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Abstract

Comparison of the binding sites of proteins is an effective means for predicting protein functions based on their structure
information. Despite the importance of this problem and much research in the past, it is still very challenging to predict the
binding ligands from the atomic structures of protein binding sites. Here, we designed a new algorithm, TIPSA
(Triangulation-based Iterative-closest-point for Protein Surface Alignment), based on the iterative closest point (ICP)
algorithm. TIPSA aims to find the maximum number of atoms that can be superposed between two protein binding sites,
where any pair of superposed atoms has a distance smaller than a given threshold. The search starts from similar tetrahedra
between two binding sites obtained from 3D Delaunay triangulation and uses the Hungarian algorithm to find additional
matched atoms. We found that, due to the plasticity of protein binding sites, matching the rigid body of point clouds of
protein binding sites is not adequate for satisfactory binding ligand prediction. We further incorporated global geometric
information, the radius of gyration of binding site atoms, and used nearest neighbor classification for binding site
prediction. Tested on benchmark data, our method achieved a performance comparable to the best methods in the
literature, while simultaneously providing the common atom set and atom correspondences.
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Introduction

The functions of individual proteins and genes are essential for

understanding the functions of cells or organisms as a whole. Since

proteins’ functions are determined by their structures, structural

genomic (SG) projects have been initiated with the aim to solve

representative proteins in each protein family [1,2,3]. The solved

protein structures can be used to predict the structures of those

homologous proteins, whose functions can then be deduced from

their structures. At the same time, structural genomic projects

have produced a large number of protein structures, whose

functions are still unknown. As many as 26% of all SG structures

deposited to PDB [4] are described as proteins of unknown

function, or their functions are quite often referred to as putative

[5]. Predicting the functions of proteins based on their structural

information has become one of the major roadblocks towards the

goal of well-annotated genomes.

Since proteins function by interacting with other molecules

through binding sites (active sites), analysis of the binding site

provides a direct means to infer the function of a protein. A

common hypothesis is that proteins with similar functions should

have binding sites with similar shape and chemical properties.

Many studies have been conducted based on the idea of

comparing the putative binding site of a target protein with

unknown function with the binding sites of proteins with known

functions to infer the function of the target protein. These previous

studies can be roughly divided into two classes: those using only

structure information and those using both structure and

sequence/evolutionary information. Among those using only

structure information to match binding sites, they can be further

divided into two classes: those based on point clouds [6,7,8,9,10]

and those based on shapes of binding sites [11,12,13] or shape-

based descriptors or features [14,15,16,17,18,19].

Several algorithms have been developed for matching binding

sites represented by point clouds. SPASM and RIGOR [20] scan

a structural database for occurrences of structure motifs using

a combinatorial search with constraints. Jess [21] matched

structure templates based on constrained logic programming.

Cavbase and eF-site used clique-based method [8,22] to match

structure templates formed by surface patches. SiteEngine [7,23],

SitesBase [24,25], MultiBind [9] and TESS [6] applied geometric

hashing algorithms [6,7,9,10,26,27] to match protein surfaces and

binding sites. In a study by Weskamp et al. [10], clique detection

and geometric hashing are combined. IsoCleft [28] used a graph-

matching-based method to detect 3D atomic similarities. In a very

recent study, Dundas et al. have developed an order-independent

surface alignment method based on a structure alignment

algorithm designed by Chen et al. [29] and applied it to study

metalloendopeptidase and NAD binding proteins [30]. The above

methods produce the correspondences between the atoms/

residues of two binding sites, which can be used to calculate

similarity using rigid superposition, such as root-mean-square-

deviation (RMSD).
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Instead of matching binding sites represented by point clouds,

other methods have extracted information related to the shapes of

the binding sites, which is then used for binding site comparison.

Hoffmann et al. introduced a similarity measure called sup-CK

and utilized global information from binding sites to align the sites

based on their principal axes [31]. This method calculates

similarity using a Gaussian convolution kernel, which does not

require correspondences between atoms of the two binding sites.

Sael et al. developed 3D Zernike descriptors to characterize and

compare protein surfaces [14,18]. Xiong et al. used feature vectors

based on distance of groups of atoms on binding sites [19]. Das et

al. applied property-encoded shape distributions (PESD) con-

structed using both atom-atom distances and the properties of the

atoms [32]. And Xie et al. developed a shape descriptor called the

Geometric Potential that characterizes both local and global

topological properties of the protein structures [33,34].

While many of the approaches focus primarily on the structure

of the binding site, sequence and evolutionary information have

also been used in assisting structure-based function prediction.

Binkowski et al. first identified possible binding sites from a-shape

of protein surfaces [12,13], which was then followed by a sequence

alignment of binding site residues to detect the similarity of protein

binding pockets [11,35,36,37]. Lichtarge et al. developed the

evolutionary trace (ET) method to identify important amino acids

from multi-sequence alignments, which are then used to construct

local structure templates to compare protein surfaces.

[38,39,40,41].

When similar local structure motifs or templates are identified,

assessment of the statistical significance of the similarity also plays

an important role in function inference. To avoid the drawback of

RMSD as a measure based on rigid superposition, a modified

RMSD, oRMSD was used to measure the similarity of local

surface structures [35]. Other similarity measures such as the

Tanimoto index (TI) [42,43] and the Poisson index (PI) [44] have

also been adopted in protein binding site comparison.

In a recent study by Kahraman and co-workers, it has been

found that pockets binding the same ligand show greater variation

in their shapes than can be accounted for by the conformational

variability of the ligand [16]. They suggested that geometrical

complementarity in general was not sufficient to drive molecular

recognition. The data set created for this study has served as

a benchmark for performance comparison [31].

In this paper, we have developed a method based on the

iterative closest point (ICP) algorithm [45,46] for superposing and

comparing protein ligand binding sites using atom-level represen-

tation of protein surfaces. Compared to the original ICP

algorithm, our algorithm starts from a multitude of initial local

alignments derived from 3D Delaunay triangulations and uses the

Hungarian algorithm to find additional matched atoms. This

Triangulation-based Iterative-closest-point for Protein Surface

Alignment (TIPSA) algorithm aims to find the maximum common

atom set (MCAS), defined as the maximum number of superpos-

able atoms between two binding sites where distance between any

pair of matched atoms in the rigid superposition of the binding

sites is smaller than a given threshold value. In addition to

matched atoms, we incorporate other geometric information to

further improve the accuracy in ligand classification. Our method

was tested on the Kahraman [16] and Homogeneous [31]

benchmark data with good performance. This paper builds upon

a preliminary study [47] which was based on local geometric

information only, and features more thorough analysis including

additional, more detailed results, and improvements to the

algorithm that reduce computational cost while improving

classification performance.

