common genes among MMhub, PPIhub and the DEGs of
CRA002390 (Figure 5A). The summary of these 52 genes was
described in Table 4. The expression values of these common
genes over the COVID-19 and health control samples were
presented in Figure 5C. The heatmap showed the two main
clusters of these 52 hub genes in Figure 5B in terms of COVID-19
infected samples and control samples.

Performance evaluation of the hub genes with a
classification algorithm

To investigate the validity of the identified hub DEGs in two
different analyses (i.e.: MMhub and PPIhub), the five popular
classification algorithms were executed in this study. The
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Table 2. KEGG pathway enrichment results of four modules (top ten)

Modules ID Description Adjusted

P-value

Related genes Count

Turquoise hsa05034 Alcoholism 4.28E-10 HIST1H2AE;HIST1H3H;HIST1H4I;GNG11;HIST1H2AG;HIST1H2AI;HIST2H2BE

HIST1H2BD;HIST1H4K;HIST1H2BJ;SLC18A2;HIST1H4H;HIST1H2AC;HIST2H4A;

HIST1H2BG;HIST1H2BL;HIST1H2BK;HIST1H2BH;HIST1H2BC;HIST1H2BO;

MAOB

21

hsa05322 Systemic lupus

erythematosus

5.59E-10 MYLK;GP9;GUCY1B1;ITGA2;COL1A2;PTGS1;ARHGEF12;PRKG1;VWF;GP1BA;

ITGA2B;ITGB3;PLCB4;F2RL3;GP6

18

hsa04611 Platelet activation 5.66E-08 MYLK;GP9;GUCY1B1;ITGA2;COL1A2;PTGS1;ARHGEF12;PRKG1;VWF;GP1BA;

ITGA2B;ITGB3;PLCB4;F2RL3;GP6

15

hsa04512 ECM-receptor interaction 0.000108 ITGB5;GP9;ITGA2;COL1A2;VWF;GP1BA;ITGA2B;ITGB3;GP6 9

hsa04540 Gap junction 0.000108 EGF;GUCY1B1;PDGFA;LPAR1;PRKG1;TJP1;PLCB4;TUBB1;TUBA8 9

hsa05203 Viral carcinogenesis 0.000123 H4C14;H2BC21;H2BC4;H2BC5;H2BC8;H2BC9;H4C8;H2BC11;H4C9;H2BC12;

H2BC13;H4C12;H2BC17;CDKN2A

14

hsa04022 cGMP-PKG signaling

pathway

0.000247 OPRD1;MYLK;PDE5A;GUCY1B1;PDE2A;TRPC6;PRKG1;ADRA2A;PDE3A;

SLC8A3;PLCB4;MYL9

12

hsa04510 Focal adhesion 0.000385 MYLK;ITGB5;EGF;VEGFC;ITGA2;PDGFA;COL1A2;CAV2;VWF;BCAR1;

ITGA2B;ITGB3;MYL9

13

hsa04270 Vascular smooth muscle

contraction

0.002487 PLA2G2C;MYLK;GUCY1B1;CALD1;ARHGEF12;PRKG1;PLCB4;MYL9;PPP1R14A 9

hsa04810 Regulation of actin

cytoskeleton

0.002582 IQGAP3;MYLK;ITGB5;EGF;ITGA2;PDGFA;LPAR1;ARHGEF12;BCAR1;ITGA2B;

ITGB3;MYL9

12

Blue hsa04110 Cell cycle 3.14E-24 CDC20;CDKN2C;ORC1;BUB1;MCM6;CDC25A;MCM2;MAD2L1;CCNA2;CCNB1;

CDC25C;PTTG1;TTK;MCM4;CCNE2;CHEK1;CDK1;ESPL1;BUB1B;CCNB2;PKMYT1;

PLK1;ORC6;CDC6;CCNE1;CDC45

26

hsa04114 Oocyte meiosis 1.11E-13 CDC20;SPDYA;BUB1;SGO1;MAD2L1;CCNB1;CDC25C;PTTG1;FBXO5;CCNE2;

FBXO43;CDK1;ESPL1;CCNB2;PKMYT1;PLK1;AURKA;CCNE1

18

hsa04914 Progesterone-mediated

oocyte maturation

1.05E-08 SPDYA;BUB1;CDC25A;MAD2L1;CCNA2;CCNB1;CDC25C;CDK1;CCNB2;

