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Abstract 

Objectives: The primary goal of this experiment is to prioritize molecular descriptors that control the activity of 
active molecules that could reduce the dimensionality produced during the virtual screening process. It also aims 
to: (1) develop a methodology for sampling large datasets and the statistical verification of the sampling process, (2) 
apply screening filter to detect molecules with polypharmacological or promiscuous activity.

Results: Sampling from large a dataset and its verification were done by applying Z-test. Molecular descriptors were 
prioritized using principal component analysis (PCA) by eliminating the least influencing ones. The original dimen-
sions were reduced to one-twelfth by the application of PCA. There was a significant improvement in statistical 
parameter values of virtual screening model which in turn resulted in better screening results. Further improvement 
of screened results was done by applying Eli Lilly MedChem rules filter that removed molecules with polypharma-
cological or promiscuous activity. It was also shown that similarities in the activity of compounds were due to the 
molecular descriptors which were not apparent in prima facie structural studies.
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Introduction
Structure and ligand-based virtual screening methods are 
widely employed in drug discovery process [1–4]. These 
methods are high dimensional and complex to analyze 
which pose some basic challenges. As the virtual screen-
ing models built are mathematical, consisting of a large 
number of dimensions [5] making it difficult to interpret 
and analyze using ordinary mathematical, statistical or 
computational methods on computers with lower com-
putational resources. In this study, descriptors were built 
by molecular descriptor generating and visualization 
software PowerMV. Few of such software packages are 
listed in Additional file 1: Table S1.

Molecular descriptors were prioritized by applying 
principal component analysis (PCA) from the available 
chemical and biological molecular descriptors. A virtual 
screening experiment was designed so as to check for 
any significant effect on the results with and without the 
application of PCA. For this purpose, training models 
were built using same PubChem bioassay dataset. PCA 
provides an efficient way to reduce several independent 
variables by removing descriptors redundant in a particu-
lar study and in turn resulting in a less complex screening 
model encompassed of a lower number of dimensions.

For this study, AID 1721- a high throughput screened 
confirmatory bioassay dataset against pyruvate kinase 
receptor of Leishmania mexicana was selected from 
PubChem. Leishmaniasis is a disease with a wide spec-
trum of clinical manifestations caused by trypanosomatid 
protozoan parasites belonging to the genus Leishmania. 
It is one of the major life-threatening tropical diseases 
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globally affecting 12 million people in 98 countries 
[6]. Leishmania mexicana causes both cutaneous and 
mucocutaneous leishmaniasis. Commonly used FDA 
approved drugs against Leishmania mexicana are sodium 
stibogluconate, sitamaquine, quinacrine and pentami-
dine are enlisted in Additional file 2: Table S2. But they 
were reported to have drug resistance and proven to have 
severe side effects [7, 8]. So, the chemotherapy based on 
the above drugs is limited and the need for finding prom-
ising druggable molecules with minimal side effects and 
reasonable ADMET properties gains importance. Under 
these circumstances, an innovative method such as 
molecular descriptor based virtual screening was utilized.

Self-organizing maps (SOM) and Eli Lilly MedChem 
rule filter were applied for further refinement of screen-
ing results. SOM is a Kohonen Network [9] based arti-
ficial neural network (ANN) is an unsupervised training 
where networks learn from their own classification of 
training data without supervision, and higher dimension-
ality is conserved in the lower dimensional space. It finds 
a wide range of applications especially in drug repurpos-
ing and scaffold hopping [10]. Molecules with polyphar-
macological/promiscuity activity [11, 12] are another 
challenge for drug discovery process. Watson et al. devel-
oped an algorithm to screen out such compounds from 
the bioassays [13]. A few of those rules are listed in Addi-
tional file 3: Table S3.