Methods

Algorithm for Surface Matching
Our approach is to treat the atoms of a ligand binding site as

a cloud of points with corresponding labels specifying the chemical

properties of the atoms. We compare the binding sites represented

by the point clouds to find maximum common atom sets. Many

past studies have used this or similar criteria. The assumption is

that if two binding sites share a significant number of superposable

atoms, they may share similar functions, as well. Due to the

complexity of the problem, one has to use heuristic methods to

find sub-optimal solutions, as in the previous methods reviewed in

the Introduction. In this study, we denote any subset of atoms that

can be matched between two binding sites as a common atom set

(CAS), and the largest of such sets as the maximum common atom

set (MCAS). In addition to using the MCAS, we also explore other

information from ligand binding sites that can be conveniently

used to improve ligand binding site prediction.

A standard technique used for alignment and registration for

point clouds is known as the Iterative Closest Point (ICP)

algorithm, which was introduced by Chen and Medioni [46]

and Besl and McKay [45]. ICP aligns and registers an unlabeled

set of points p to a model set X by iteratively alternating between

registration and alignment steps. Registration is obtained by

finding the closest point y in X to each point pi in p, resulting in the

corresponding set Y. An alignment is then obtained by finding the

optimal rotation matrix R and translation vector v such that p is

superposed onto Y. These two steps are repeated until the change

in mean square error between p and Y falls beneath a desired

threshold.

However, ICP cannot be directly applied for matching ligand

binding sites for two reasons. Firstly, since the algorithm is

deterministic, the results depend greatly on the initial alignment

used and the algorithm may find only a local, non-global,

minimum. Besl and McKay suggested solving this problem by

considering a large number of initial rotation states while

superposing the centers of mass of two objects. However,

superposing the centers of two binding sites, in many cases, may

not provide good initial matching. We also propose an alternative

approach to solve this problem by instead aligning locally similar

structures.

Secondly, ICP does not guarantee unique correspondence

between atoms, as registration is performed one point at a time,

not jointly. Additionally, this approach to registration does not

utilize the labels on the points. For the purposes of this application,

it is necessary to find unique correspondence and make use of the

chemical labels. For the registration problem, we use the

Hungarian algorithm to find the optimal correspondences between

atoms in two binding sites given the rotation and translation

matrices. During the alignment, we also take the atom types into

account. A list of atom types is shown in Table 1, and we utilize

the labels of atom subtypes provided in column 3 to restrict

matches to those sharing more specific chemical properties.

To address the dependence of global alignment on the initial

state, we propose to solve a local alignment problem first and build

to a set of global alignment from which we can obtain improved

solutions, rather than searching for the global solution immedi-

ately. The procedure of our method is described as follows:

1. Delaunay triangulation. For each protein, we compute

the 3-dimensional Delaunay triangulation to obtain a set of

tetrahedra with labeled atoms as vertices. The two sets of

tetrahedra are compared pair-wise in order to obtain similar pairs

that act as seeds, which are used to obtain potential initial

alignments for the matching process.

TIPSA: A Tool for Protein Surface Matching
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2. Comparison of tetrahedra from two binding

sites. These inter-protein tetrahedral pairs are first checked

for identical chemical composition. For those pairs with matching

chemical compositions, the structural similarity of the tetrahedra is

checked using the Distance Root Mean Square Deviation

(dRMSD), which can be calculated as follows:

dRMSD(A,B)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4(3)

X4
i~1

X4
jwi

lij,A{lij,B
�� ��2

vuut ð1Þ

where lij,A is the length of the edge from atom i to atom j of the

tetrahedron from the first protein and lij,B is the length of the edge

from atom i to atom j of the tetrahedron from the second protein.

In order to simplify comparisons to the root mean square deviation

(RMSD), we use the following alternative formulation that differs

from (1) only by a multiplicative constant:

dRMSD(A,B)~
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X4
i~1

X4
jwi

lij,A{lij,B
�� ��2

vuut ð2Þ

This formulation can be used only because every tetrahedron has

six edges, resulting in the two formulas differing only by the same

constant for all pairs. At this stage, dRMSD is used in place of

RMSD, which is utilized subsequently, in order to save on

computational cost. The only pairs considered further are those

with dRMSD values less than a 1.5 times a chosen RMSD cutoff

value (1.25 Å). This cutoff for dRMSD was chosen based upon the

relationship between pairs of RMSD values and corresponding

dRMSD values for a large number of superpositions, for which we

found that the dRMSD (2) for a superposition was no more than

1.5 times the associated RMSD value.

In many cases, the chemical composition for a tetrahedral

pairing may lead to the possibility of multiple potential alignments.

This occurs if there are multiple atoms of the same type within

a tetrahedron. For example, if the tetrahedron consists of three

carbon atoms and one oxygen atom, there are 6 possible

alignments of the tetrahedra. In such instances, all possible

alignments must be initially considered.

All of the tetrahedra in the two binding sites are compared and

their dRMSD values are sorted. Ideally, all seed pairs satisfying

this condition would be considered for alignment, but in many

cases, doing so needlessly raises computational cost. Instead, we

consider only those pairs with the lowest dRMSD values if the

number of candidates is large. Using a benchmark data set, we

tested a number of cutoff values to determine an appropriate

number of seed pairs to be used (see Results) and arrived at using

500.

3. Initial alignment. Once all pairs of tetrahedral seeds are

obtained and sorted, the process of checking for additional

matched atoms begins. For each seed pairing, one tetrahedron is

held in a fixed position and the other is superposed onto it, yielding

an optimal translation vector v that aligns the centers of mass for

the seeds, and rotation matrix R, both of which are then applied to

the moving protein, resulting in a rigid transformation that aligns

the proteins at the location of the seed pairing. The translation

vector is given by v = BC – AC, where AC and BC are, respectively,

the centers of mass for the coordinates A and B. The optimal

rotation matrix R is calculated using the Kabsch algorithm

[48,49], which is an application to bioinformatics of the solution of

the orthogonal Procrustes problem [50]. For this superposition, the

RMSD is then calculated using the formula:

RMSD(A,B)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i~1

ai{ bi{vð Þ:Rk k2
s

ð3Þ

where ai and bi are, respectively, the coordinates for the ith atom in

A and B. If the RMSD for this configuration is less than the chosen

cutoff value of 1.25 Å and detR = 1, then additional matched

atoms are searched for. Despite considering only tetrahedral pairs

with low dRMSD at this point, it is still necessary to calculate the

RMSD so as to solve the problem of multiple solutions discussed

above, resulting in the removal of improper seed pairs. The

restriction on the determinant of R is used to ensure that it is a true

rotation matrix and not a rotation-reflection matrix.