PKMYT1;PLK1;AURKA

12

hsa05322 Systemic lupus

erythematosus

2.54E-06 H3C2;H2AC4;H3C3;H4C4;H4C6;H3C7;H3C8;H2AC12;H2AC14;H4C11;H3C11 11

hsa04115 p53 signaling pathway 6.76E-06 RRM2;CCNB1;CCNE2;CHEK1;CDK1;CCNB2;CCNE1;GTSE1 8

hsa05034 Alcoholism 9.77E-06 GNG4;H3C2;H2AC4;H3C3;H4C4;H4C6;H3C7;H3C8;H2AC12;H2AC14;

H4C11;H3C11

12

hsa05166 Human T-cell leukemia

virus 1 infection

4.74E-05 CDC20;CDKN2C;MAD2L1;CCNA2;TERT;PTTG1;CCNE2;CHEK1;ESPL1;

BUB1B;CCNB2;CCNE1

12

hsa04218 Cellular senescence 5.66E-05 CDC25A;CCNA2;CCNB1;CCNE2;CHEK1;CDK1;FOXM1;CCNB2;MYBL2;CCNE1 10

hsa03460 Fanconi anemia pathway 9.35E-05 UBE2T;RAD51;FANCI;RMI2;BRCA1;EME1 6

hsa05203 Viral carcinogenesis 0.000115 CDC20;CCR3;CCNA2;H4C4;H4C6;H4C11;SCIN;CCNE2;CHEK1;CDK1;CCNE1 11

Brown hsa05322 Systemic lupus

erythematosus

5.01E-06 C1QA;C1QC;C1QB;FCGR1A;IL10;H2BC7;H2AC16;H3C12;H2AJ;ELANE;C3 11

hsa05150 Staphylococcus aureus

infection

0.000536 C1QA;C1QC;C1QB;FCGR1A;IL10;CAMP;C3 7

hsa05142 Chagas disease 0.000772 C1QA;C1QC;C1QB;FASLG;IL10;TGFBR1;C3 7

hsa05133 Pertussis 0.000889 C1QA;C1QC;C1QB;IL10;IL23A;C3 6

hsa04610 Complement and

coagulation cascades

0.001597 C1QA;C1QC;C1QB;VSIG4;CLU;C3 6

hsa05168 Herpes simplex virus 1

infection

0.002736 FASLG;PILRB;ZNF10;ZNF597;C3;ZNF563;ZNF540;ZNF571;ZNF607;ZNF284;

ZNF600;ZNF543;ZNF304;ZNF547;ZNF419;ZNF132

16

hsa05165 Human papillomavirus

infection

0.003638 FZD5;FN1;WNT7A;SPP1;ITGA1;CREB3L1;WNT11;ITGA7;CCNA1;

THBS1;NOTCH3

12

hsa05030 Cocaine addiction 0.005867 MAOA;SLC18A1;CREB3L1;GRIN3B; 4

hsa05034 Alcoholism 0.006577 H2BC7;H2AC16;H3C12;MAOA;SLC18A1;CREB3L1;H2AJ;GRIN3B 8

hsa04512 ECM-receptor interaction 0.009794 FN1;SPP1;ITGA1;ITGA7;THBS1 5

Pink hsa04657 IL-17 signaling pathway 2.17E-05 IL1B;CCL20;TNF;TNFAIP3;FOSB 5

hsa05323 Rheumatoid arthritis 0.000359 IL1A;IL1B;CCL20;TNF 4

hsa05332 Graft-versus-host

disease

0.000482 IL1A;IL1B;TNF 3

hsa04940 Type I diabetes mellitus 0.000516 IL1A;IL1B;TNF 3

hsa04060 Cytokine–cytokine

receptor interaction

0.000639 IL1A;IL1B;CXCR4;CCL20;TNF;OSM 6

hsa04668 TNF signaling pathway 0.000727 IL1B;CCL20;TNF;TNFAIP3 4

hsa04380 Osteoclast

differentiation

0.001199 IL1A;IL1B;TNF;FOSB 4

hsa05162 Measles 0.001627 IL1A;IL1B;TNFAIP3;CD209 4

hsa05418 Fluid shear stress and

atherosclerosis

0.001627 IL1A;IL1B;NFE2L2;TNF 4

hsa05321 Inflammatory bowel

disease

0.00173 IL1A;IL1B;TNF 3
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Table 3. Classification performance for the COVID-19 data with hub genes