Main text
Materials and methods
Datasets
Publicly available high throughput screened bioassay 
datasets from PubChem Repository were chosen for 
the study which was based on NIH Chemical Genomics 
Center-NCGC assay protocols. The three datasets AID 
1721, AID 2559 and AID 2561 used were confirmatory 
bioassays for Leishmania mexicana pyruvate kinase [14] 
downloaded on September 2013 in SDF format. Pyru-
vate kinase is responsible for generating ATP from ADP 
using phosphoenolpyruvate as a substrate [15, 16]. AID 
1721 was considered as the training set that had a total of 
2,93,196 tested molecules among which 1089 were active 
and 2,90,104 were inactive. AID 2559 contains 58 actives 
and 67 inactives. Similarly, AID 2561 contains 37 actives 
and 148 inactives.

Preparation of datasets and molecular descriptor generation
As the inactive set of AID 1721 was a larger one, it was 
split into 15 subsets using Perl script SplitSDFiles avail-
able in MayaChem Tools [17]. The active dataset of AID 
1721 was mixed with each of the inactive datasets. Five 
percent (5%) was randomly selected from each sub-
set resulted in 15 sets each with 1020 molecules were 

considered as training sets. These 15 sets were consid-
ered as training sets. The test set was made by combin-
ing active molecules of AID 2559 and AID 2561. A total 
of 179 descriptors were generated for all the datasets by 
using PowerMV [18] with 147 pharmacophore finger-
prints, 24 weighted burden numbers, and 8 properties. 
Henceforth, we call these molecular descriptor set as 
PowD. Calculated properties were transferred into an 
excel sheet. The bioactivity values were appended as a 
class attribute, label: class.

Sample validation by Z‑test
The consistency of the sampling process on AID 1721 
was checked by performing Z-test done by XLSTAT [19]. 
Though all the 15 sets passed the Z-test, set-13 was found 
to have the lowest values for its molecular descriptors 
and therefore was excluded from further studies.

Feature selection and ranking by PCA
PCA was carried out on training datasets to find the most 
influencing molecular descriptors. This, in turn, could 
reduce the dimensionality resulting in a less complex vir-
tual screening model. Fourteen weighted burden number 
descriptors were selected by XLSTAT as principal fea-
tures that were found contribute most to the principal 
component F1, and henceforth we designate it as PCAD.

Model generation and screening
WEKA 3.6 [20] with a cross-validation of 10 is used for 
model generation and screening. Models were built with 
PowD and PCAD for all the training sets. Random for-
est algorithm was used as it was proven to handle imbal-
anced datasets [21]. The model performance parameter 
values such as true positive (TP) rate, true negative (TN) 
rate, accuracy, kappa, ROC value, F-measure and Mat-
thews correlation coefficient (MCC) etc., associated with 
both the cases were tabulated.

The test set was screened against all the 14 training 
models built with PCAD. Panel selection method was 
implemented to obtain the screening results. Panel selec-
tion method is a procedure where a molecule in the test 
set is considered to be selected if it is selected by 10 or 
more training sets during the screening process.

SOM Analysis
A 5*5 SOM analysis was done for the screened molecules 
and existing drugs to find the similarity between them. 
Schrödinger Canvas [22] was used and PCAD as the 
properties. In this study, SOM with supervised training 
method was used as supervised learning occurs due to 
the inclusion of known active FDA approved drugs.
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Promiscuity analysis
The molecules which showed similarity with the existing 
FDA approved drugs in SOM analysis were tested by Eli 
Lilly MedChem rules package to eliminate the molecules 
showing polypharmacology/promiscuity.

In‑Silico validation of FDA approved drugs
To find whether the FDA approved drugs pass the same 
screening criteria, the existing drug molecules were made 
to undergo screening against the training sets. For this 
purpose, a dataset was made using FDA approved drugs 
with PCAD and screened against the training datasets. 
The panel selection criterion was followed and the results 
were tabulated.