4. Atom Matching. Once the translation and rotation

matrices are applied to the moving protein, we want to search

for each atom of the moving protein an atom with the same type

from the fixed protein with a distance smaller than a cutoff value,

called the search radius (SR). To determine the matches for each

atom, it does not suffice to consider each atom from the fixed

protein separately due to the fact that doing so could lead to

multiple fixed atoms sharing matches. For a given alignment, the

solution to this matching problem, once the restrictions on labels

and locality are imposed, is provided by the Hungarian algorithm

[51,52], which finds at most one unique match for each atom in

the fixed protein, as implemented by [53]. To find the optimal

Table 1. Atom types used in binding site matching.

Atom Type Atom Subtype Label

Carbon (C) Carbonyl C 1

Aliphatic C, CA, Other sp3 C, 2

Aromatic C 3

Oxygen (O) Backbone O and carbonyl O in Asn and Gln, carboxyl O in Asp and Glu 4

Hydroxyl O in Ser, Thr and Tyr 5

Nitrogen (N) Backbone N, TRP side chain NE1, GLN NE2, ASN ND2, ARG NE NE1 NE2, LYS NZ 6

HIS side chain NE1, NE2 7

Hydrogen (H) polar H 8

Sulfur (S) Disulfide bond S, Met S, Cys S 2

doi:10.1371/journal.pone.0040540.t001

TIPSA: A Tool for Protein Surface Matching

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40540



search radius, we tested several reasonable values on a benchmark

dataset (see Results).

5. Iterative alignment. After the matched atoms are found

for a pair of tetrahedral seeds, additional matched atoms are

searched for by refining the optimal configuration of the proteins

by expanding the seed to encompass all of the matched atoms for

that superposition. To increase computational efficiency, those

configurations that resulted in few atoms being matched are

excluded from further consideration. For a given expanded seed,

the optimal translation vector and rotation matrix are recalcu-

lated, as above. For this refined superposition, additional matched

atoms are searched for. This process of refining and searching is

repeated for a given seed pair until no additional matched atoms

are found.

After using the iterative procedure to find the maximum

number of matched atoms, the number of matched atoms is

recorded. This process of superposing and searching for additional

matches is repeated for all tetrahedral seed pairs beneath the

chosen dRMSD cutoff. However, it can often be the case that

multiple tetrahedral pairings will result in the same superposition

of the moving protein onto the fixed protein. In order to avoid

needlessly repeating the process in such cases, if the list of matched

atoms includes all of the atoms from a remaining tetrahedral pair,

then that pair is removed from consideration as a possible seed.

Upon completion of the above procedure, the optimal

superposition is taken to be the configuration that results in the

largest number of matched atoms. In the case that multiple

configurations produce the largest number of matched atoms, the

optimal configuration is taken to be that with the smallest RMSD.

Accordingly, a list of the matched atoms is also obtained.

Classification
To assess the performance of the algorithm, we perform

classification of the ligands of protein binding sites using two

benchmark data sets utilized by Hoffmann et al [31]. Since TIPSA

aligns the binding sites by way of maximizing the CAS, a natural

similarity measure to use is the Tanimoto Index (TI), which, in

general, is defined as the ratio of the size of the intersection of two

sets to the size of the union of those sets [54]. For our purposes, the

TI is defined as follows:

TI(A,B)~
nAB

nAznB{nAB
, ð4Þ

where nA and nB are, respectively, the number of atoms in site A

and the number of atoms in site B and nAB is the number of atoms

common to sites A and B.

The primary measures of similarity considered by Hoffmann et

al [31] do not utilize atom correspondence, but rather use a family

of Gaussian convolution kernels to define similarity, which are

referred to as sup-CK and sup-CKL. However, the authors also

define the Sup-TI (referred to there as Sup-PI) measure, which is

the result of finding matched atoms and calculating the TI

following the completion of their correspondence-free alignment.

Additionally, they consider Vol(A,B) = |Volume(A) – Volume(B)|

as a measure of the difference in the sizes of the binding sites.

Hoffmann et al [31] also consider some linear combinations of

these measures.

Inspired by the idea that global geometric information of the

binding site could bolster classification based solely on matched

atoms, we consider a number of additional measures. RMSD is

commonly used to measure structural similarity, but, since the

CAS have varying numbers of atoms, it is desirable to normalize

this measure. To do so, we utilize a version of the normalized

RMSD of Carugo and Pongor (2001), calculated as.

RMSD4(A,B)~
RMSD(A,B)

1zln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nAB=4

p , ð5Þ

which can be interpreted as being the RMSD value that would be

observed for a pair of binding sites containing 4 atoms which

exhibit the same amount of similarity as the binding sites that were

actually compared. It is natural to use 4 atoms for the

normalization since the initial step involves calculating the

similarity of pairs of tetrahedra.

As shown in [31] and [16], the size of a binding site is useful for

classification. While the TI only reduces the effect of the sizes of

the binding sites for examining the number of matched atoms

[44], an additional measure, such as Vol, is needed to include size

information. The calculation of the volume of an active site is not

trivial, though, so we consider an alternative method for

incorporating size information that is easy to calculate, the radius

of gyration Rg, which is calculated as follows:

RgA~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nA

XnA
i~1

xi,A{xC,Að Þ2
vuut , ð6Þ

where xi,A is the vector of coordinates of the ith atom from site A

and xC,A is the vector of coordinates of the center of mass of site

A. This provides a measure of the average distance between the

atoms and center of mass of an active site. To utilize this

information, we define the following similarity measure: Gyr(A,B)

= |RgA - RgB|. The final measure that we examined provides

information about the chemical composition of the binding sites.

We consider the proportion of hydrophobic atoms present in the

active sites, and define the measure HydProp(A, B) to be the

square difference between the proportions for sites A and B.

In order to consider both local and global information, we

explore linear combinations of these similarity measures. Howev-

er, considerations must be made for doing so. First, increasing

similarity between sites results in increasing values of TI, while this

results in lower values for all other similarity measures. As such, it

is necessary to utilize 1-TI instead of TI directly. Furthermore,

since the measures are on different scales, in order to avoid one

feature overly influencing the results, we divide all values of each

similarity measure by the maximum observed value of that feature.

Doing so allows the relative importance of each measure to be

determined completely by the value of the weight placed upon it

by the linear combination.

For the purposes of comparison to the above methods,

performance is measured using classification error (CE), which is

defined as the proportion of incorrect predictions. Using the

scheme considered in the previous study, a classification is

considered to be correct only if the predicted ligand exactly

matches the actual binding ligand. The similarity of some of the

ligands is not taken into consideration.