Classifier Data with MMhub genes Data with PPIhub genes

Accuracy AUC Sensitivity Specificity Accuracy AUC Sensitivity Specificity

SVM 0.996 0.997 0.996 0.998 0.986 0.989 0.996 0.981
RF 0.955 0.959 0.923 0.994 0.981 0.983 0.973 0.992
PLDA 0.821 0.848 0.902 0.794 0.768 0.815 0.930 0.700
NBLDA 0.956 0.961 0.922 0.999 0.976 0.978 0.957 0.999
voomDLDA 0.988 0.990 0.980 0.999 0.999 0.999 0.997 0.999

Figure 4. Receiver operating curve (ROC) plot of the five classifier performance based on (A) accuracies, (B) AUC.

performance measures have been computed based on the
datasets with MMhub and PPIhub genes, respectively. We
executed these calculations 20 times using 5-fold cross-
validation and the average performance measurement values
were computed and summarized in Table 3. The boxplot of
the five machine learning classifiers based on test accuracies
and AUC were presented in Figure 4. In Table 3 and Figure 4, we
observed that the SVM provides greater accuracy of 0.996 than
the other four classifiers (RF 0.955, PLDA 0.821, NBLDA 0.956 and
voomDLDA 0.988) for the dataset with MMhub genes. We also
observed that the voomDLDA provides greater accuracy of 0.999
than the other four classifiers (SVM 0.986, RF 0.981, PLDA 0.768
and NBLDA 0.976) for the dataset with PPIhub genes.

PPI network analysis with identified common genes

The PPI networks for the 52 common genes were constructed
via the STRING in Cytoscape. Figure 6A presented the network
interaction among these genes and identified 10 hub genes
(PLK1, AURKB, AURKA, CDK1, CDC20, KIF11, CCNB1, KIF2C, DTL
and CDC6) based on a higher degree of connectivity.

Transcriptional regulators of identified common genes

We identified ‘FOXC1’, ‘GATA2’, ‘YY1’, ‘E2F1’, ‘NFIC’, ‘FOXL1’ and
‘SRF’ hub TFs from the TFs-gene interaction network (Figure 6B).
The significant hub miRNAs were detected from the miRNAs-
gene interaction network namely, ‘mir-16-5p’, ‘mir-124-3p’, ‘mir-
34a-5p’, ‘mir-147a’, ‘mir-1-3p’, ‘mir-129-2-3p’, ‘mir-107’ and ‘mir-
195-5p’ (Figure 6C).

Drug repositioning based on drug–gene
overrepresentation analysis

We have identified 50 candidate drugs by reversal gene
signature-based approach with q-value<0.05. Among them, the

top 20 drugs have been summarized in Table 5. According to our
analysis, ‘amsacrine’, ‘BRD-K68548958’, ‘naproxol’, ‘palbociclib’
and ‘teniposide’ were the top significantly identified drugs
among others. These candidate drugs or components may be
used for therapeutic applications in COVID-19.

Discussion
The COVID-19 is affecting severely millions of people and tak-
ing thousands of precious lives every day over the globe due
to its pandemic behavior. Though there are several candidate
drugs and vaccines that were studied and proposed to treat
the disease, no solid cure is available yet. The current study
employed a gene coexpression network analysis to decode the
critical genes and pathways of COVID-19. We identified 1520 and
1733 DEGs for the GSE152418 and CRA002390 RNA-sequencing
PBMC based datasets, respectively. The four key modules were
identified in GSE152418 COVID-19 data via WGCNA and mod-
ule preservation analysis. The GO and pathway enrichment
analysis were conducted for these key modules. We checked
the validity of these identified hub genes (MMhub and PPIhub)
with machine learning classifiers. We found 52 common genes
in MMhub, PPIhub and the DEGs of CRA002390. The PPI net-
works, transcriptional regulatory networks of the common hub
genes were constructed. We found 10 hub genes from the PPI
of the identified common genes, and those were considered
as the final candidate molecular blood signatures of COVID-
19. These findings may provide new insights into the COVID-19
pathogenesis.