Results and discussions
The training and test set used in this study were con-
firmatory in nature. Since the inactive dataset of AID 
1721 was a larger one, it was downsized by splitting into 
15 subsets and random selection of 5% from each after 
mixing active molecules. This procedure enabled to solve 
the limitations of lower computational resources. A total 
of 179 molecular descriptors were generated. Z-test was 
done to check the reliability of the sampling process. The 
details of Z-test are given in Table  1. Set-13 was elimi-
nated as its values of molecular descriptors were found 
to be beyond the desirable limits, resulted in 14 training 
datasets.

Wbn enh 1.00, wbn lph 0.75, wbn lph 1.00
Weighted burden number molecular descriptor values. 
These were continuous descriptors obtained by placing 

one of the three properties on the diagonal of the Burden 
connectivity matrix like electronegativity, Gasteiger par-
tial charge or atomic lipophilicity, XLogP. It is common 
to scale the off-diagonal elements of the connectivity 
matrix before computing Eigenvalues. The off-diagonal 
elements were weighted by one of the following values: 
2.5, 5.0, 7.5 or 10.0. We use the largest and smallest 
Eigenvalues. This procedure gives us a total of 24 numeri-
cal descriptors. Euclidian distance is used to measure 
distance instead of Tanimoto distance while calculating 
continuous descriptors.

PowD was generated for training sets that made input 
data high dimensional. It was assumed that few subsets 
of whole molecular descriptors were found to be con-
tributed much towards the activity of the molecules and 
not the whole set. PCA was applied which enabled in 
the selection of most relevant molecular descriptors by 
eliminating the irrelevant ones. The selected molecular 
descriptors PCAD, which were considered as principal 
components, are listed in Table 2.

Statistical models were generated with PowD and 
PCAD for all the 14 training sets using random for-
est classifier algorithm. The study used tenfold internal 
cross-validation to make the model building process rati-
fied, assuring the robustness of the models built. The sta-
tistical parameter values of each training set model with 
PowD and that of PCAD were compared. It was observed 
that there was a significant hike in statistical parameter 
values like accuracy, precision, kappa, MCC etc., for the 
models with PCAD than the models with PowD. The 
results are shown in Additional file 4: Table S4 and Addi-
tional file 5: Table S5. As a result, it was evident that the 

Table 1 Z-test results for training sets

Sets WBN ENH 1.00 Z-value WBN LPH 0.75 Z-value WBN LPH 1.00 Z-value

Set 1 3.788 0.092 2.790 – 3.652 –

Set 2 3.767 – 2.778 – 3.641 –

Set 3 3.798 0.429 2.811 0.451 3.683 0.776

Set 4 3.781 0.016 2.799 0.010 3.663 0.014

Set 5 3.836 0.999 2.833 0.999 3.704 0.999

Set 6 3.826 0.999 2.832 0.999 3.702 0.999

Set 7 3.839 0.999 2.815 0.731 3.685 0.853

Set 8 3.758 8.259 2.783 – 3.638 –

Set 9 3.785 0.047 2.816 0.789 3.680 0.624

Set 10 3.737 0.475 2.787 0.486 3.642 0.485

Set 11 3.834 0.999 2.842 1.000 3.717 0.999

Set 12 3.854 1.000 2.843 1.000 3.717 0.999

Set 13 3.785 0.494 2.818 0.504 3.681 0.501

Set 14 3.788 0.092 2.821 0.958 3.688 0.933

Set 15 3.817 0.978 2.807 0.194 3.675 0.336

Mean 3.799 2.811 3.678
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quality of the virtual screening model was increased to a 
considerable extent with the application of PCA and this, 
in turn, should improve the screening results.

As the application of PCA had proven to improve the 
statistical parameter values, the models built with PCAD 
were considered for further screening and analysis. The 
test set was screened against all the 14 training sets. The 
panel selection method was applied to the selection pro-
cess and 34 molecules from the test set were selected. 
Panel selection method applied during the screening pro-
cess added reliability to the selection process. The results 
are given in Additional file 6: Table S6.