The results are obtained using the double leave-one-out cross

validation method for k-nearest neighbor classification described in

[31]. Using this procedure, classification is performed for a given

binding site A by comparing it to all other sites except for some site

B (the left out site). For site A, this process is repeated until each of

the other sites has been left out. By doing so, it can be determined

whether a particular classification is due to the presence of just one

overly influential site. This entire process is then repeated for the

classification of all sites in the data set.

TIPSA: A Tool for Protein Surface Matching
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Data
The first set of data used for classification was compiled by

Kahraman et al. [16]. The Kahraman data set consists of 100

active sites that are grouped according to which of 10 ligands they

bind to. These ligands have varying amounts of flexibility. AMP,

AND, EST, GLC, and PO4 are rigid; ATP, FMN, and HEM are

moderately flexible; FAD and NAD are highly flexible. The

ligands are also of varying sizes, with PO4 being the smallest and

FAD being the largest. A summary of the binding sites included in

the set is provided in Table 1 of [16].

The second data set we consider was compiled by Hoffmann et

al [31] and will be referred to as the homogeneous data set. This

set consists of 100 binding sites, with 10 groups of 10 binding sites

each. However, the ligands these groups of sites bind to are all of

similar sizes. The binding ligands for this set are PMP, SUC, LLP,

LDA, BOG, PLM, SAM, U5P, GSH, and 1PE. A summary of the

binding sites included in this set can be found in the online

supplement of [31].

For the purposes of comparing classification results to those of

previous studies, we initially define a binding site taken from a x-

ray structure to consist of those atoms within 5.3 Å of the specified

ligand [31]. To further explore the performance of TIPSA, we

subsequently consider binding sites from these two data sets

consisting of atoms within 7 Å of the binding ligands. For ease

when discussing the data sets, we will subsequently only refer to

this cutoff for the 7 Å sets.

Optimization of the Search Radius and the Number of
Nearest Neighbors

In order to select the optimal search radius for the algorithm, we

performed all pairwise comparisons for the Kahraman data set for

search radii of 1.0 Å, 1.5 Å, 2.0 Å, 2.5 Å and 3.0 Å using the

double leave-one-out cross validation procedure. Table 2 shows

the CE for these values of the search radius and for the nearest

neighbor, 3-nearest neighbor, 4-nearest neighbor and 5-nearest

neighbor classifiers. A 2-nearest neighbor classifier is not

considered as it is guaranteed to produce identical results to the

nearest neighbor.

From Table 2, it is apparent that the optimal search radius is

2.5 Å. It appears that using a larger search radius defines similarity

too loosely, resulting in dissimilar atoms being considered as

matched. Using a smaller search radius appears to be too

restrictive, not allowing for flexibility. The 3-nearest neighbor

classifier performs marginally better compared to the nearest

neighbor when using the TI alone, but not enough to rule out

using k= 1. However, it appears that the 4- and 5-nearest neighbor

classifiers perform substantially worse.

To more closely examine the optimal choice for k, we consider

the linear combinations with the other similarity measures, as

shown in Table 3. The CE are equal for k= 4 and k= 5. For the

two linear combinations that perform better than TI alone, the

nearest neighbor works better than the other classifiers. For

RMSD4, the k= 3 and k= 5 perform marginally better than k= 1.

Based upon these results, it appears that the nearest neighbor

classifier (k= 1) provides the best results.

Results

Ligand Classification Results
We first consider ligand classification using the Kahraman data

set. A summary of CE for the methods discussed previously is

provided in Table 4. Additionally, the table also presents CE for

random classification. If there are no assumptions made about the

relative frequency of each ligand class, then the CE is 0.90.

However, if it is assumed that the relative frequency of each ligand

class is known, then random classification results in an average CE

of 0.87.

Our method with TI as a similarity measure, or TIPSA-TI, has

a CE of 0.43. There is a negligible difference between this method

and the previous methods Sup-TI and MultiBind, which both

result in CE of 0.42, suggesting that TIPSA-TI compares well to

these approaches when only a subset of matched atoms are

considered in classification. While these CEs are far better than for

random classification, performances achieved based on solely the

common atom sets identified by these methods are still not very

satisfactory compared to the Sup-CK (CE = 0.36) and Sup-CKL

(CE = 0.27) methods, which also use information from non-

matched atoms.

The Vol measure alone performs fairly well, resulting in a CE of

0.39. However, using a linear combination of their Sup-CK and

Sup-CKL scores with Vol results in decreases in CE of,

respectively, 0.02 and 0.01. The reason for such a small decrease

is likely due to the fact that the Sup-CK and Sup-CKL scores

implicitly consider the sizes of the sites.

Table 4 shows that, while Gyr, HydProp, and RMSD4 all

perform better than chance, each falls short of the previously

discussed methods. The optimal linear combination, calculated by

searching over a fine grid of weights, of each of these scores with

TIPSA-TI shows some amount of improvement. HydProp

improves classification slightly. The optimal linear combination

places roughly 80% of the weight on HydProp. The CE for the

optimal linear combination of RMSD4 and TIPSA-TI is 0.43,

suggesting that this feature does not warrant being included.

Using a linear combination of Gyr with TIPSA-TI produces

a CE of 0.29, which is comparable to Sup-CKL. However, our

alignment method also identifies the important atoms through

obtaining atom correspondences, while achieving the goal of

classification at the same time. The optimal combination placesTable 2. CE for studied combinations of search radius and
classifiers.

k-Nearest
Neighbor Search Radius

1.0 Å 1.5 Å 2.0 Å 2.5 Å 3.0 Å

1 0.56 0.53 0.45 0.43 0.56

3 0.58 0.53 0.51 0.42 0.53

4 0.78 0.70 0.66 0.66 0.65

5 0.78 0.70 0.66 0.66 0.65

doi:10.1371/journal.pone.0040540.t002

Table 3. CE for combinations of factors for various levels of k-
nearest neighbor.

k 1 3 4 and 5

TI + Gyr 0.29 0.33 0.53

TI + RMSD4 0.43 0.41 0.66

TI + HydProp 0.36 0.40 0.64

doi:10.1371/journal.pone.0040540.t003
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52% of the weight on Gyr, indicating both features contribute

roughly the same amount towards the classification.

Since separate linear combinations with both Gyr and HydProp

improved classification results, we considered utilizing all three

features to perform classification. Using a linear combination of

TIPSA-TI, Gyr, and HydProp with respective weights of 37.74%,

41.51% and 20.75% produces a CE of 0.28. This reduction in CE

is marginal and does not necessarily warrant the inclusion of

HydProp. However, further study shows that doing so may be

useful, in general.