Our employed approach is significantly different from pre-
vious bioinformatics reports in COVID-19 research [5, 9, 12, 13,
41, 42] which relied on the identification of genes by differ-
ential analysis. However, in order to provide systems biology
insights, we have implemented methodologies particularly gene
coexpression module analysis that provides key gene modules
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Figure 5. Hub gene expression profiles. (A) Venn diagram of common hub genes identified among the hub genes of GSE152418 identified via MM scores and PPI and the

DEGs of CRA002390 data. (B) Heatmap of hub genes of GSE152418 dataset. (C) Bar chart of the log expression values of 52 common hub-genes in the GSE152418 dataset.

rather than finding DEGs. Firstly it clustered genes in a specific
condition followed by detection of hub genes which are highly
connected nodes in each module network. There is a possibility
of detecting some inappropriate genes as the hub if we use only
one approach. To detect the hub genes from each module more
accurately, we performed joint-analysis which revealed common
hub genes by module membership significance analysis and
PPI analysis, which is a robust approach in selecting hub genes
in COVID-19. Our analysis focused on PBMC gene expression
analysis, to obtain further insights regarding the potential uti-
lization of the identified hubs in diagnostic development for
COVID-19, we decided to perform classification by widely used
machine learning classifiers. The performance of state-of-the-
art methods was evaluated the classification performances in
which obtained a higher score in accuracy, AUC, specificity and
sensitivity.

To elucidate the roles of the identified DEGs, the GO and
KEGG pathway analysis were executed in this study. Among

the identified GO terms, the immune response, response to
cytokines, cytokine-mediated signaling and response to external
stimuli play crucial roles in restricting viral infections. Among
the identified pathways of four modules the cytokine–cytokine
receptor interaction, the IL-17 signaling pathway was highly
enriched in COVID-19. Viral infectious diseases such as herpes
simplex virus 1 infection, human papillomavirus infection and
viral carcinogenesis pathways were detected. Human papillo-
mavirus infection pathways are significantly related to colorec-
tal cancer. An autoimmune disease like rheumatoid arthritis
and type 1 diabetes mellitus were also expressively enriched.
These pathways show massive significance to drug repurposing
chances in COVID-19.

The application of machine learning classifiers have
been widely used in different bioinformatics tasks [43–45].
We executed the machine learning classification algorithms
based on MMhub and PPIhub genes data respectively to
check their validity. We observed the satisfactory sample
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Figure 6. Network construction. (A) PPI network of the 52 common hub genes of COVID-19 data, (B) TFs-Gene interaction network of the 52 common hub genes, (C)

gene-miRNAs interaction for the common hub genes of COVID-19.

classification performance (accuracy >0.90; except PLDA)
between COVID-19 and health control samples for both datasets
(MMhub, PPIhub). The results indicate the validation of our
identified hub genes through module membership and PPI
networks.

We identified PLK1, AURKB, AURKA, CDK1, CDC20, KIF11,
CCNB1, KIF2C, DTL and CDC6 hub genes representing that, they
had a high association with clinical trait along with vital BPs
and some of them were detected in COVID-19. Among them, the
Polo-like kinase 1 (PLK1) gene was detected as down-regulates
in Parainfluenza Virus 5 [46]. The Aurora Kinase B (AURKB) and
Aurora Kinase A (AURKA) were found SARS-CoV-2 as DEGs in
Caco-2 cells [47]. The Cyclin-Dependent Kinase 1 (CDK1) genes
interact with the thrombocytopenia syndrome virus which

initiates the cells into the M phase [48]. The Cell Division Cycle
20 (CDC20) and CDK1 were also found as potential biomarkers
for hepatocellular carcinoma [49]. The identified hub TFs and
miRNAs are also significantly associated with viral infectious
diseases.