SOM analysis with 5*5 matrix was done with the 
screened compounds along with FDA approved drugs 
to improve the screening results; the output is given in 
Table  3. “Structurally similar compounds exert similar 
biological activities” was the concept used by the medici-
nal chemists to modify biologically active compounds 
and active principles. However, several structurally simi-
lar compounds showed a significantly different mode of 
action at their target binding site to induce different bio-
logical activities [23, 24]. In Table 3, sitamaquine showed 
similarity with compounds with the PubChem CID 
387104 and 828003. The values of it’s of weighted bur-
den number descriptor WBN_GCH_100 were 3.80957, 
3.69928 and 3.69448, respectively. The compounds might 
structurally differ but showed resemblance in activ-
ity due to its comparable molecular descriptors values. 
The molecular descriptor values of compounds listed in 
Table 3 were given in Additional file 7: Table S10.

Finally, Eli Lilly MedChem rules were applied to check 
whether the molecules exhibit any promiscuous action. 
Two computationally active molecules were screened 

out by Eli Lilly MedChem analysis that showed the mol-
ecules obtained were in agreement with experimentally 
derived medicinal chemistry rules. The chemical struc-
tures of selected compounds are given in Additional 
file 8: Table S7. The outcome of high throughput screen-
ing of bioassays at PubChem was expressed in terms of 
PubChem activity score. A score of 40–100 denotes 
active compounds, 1–39 shows inconclusive and a score 
of 0 denotes inactive compounds. The screened com-
pound with PubChem CID 646533, 3-(1H-1,3-Ben-
zadiol-2-yl)quinoline was 43 while that of 828003, 
2-(4-Methoxyphenyl)-7-methylimidazo[1,2-a]pyridine 
was 83. The dose–response curve quality of the for-
mer was a partial curve while that of latter is a complete 
curve. Both showed an efficacy greater than 80% of con-
trol and both the compounds exhibited it’s half maximal 
efficacy  AC50, at 91.905  µM concentration, details are 
listed in Additional file 9: Table S9.

The rationale of using FDA approved drugs for simi-
larity search was justified and validated. The four FDA 
approved drugs were screened against training sets using 
PCAD and adopted panel selection method. All the four 
FDA approved drugs were selected by 10 or more train-
ing sets and the results are tabulated in Additional file 10: 
Table S8. The training and test set used for the study is 
attached as Additional file  11 and Additional file  12 
respectively.

Conclusion
PCA was able to reduce the number of molecular 
descriptors which were used during the virtual screen-
ing process. This study emphasized that screening car-
ried out with a reduced number of descriptors resulted 
in increased accuracy. This made it amply clear that PCA 
successfully removed the redundancy in the input data 
thereby, improving upon the statistical parameter values 
as well. It could also be used to extract the characterizing 
set of molecular descriptors for the activity of molecules 
against a particular disease or target protein. Using this 
method along with other methods like Eli Lilly filter and 
SOM, two molecules were screened out for further pro-
cesses in the drug discovery and development pipeline. 
Also, the reason for the similarity in activity among com-
pounds was able to explain in terms of underlying simi-
larities in molecular descriptors.

Limitations
1. The virtual screening has mainly two methods such 

as structure-based and ligand-based whereas we 
emphasized only ligand based method.

2. Among the vast molecular descriptor space, we used 
only PowerMV molecular descriptors.

Table 2 Weighted Burden number molecular descriptors 
selected by applying PCA

Serial no. PCA descriptors

1. WBN GC H 0.75

2. WBN GC L 1.00

3. WBN GC H 1.00

4. WBN EN L 0.50

5. WBN EN L 0.75

6. WBN EN H 0.75

7. WBN EN L 1.00

8. WBN EN H 1.00

9. WBN LP L 0.50

10. WBN LP H 0.50

11. WBN LP L 0.75

12. WBN LP H 0.75

13. WBN LP L 1.00

14. WBN LP H 1.00
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Table 3 FDA approved drug molecules along with molecules that have shown similarity with drug molecules—SOM (5*5) 
results

FDA drugs used for SOM analysis Molecules have shown similarity with 

PubChem CID
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