We now consider the Homogeneous data set. A summary of CE

for this data can be found in Table 5. Using TI alone, we produce

a CE of 0.49, which is comparable to the other correspondence

based methods Sup-TI and MultiBind, which result in errors of,

respectively, 0.47 and 0.48. However, Sup-CKL and Sup-CKL +
Vol both have only 0.38 CE. As with the Kahraman set, the

addition of Vol does not improve results.

Again, Gyr, RMSD4, and HydProp all perform better than

random classification, but in this case, RMSD4 outperforms Gyr

and HydProp considerably. Because the ligands in this set are all of

similar size, it is sensible that Gyr would not be as useful here.

Despite this, all three perform worse than TIPSA-TI.

The optimal combination of RMSD4 with TIPSA-TI places

100% of the weight on TIPSA-TI, suggesting, again, that this

feature does not bring in useful information in addition to what is

found by examining the number of matched atoms. The optimal

combination of Gyr and TIPSA-TI places 49% weight on TI

again and results in a CE of 0.44. Again, the optimal combination

of TIPSA-TI and HydProp places 20% weight on TIPSA-TI,

producing 0.42 CE. The optimal combination of TIPSA-TI, Gyr,

and HydProp, which places weights of, respectively, 30%, 30%,

and 40%, has a CE of just 0.38, which matches the performance of

Sup-CKL.

For both data sets, the optimal weight placed on HydProp in

linear combination with TIPSA-TI is higher than might be

anticipated due to the poor performance when using it alone.

However, this combination of similarity measures performs

considerably better than HydProp alone for nearly all values of

the weight, with most attaining a CE of no more than 0.50. With

that said, the CE for this data is lower over the range of 50% to

85% for the weight of HydProp, so any choice of weight in this

range would produce similar results.

Effect of the Hungarian Algorithm and Iterative
Alignment on Classification

While there is certainly conceptual justification for the use of the

Hungarian algorithm to perform the matching for a given

alignment, we also wanted to examine the effect of this procedure

on ligand classification. Additionally, we also considered the

impact of iterative alignment. To test these, we removed each

aspect separately and jointly from the algorithm. Classification

errors for the Kahraman set using these altered versions for

optimal linear combinations of TI and Gyr as similarity measures

are provided in Table 6.

The difference in CE between the standard implementation of

TIPSA and that without iterative alignment is negligible, but the

increase in computational cost is also negligible. In addition, while

the classification results do not significantly improve with the

Table 4. Results of k-nearest neighbor classification for the
Kahraman (5.3 Å) data set.

Method Classification Error

TIPSA-TI 0.43

TIPSA-TI + Gyr 0.29

TIPSA-TI + RMSD4 0.43

TIPSA-TI + HydProp 0.36

TIPSA-TI + Gyr + HydProp 0.28

Gyr 0.54

RMSD4 0.71

HydProp 0.64

Sup-CK 0.36

Sup-CK + Vol 0.34

Sup-CKL 0.27

Sup-CKL + Vol 0.26

Vol 0.39

Sup-TI 0.42

MultiBind 0.42

Random (No Assumptions) 0.90

Random (Known Proportions) 0.87

doi:10.1371/journal.pone.0040540.t004

Table 5. Results of k-nearest neighbor classification for the
Homogeneous (5.3 Å) data set.

Method Classification Error

TIPSA-TI 0.49

TIPSA-TI + Gyr 0.44

TIPSA-TI + RMSD4 0.49

TIPSA-TI + HydProp 0.42

TIPSA-TI + Gyr + HydProp 0.38

Gyr 0.77

RMSD4 0.58

HydProp 0.83

Sup-CK 0.47

Sup-CK + Vol 0.46

Sup-CKL 0.38

Sup-CKL + Vol 0.38

Vol 0.89

Sup-TI 0.47

MultiBind 0.48

Random 0.90

doi:10.1371/journal.pone.0040540.t005

Table 6. CE for the Kahraman (5.3 Å) data set from alternate
versions using TI + Gyr to measure similarity.

Method Classification Error

Standard 0.29

No Hungarian 0.33

No Iterative Alignment 0.30

No Hungarian and Iterative Alignment 0.32

doi:10.1371/journal.pone.0040540.t006
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iterative alignment, this aspect is still vital for arriving at the

optimal alignments.

However, there is a more substantial increase in CE when the

Hungarian algorithm is removed from the procedure. This further

supports the notion that it is important to obtain atom

correspondences simultaneously rather than consecutively.

The implementation without either aspect of the algorithm also

shows an increase in CE from the standard implementation. Since

this particular version is without two of the key distinguishing

features of TIPSA, it is the implementation that is the most similar

of these examined to other methods, though there are still key

differences. For example, while much of this implementation is

similar to the methods employed by SitesBase, the seed pairs there

are determined using triangles rather than tetrahedra. Despite

such difference, these results may help provide some insight into

the differences in performance between TIPSA and other

methods, which could be useful when considering those methods

with which we cannot directly compare. Most importantly,

however, we can see that the combination of the Hungarian

algorithm and iterative alignment improves performance.

Binding site Classification Compared to Ligand Similarity
Recall that in the scheme used, a classification was only

considered correct if the binding ligands were identical; ligand

similarity was not taken into account. Selecting the TIPSA-TI +
Gyr model as optimal, we explored the erroneous classifications

for the Kahraman set to gain a better understanding of the results.

Using the cross validation procedure, the 29 binding sites listed in

Table 7 were all classified correctly at most once while all of the

other binding sites were misclassified at most once, meaning that

these 29 sites account for nearly all classification errors.

The similarity matrix for the TIPSA-TI + Gyr model is shown

in Fig. 1. The ligand groups that produced the highest proportion

of missed classifications are AMP, ATP, FMN, EST, and AND.

From Fig. 1, we see that the AMP, ATP, and FMN sites are

troublesome due to the high amount of similarity with other ligand

groups. The EST and AND sites are misclassified largely due to

the small number of sites binding to these ligands in the data. For

the purposes of comparing results with Hoffmann et al (2010), these

two ligands were considered separately. However, as presented in

Kahraman et al (2007), these two groups can be combined and

thought of as a steroid group, as displayed in Fig. 1.

Kahraman et al (2007) examined the structural similarity of the

ligands of these binding sites using spherical harmonic coefficients.

The ligand similarity matrix obtained in that study has a similar

overall pattern to what is shown in Fig. 1, suggesting that our

results for the similarity of the binding sites are largely consistent

with the underlying similarities of the ligands themselves. Among

the 29 misclassified binding site pairs (Table 7), 16 of them bind to

ligands that are structurally similar to those they were identified as.