Finally, we detected the candidate drugs using the reversal
gene signature-based approach [5, 9]. Among them, Naproxen
is a nonsteroidal anti-inflammatory drug that was studied to
use for the treatment of critically COVID-19 infected patients
and to limit the spread of the virus [50, 51]. The drug Teniposide
was suggested to evaluate the treatment of SARS-CoV-2 infected
patients [52]. We proposed to send these candidate drugs for
biological and clinical experimentation for the possible use in
COVID-19 treatment.
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Table 4. Summary of the identified 52 genes in case of GSE152418 and CRA002390 datasets

GSE152418 CRA002390 GSE152418 CRA002390

Gene name Log2(FC) Adj. P-value Log2(FC) Adj. P-value Gene Name Log2(FC) Adj. P-value Log2(FC) Adj. P-value

PLK1 3.883 7.03E-56 1.99 0.000146 KIF11 2.31 8.36E-26 2 3.24E-08
AURKB 3.22 1.57E-54 1.9 0.00184 NEK2 2.841 2.21E-25 1.61 0.000793
CCNA2 3.759 1.57E-54 1.98 7.74E-08 MCM2 1.772 4.33E-25 1.43 0.00632
UBE2C 3.571 4.50E-54 3.02 4.31E-05 CDCA8 1.874 1.02E-23 1.48 0.00108
FOXM1 3.084 5.82E-53 1.35 0.0104 TTK 2.522 8.83E-23 2.3 9.53E-05
CDC20 3.663 3.21E-46 3.65 2.91E-12 ORC1 2.579 1.06E-21 1.23 0.00494
BIRC5 3.849 6.59E-44 3.56 2.48E-12 EXO1 2.687 1.71E-21 2.57 2.58E-07
CDT1 2.791 1.21E-42 1.7 0.0116 CDK1 2.736 6.64E-21 1.86 0.00141
DTL 3.164 8.78E-42 3.18 3.19E-05 NME1 1.207 6.67E-20 1.29 0.00863
BUB1 3.125 1.12E-38 2.96 1.97E-11 MCM4 1.638 2.22E-17 1.29 0.0173
ZWINT 2.375 3.09E-38 2.49 7.28E-05 CENPU 1.955 1.25E-15 1.57 3.28E-05
GINS2 2.812 9.82E-37 1.74 0.011 KIF23 1.797 5.57E-15 2.47 5.05E-11
CCNB2 3.433 2.69E-36 2.89 1.43E-09 AURKA 1.396 5.91E-15 2.02 2.43E-05
CLSPN 2.652 5.78E-35 1.42 0.00244 PTTG1 1.577 7.69E-14 1.04 0.0383
TYMS 2.98 4.83E-33 2.53 3.05E-05 TUBG1 1.007 2.35E-13 1.54 0.000929
MYBL2 3.442 1.22E-32 3.45 2.91E-12 PPARG 3.169 4.61E-11 5.52 3.68E-07
CDC45 3.039 2.51E-32 2.95 3.67E-06 CENPM 1.212 8.67E-11 1.67 0.0139
CDC6 2.948 2.51E-32 2.32 2.85E-06 BRCA1 1.128 1.95E-10 1.08 0.0261
TOP2A 3.174 6.24E-31 2.58 5.48E-10 WASF1 1.503 2.10E-08 2.44 0.00218
CDCA5 2.869 8.03E-31 3.38 2.37E-11 TP53I3 1.175 1.19E-06 2.05 0.00108
ESPL1 2.805 1.38E-30 2.68 3.48E-07 GRB10 1.636 2.22E-06 3.82 4.48E-05
BUB1B 2.79 6.29E-30 2.45 2.34E-09 AMPH 1.853 4.06E-06 4.1 0.000303
KIF2C 2.909 8.87E-30 2.01 4.81E-05 FZD5 1.205 6.73E-05 2.57 0.000514
CCNB1 2.292 4.88E-29 2.06 3.27E-07 ACVRL1 1.38 0.00033 3.89 0.000105
CDC25A 3.101 1.13E-28 4.05 4.44E-14 WNT7A −1.036 0.002901 −2.27 0.0445
NUF2 2.131 4.41E-26 1.55 9.15E-05 FLT3 1.33 0.003703 4.7 4.36E-05

Table 5. Candidate drugs (top twenty) identified from gene–drug interaction enrichment analysis