This brings unexplained classification error to 0.13.

Unfortunately, we are not able to compare our unexplained

error to other methods because similar results have not been

provided. Nonetheless, it is important to remember that, while

perfect classification would be ideal, it is perhaps more reasonable

to expect correct classification of binding ligand only up to

limitations due to structural similarities of the ligands.

Approximation of Binding Pockets
While validation of the methodology requires using sites that are

known to bind to a given ligand, this is not ultimately of so much

practical interest. Instead, a problem of greater interest, as well as

challenge, is to predict the binding ligand without knowing the

location of the binding site on a protein surfaceconsider pockets on

the surface of the protein that are of unknown function. However,

since classification error for this problem is confounded with

binding site prediction error, any results obtained would be

contingent upon the method used for binding site prediction. As

such, in this study, rather than directly considering this problem,

we approximate this scenario by utilizing larger binding sites,

defined to consist of all atoms within 7 Å of the bound ligand.

Table 8 presents classification results for both benchmark data

sets in this more challenging scenario. Performance on both data

sets has decreased somewhat, but this change in performance is

more pronounced for the Kahraman (7 Å) set. Perhaps of the most

interest, though, is that RMSD4 appears to be more important for

classification with these larger sites, as linear combinations with

TIPSA-TI reduce error considerably. For the Homogeneous (7 Å)

data set, the linear combination including all four features

produces the best results, with 20% TIPSA-TI, 10% Gyr, 60%

HydProp, and 10% RMSD4. The optimal combination for the

Kahraman set consists of 10% TIPSA-TI, 30% Gyr, and 60%

HydProp.

The changes in the weights and the increase in CE are likely

due to the additional atoms now included in the sites. Because the

additional atoms are all, by definition, further from the centers of

mass of the binding sites, they may have a greater influence on the

alignments than those atoms that are closer to the centers of mass.

As such, it would be of interest in the future to study this more

Table 7. The misclassified binding sites (classified ligands in parentheses).

Ligand PDB IDs for the Misclassified Active Sites

AMP 12as (ATP), 1 amu (EST), 1c0a (GLC), 1 jp4 (ATP), 1 kht (EST), 1 tb7 (AND), 8 gpb (PO4)

ATP 1b8a (AMP), 1 dy3 (FMN), 1 esq (AMP), 1 gn8 (FMN), 1o9t (NAD), 1 tid (EST)

FAD 1jr8 (HEM)

FMN 1f5v (ATP), 1ja1 (EST), 1 mvl (GLC), 1 p4m (NAD)

GLC None

HEM 1qpa (NAD)

NAD 1ej2 (PO4), 1ib0 (AMP), 1o04 (HEM), 1tox (AND)

PO4 1e9g (GLC), 1gyp (ATP), 1l7m (NAD)

AND 1e3r (EST), 1j99 (NAD)

EST 1fds (AND)

doi:10.1371/journal.pone.0040540.t007

TIPSA: A Tool for Protein Surface Matching

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e40540



closely to gain a better understanding of the problem and to find

a way to adjust for it accordingly.

Reduction in Number of Seed Pairs Considered
If computational speed were not a factor, TIPSA could ideally

be implemented using all seed pairs satisfying the similarity

constraints. However, for some pairs of binding sites, this number

could be prohibitively large. As such, it is important to determine

a rough lower bound for the number of seed pairs considered for

alignment, so as to retain accuracy while also keeping computa-

tional cost at a minimum.

In order to explore this problem, we performed classification for

the Kahraman set using various numbers of seed pairs, recording

classification error and average runtime per alignment for each.

These summaries are displayed in Table 9. For timing purposes,

all computations were performed using MATLAB on a machine

running Windows 7 on an Intel Quad-Core Xeon processor

running at 2.4 GHz.

It appears that none of the seed pairs beyond the best 500

provide any benefit for alignment, so TIPSA should be run with at

Figure 1. Similarity matrix computed using the TIPSA-TI + Gyr model. Dark pixels represent greater similarity and light pixels correspond to
less similarity. The steroid group consists of both the AND and EST ligand groups in accordance to Kahraman et al (2007).
doi:10.1371/journal.pone.0040540.g001

Table 8. Results of k-nearest neighbor classification for the
Kahraman and Homogeneous data sets.

Method Classification Error

Kahraman Homogeneous

TIPSA-TI 0.53 0.52

TIPSA-TI + Gyr 0.41 0.49

TIPSA-TI + RMSD4 0.38 0.46

TIPSA-TI + HydProp 0.38 0.48

TIPSA-TI + Gyr + HydProp 0.36 0.45

TIPSA-TI + Gyr + HydProp + RMSD4 0.36 0.42

Gyr 0.55 0.84

RMSD4 0.70 0.52

HydProp 0.80 0.81

Binding sites consist of all atoms within 7 Å of the ligand.
doi:10.1371/journal.pone.0040540.t008
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most 500 seed pairs under consideration. Doing so cuts the

computational cost roughly in half.

However, further reducing the number of seed pairs used results

in instability in the classification results. For example, while using

300 seed pairs further decreases the computational cost to an

average of just 2.3 seconds per alignment, we also see an increase

in classification error. The incorrect classifications are nearly

identical as those shown previously. However, 5 of the previously

misclassified sites are now classified correctly, with 3 of those being

ones that were considered unexplained by ligand shape, while 3

other sites are now misclassified, two of which are not immediately

accounted for by similarity in ligand shape. This brings the

unexplained classification error to 0.12.

Despite this reduction in classification error, the fact that

previously correct classifications are now misclassified shows that

a few good alignments are thrown away here along with some

‘‘bad,’’ which were most likely found due to coincidental

alignments. This, along with a subsequent raise in CE for similar

numbers of seed pairs (Table 9), suggests that we should only

reduce the number of pairs considered up to the point at which the

results of the algorithm are not affected.

Computational Considerations
The running time of TIPSA varies depending on the number of

atoms in each binding site and the similarity of the binding sites, as

well. In general, the runtime is shorter for smaller binding sites.

Furthermore, as discussed previously, the running time of TIPSA

depends on the number of seed pairs used. Keeping these factors

in mind, TIPSA requires an average of between 2 and 6 seconds

per binding site pair to perform alignment. These runtimes were

obtained by implementing TIPSA using MATLAB on a machine

running Windows 7 with an Intel Quad-Core Xeon processor

running at 2.4 GHz. In order to increase the computational

efficiency of TIPSA, one goal is to develop an alternative

implementation of the algorithm in a compiled programming

language, such as C++, rather than MATLAB. This should cut

down on computational costs considerably, as MATLAB, being an

interpreted language, is not so conducive to nested series of large

loops. However, even without such an adaptation of the code, the

algorithm can be run in parallel, further cutting down on runtime

for pairwise comparisons. The reported running time for sup-CK

ranges from 0.2 and 1.3 seconds per comparison when running on

a machine with a 2.5 GHz CPU. While timing results for

MultiBind were not reported for these data sets, [9] reports run

times ranging between 8 and 58 minutes for multiple alignments of

groups of 5 binding sites when utilizing an Intel Pentium IV

2.60 GHz processor. It should be noted that MultiBind’s

computational time varies for similar reasons as TIPSA.

Identification of Maximum Common Atom set (MCAS)
from Pairs of Binding Sites

We verify whether TIPSA can successfully find good solutions

for the common atom set (CAS) from two binding sites. Although

a proof that the obtained solution is, indeed, the MCAS is difficult

to provide, the algorithm is designed so that, subject to a chosen

search radius, the number of matched atoms is maximized for

a given initial alignment of tetrahedral seeds by utilizing the

Hungarian algorithm and iterative realignment. As such, the CAS

found by TIPSA will be maximal for the set of initial alignments

considered, subject to the locality restrictions imposed. In order to

illustrate this, we have compared the matching results of TIPSA

with SitesBase, which is based on geometric hashing. While a large-

scale comparison to SitesBase is not currently possible because the

programs are not readily available, we present two detailed

examples comparing our algorithm to SitesBase.

To illustrate how the differences in methodology can impact the

resulting set of matched atoms, we first consider the following

example. The top ranked match on SitesBase for the AMP binding

site of protein 1ct9 that is not another site from 1ct9 is the APC site

of protein 1q19. For the purposes of this example, we utilize the

definition of an active site used for SitesBase; the sites consist of all

atoms within 5 Å of the ligand molecule. Table 10 displays the

atom correspondences for atoms in the query site that are matched

differently by SitesBase and TIPSA.

SitesBase found 46 atoms in common between these two sites,

whereas TIPSA found 59 (Table 10, Fig. 2). A number of these

additional matches can be attributed to a shift in the correspon-

Table 9. CE and average runtime per alignment for various
seed pair restrictions.

Number of Seed Pairs Classification Error Average Runtime (sec)

1000 0.29 11.4

500 0.29 6.1

450 0.33 4.7

400 0.32 4.1

300 0.27 2.3

100 0.33 1.2

doi:10.1371/journal.pone.0040540.t009

Table 10. Matched atoms from the AMP binding site of 1ct9
and APC binding site of 1q19 found only by either SitesBase
or TIPSA.

1ct9 AMP 1q19 APC SitesBase 1q19 APC TIPSA

2 CA 232 C 244 CA 244

3 C 232 C 244

6 CG 232 CG 244 CD 244

7 CD1 232 CG 244

19 CB 238 CB 250

20 CG 238 CG 250

21 OD1 238 OD2 250

25 OG 239 OG 251

31 O 271 O 269

39 CB 279 CB 277

40 CG 279 CG 277

41 OD1 279 OE1 277

42 OD2 279 OE1 277

43 SD 329 CG 327

44 SD 332 CG2 330

47 N 346 N 343

48 CA 346 CB 343 CA 343

50 O 346 O 343

51 CB 346 CG2 343 CB 343

59 CB 348 CG 345 CB 345

60 CG 348 CG 345

71 NZ 449 N 444

doi:10.1371/journal.pone.0040540.t010
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dences. For example, while atom C of residue 244 (C 244) from

1q19 is identified as a match using both algorithms, the atom it is

matched to differs. SitesBase matches it to atom CA of residue 232

(CA 232) of 1ct9, whereas our method aligns it to atom C 232 and

matches atom CA 244 to atom CA 232. This difference is likely

due to the use of the Hungarian algorithm since it solves the

correspondence problem for all atoms simultaneously. Other

differences are likely due to the iterative alignment process of

TIPSA. We found three atoms on residue 238 of 1ct9, which

matched with three atoms on residue 250 of 1q19, indicating that

this is a meaningful match. SitesBase missed atoms on these two

residue altogether. Similarly, we matched three atoms on residue

279 of 1ct9 with three atoms on residue 277 of 1q19, while

SitesBase only found one pair of match atoms. Not only can

TIPSA obtain more matched atoms, it also does better in terms of

matching atoms of the same type.

To further show how the maximum common atom sets from

TIPSA compare to those of SitesBase, we consider the ATP

binding sites of 1ayl and 1e2q, which are found in both the

Kahraman set and the SitesBase set. SitesBase found a common

atom set of size 38, whereas TIPSA found a common atom set

of size 59. The methods agreed on all but 25 atoms. We found

Figure 2. The atoms common to the ATP binding site of 1ct9 and the APC binding site of 1q19 as found using TIPSA (top) and
SitesBase (bottom).
doi:10.1371/journal.pone.0040540.g002
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23 matched atoms in the ATP binding site of 1e2q that

SitesBase did not, while it found only 1 matched atom that we

did not. These differences can be accounted for similarly to the

previous case. Table 11 displays those atom correspondences for

which the methods did not agree. The matched atoms found

using TIPSA and SitesBase are displayed in Fig. 3, which shows

that, while both methods obtain similar CAS, our algorithm is

able to find the additional common atoms displayed in the

upper portion of Fig. 3.

For both of these examples, the binding ligands are either

identical or are structurally similar. For such cases, it should be

expected that alignment methods would find very similar CAS if

they are indeed finding common structures. Despite the differences

in CAS, TIPSA found similar sets of common atoms to SitesBase

for both pairs, but was able to identify additional matches,

suggesting that our approach is able to find more atoms in the

MCAS for similar binding sites. In performing these comparisons,

we used a search radius of 2.5 Å for reasons described in

a following section. This puts an upper bound for the resulting

RMSD calculated from the obtained CAS at 2.5 Å.

Discussion

In this study, we developed the TIPSA algorithm for

comparison of protein binding sites based on the iterative closest

point (ICP) algorithm originally designed in computer vision for

matching objects represented by point clouds. We addressed the

starting-point problem using similar tetrahedra from two binding

sites that need to be compared, which allows us to efficiently find

good solutions. We applied the Hungarian algorithm in finding the

optimal matched atoms at each iteration step in ICP and found it

significantly improved the matching results. To classify the binding

sites according to binding ligand, we further incorporate global

geometric information in the form of the radius of gyration of

a binding site, and achieved a performance comparable to the best

performance in previous studies. While the previous best

performing method [31] does not obtain the common atom set

between binding sites and the correspondences among the atoms,

TIPSA does. The common atom set and atom correspondences

will permit future analysis to characterize unique patterns

occurring in a group of binding sites bind to the same ligand

and detailed studies of structure-function relationships. The linear

combination of scores from the factors we investigated allows

a greater understanding of the roles the factors play in

classification.