Drug Similarity score P-value q-value z-score Combined score

Amsacrine −0.7143 1.23E-48 1.32E-44 1.69 −80.79
BRD-K68548958 −0.7143 5.98E-50 1.28E-45 1.82 −89.76
Naproxol −0.6939 8.02E-47 5.72E-43 1.69 −77.84
Palbociclib −0.6939 3.47E-46 1.65E-42 1.61 −72.96
SIB-1893 −0.6939 7.00E-47 5.72E-43 1.67 −77.09
ZK-164015 −0.6939 5.46E-46 2.12E-42 1.67 −75.62
Tanespimycin −0.6939 4.22E-46 1.81E-42 1.63 −74.15
Emodic-acid −0.6939 9.83E-47 6.01E-43 1.7 −78
BRD-K29506255 −0.6735 4.27E-45 1.52E-41 1.78 −78.99
Teniposide −0.6531 8.98E-43 2.13E-39 1.68 −70.64
Diphenyleneiodonium −0.6531 3.33E-42 7.14E-39 1.64 −67.86
Homosalate −0.6531 2.30E-42 5.19E-39 1.68 −70.07
SIB-1893 −0.6531 6.11E-43 1.54E-39 1.68 −70.75
Ingenol −0.6327 3.52E-40 5.79E-37 1.75 −69.13
FCCP −0.6327 5.36E-41 9.98E-38 1.83 −73.81
Tremulacin −0.6122 3.84E-39 4.98E-36 1.74 −66.81
BRD-K30836161 −0.6122 4.89E-39 6.16E-36 1.76 −67.42
Idarubicin −0.6122 2.67E-38 3.09E-35 1.59 −59.71
Wortmannin −0.6122 9.75E-40 1.49E-36 1.84 −71.72
Devazepide −0.6122 4.20E-38 4.73E-35 1.64 −61.18

Our analysis focused on PBMC gene expression analysis,
to obtain further insights regarding the potential utilization of
the identified hubs in diagnostic development for COVID-19,
we decided to perform classification by widely used machine
learning classifiers. Our analysis showed a good level of speci-
ficity in classification performances.

However, several limitations of the study should be noted as
findings of this study relied on bioinformatics analysis without
functional studies in wet-lab, thus caution should be taken
in interpreting the results. Moreover, the transcriptomic anal-
ysis and candidate drugs were identified by reversal of PBMC
gene expression in COVID-19 but the primary affected organ by
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SARS-CoV-2 is lung tissues, thus further research is now pro-
posed to explore biological insights in COVID-19.

Conclusions
The present research aimed to identify key genes and molecu-
lar pathways altered in response to SARS-CoV-2 in blood cells
compared to normal blood cells. We detected four key modules
through module preservation analysis. The 52 common genes
were identified from resultant 422 and 240 hub genes based on
module membership statistics and PPI networks and from 1733
detected DEGs of CRA002390. The 10 hub genes (PLK1, AURKB,
AURKA, CDK1, CDC20, KIF11, CCNB1, KIF2C, DTL and CDC6) were
identified from the PPI networks of these 52 genes. The TFs
(FOXC1, GATA2, YY1, E2F1, NFIC, FOXL1 and SRF) were also found
as potential regulators of the hub genes. The naproxol, teni-
poside, amsacrine, BRD-K68548958, palbociclib were identified
as the top-scored repurposed drugs for COVID-19 pathogenesis.
The identified drugs should be judged with wet-lab experiments
before clinical studies. Our results may provide novel insights
into the pathogenesis of COVID-19 and the potential molecular
targets for novel interventional approaches.

Key Points
• COVID-19 pandemic has emerged as a massive threat

to humankind limited by the unavailability of effective
drugs.

• This study has performed a comprehensive clini-
cal bioinformatics and systems biology analysis of
all available SARS-CoV-2 infected peripheral blood
mononuclear cell (PBMC) transcriptomic datasets to
identify gene modules by gene coexpression analysis.

• A robust four key gene modules and hub gene sig-
nature were detected based on gene module mem-
bership statistics and protein–protein interaction net-
works and machine learning methods.

• Functional annotation by enrichment analysis of the
genes of these modules demonstrated immune and
inflammatory response biological processes enriched
by the gene signature.

• Several potential candidate drugs based on the
reversal of transcriptomic signature were also
detected that may be effective treatment candidate for
COVID-19.
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