While TIPSA is similar in general to ICP, the aspects that differ

allow us to better address the issues that arise in the problem of

matching protein binding sites. To solve the dependence on the

initial alignment state, Besl and McKay (1992) suggest using

a dense set of rotations to initialize the procedure. This approach

works well if there is no additional information available to narrow

down the initial alignments. However, by utilizing the tetrahedra

from Delaunay triangulation to determine initial alignments, we

are able to make use of the data, itself, to focus the alignment

search to include only those that have the most promising

outcomes.

By incorporating atom labels, we are able to further reduce the

number of initial alignments to only those that are chemically

feasible. The labels also greatly aid in the matching of atoms by

considering correspondences only between atoms of the same type.

This aids in the alignment process by using only these atoms of

interest in the calculation of the alignment operators. Without

using the labels, ICP considers all of the atoms from the moving

binding site in the alignment step. This is problematic since the

non-matched atoms can be thought of as noise that obscures the

alignment.

By utilizing the Hungarian algorithm, TIPSA is able to

determine the optimal set of unique correspondences for a given

superposition of two binding sites. Furthermore, we restrict the set

of potential matches to consist only of those atoms from the

moving protein that are near to the query atom from the

stationary protein. This censoring prevents an inflation of the

number of matched pairs by ensuring that matches are local. The

method for obtaining correspondences using original ICP, while

avoiding the locality problem, obtains a correspondence for every

atom in the fixed binding site. This fails to solve the primary

problem of identifying the common atom set. Another advantage

of using a search radius is that the upper bound on the RMSD

calculated from the matched atoms of two binding sites will be

equal to the search radius.

The geometric hashing algorithm employed in the construction

of SitesBase and other methods (see Introduction for references)

has some similarity to our algorithm. However, there are a number

of key distinctions. First, we use the Hungarian algorithm to find

the set of one-to-one atom correspondences, which is optimal

given a particular superposition. In most of the methods using

geometric hashing, the optimal set of correspondences is not

necessarily found. Secondly, the alignment process is not iterative

in geometric hashing. While this maintains the optimal alignment

Table 11. Matched atoms from the ATP binding site of 1ayl
and ATP binding site of 1e2q found only by either SitesBase or
TIPSA.

1ayl.ATP 1e2q.ATPSitesBase 1e2q.ATPTIPSA

37 CA 254 CA 19

41 CD 254 CD 19

58 C 256 C 21

59 CB 256 CG2 21

60 OG1 256 OG1 21

61 CG2 256 CB 21

78 CE 288 CG 16

98 CA 441 C 180

99 C 441 C 180

100 O 441 O 180

108 NE 449 NE 143 NH2 143

110 NH1 449 NE 143

111 NH2 449 NH1 143

119 C 450 C 182

120 O 182 O 182

126 N 451 N 183

127 CA 451 CA 183

128 C 451 C 183

129 O 451 O 183

131 N 452 N 184

132 CA 452 CA 184

135 CB 452 CB 184

136 CG1 452 CG1 184

139 CB 455 CG2 187

142 CG2 455 CB 187

doi:10.1371/journal.pone.0040540.t011
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for the triplet pairs, it does not account for the information

provided by the remaining atoms, including those that are

determined to be matching.

The MultiBind method also employs a form of geometric

hashing, Unfortunately, we were not able to compare MultiBind in

terms of its ability of finding CAS because their code is not readily

available and the results in the online database were computed

offline. As a result, any comparisons to SitesBase have to be made

on an individual basis, so we were only able to directly compare on

a few selected examples.

With CAS identified between similar binding sites, one can use

multiple similar binding sites to define 3D patterns for each ligand

and use the 3D pattern for ligand prediction. This will further

speed up the classification process and may achieve even better

accuracy. Since our method can better identify the common atom

Figure 3. The atoms common to the ATP binding sites of, respectively, 1ayl and 1e2q as found using TIPSA (top) and SitesBase
(bottom).
doi:10.1371/journal.pone.0040540.g003
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set, it may be more advantageous for characterizing common 3D

patterns of binding sites in future studies.

We found that using the common atom sets alone is not

adequate to predict the ligands of binding sites. Other information

needs to be incorporated to account for the flexibility of ligands.

No matter what conformation a ligand takes, the overall size of the

pocket that binds the ligand does not change much, which is why

the radius of gyration and volume of the binding sites or pockets

play a role in classification. Our method uses radius of gyration as

the global feature to predict the ligands of protein binding sites.

Compared to the volume used in Hoffmann et al (2010), the radius

of gyration offer two advantages. Firstly, it is very convenient and

efficient to compute radius of gyration for any set of atoms.

Secondly, some binding sites may be relatively flat, such as

protein-protein binding sites, for which the binding site volume

can be difficult to define. In such cases, radius of gyration should

still provide the information on the sizes of the binding sites.

In this study, we extract binding site atoms using the atom

coordinates of ligands in the same manner as previous methods.

This insures that our results are comparable to previous studies.

However, in a practical ligand prediction situation, the ligand

information is usually not available. The binding sites often need

to be predicted. In this study, we decouple the problem of binding

site prediction from binding ligand prediction by assuming

a perfect binding site prediction. It is expected that if binding

sites are predicted instead of extracted using ligand information,

the overall prediction accuracy would decrease. Najmanovich et al.

[28] have investigated the effect of different ways of obtaining

binding sites on the prediction performance.

If we were to use such predicted binding sites in this study,

classification error would be confounded with binding site

prediction error, making accuracy of the methodology presented

here substantially more difficult to judge. However, to simulate

predicted binding pockets, we also performed the classification

procedure for the Kahraman and Homogeneous sets, but with the

sites consisting of all atoms within 7 Å of the binding ligand. The

classification errors for these version of the data were, respectively,

0.36 and 0.42. This sort of decrease in accuracy is to be expected

as the additional atoms can obscure the patterns present in the

atoms closest to the ligands.

In this study, we have not considered the flexibility or

conformational heterogeneity in binding site prediction. Due in

part to the flexibility of a number of the ligands and binding sites,

it is possible that our algorithm finds only a local alignment for

a given pair of binding sites. For such pairs, there may be multiple

regions of similarity that cannot all be captured by the same

alignment. To account for these cases, it may be advantageous to

consider multiple alignments beyond that which produced the

largest CAS. This may help to achieve even better classification

results by alleviating partially the problem of protein/ligand

flexibility, and to better understand the relationship between the

structure and function of a binding site.
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