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Learning to play a musical instrument involves mapping visual + auditory cues to motor
movements and anticipating transitions. Inspired by the serial reaction time task and
artificial grammar learning, we investigated explicit and implicit knowledge of statistical
learning in a sensorimotor task. Using a between-subjects design with four groups, one
group of participants were provided with visual cues and followed along by tapping
the corresponding fingertip to their thumb, while using a computer glove. Another
group additionally received accompanying auditory tones; the final two groups received
sensory (visual or visual + auditory) cues but did not provide a motor response—all
together following a 2 × 2 design. Implicit knowledge was measured by response
time, whereas explicit knowledge was assessed using probe tests. Findings indicate
that explicit knowledge was best with only the single modality, but implicit knowledge
was best when all three modalities were involved.

Keywords: sequence learning, multimodal, implicit knowledge, finger tapping, computer glove

INTRODUCTION

Much of human behavior relies on the ability to make predictions based on integrating multisensory
input to support multi-dimensional actions and decisions. This is a key component for the control
of hand motor commands, such as reaching, grasping, and object manipulation. For example, first
learning to play a musical instrument involves several distinct components, such as the mapping
of visual or auditory cues to motor movements and being able to anticipate the transition to the
next motor movement. Initial experiences involve following along with a predetermined sequence
of visual and auditory cues. Later on, this process can be planned from rehearsal or creatively
reflexive. More generally, many everyday behaviors can be examined as motor command sequences
that transition through a broad statistical structure (see Baldwin et al., 2008).

Several standard experimental paradigms are related to this type of learning, such as the serial
reaction time task (SRTT) and artificial grammar learning (AGL). Briefly, the SRTT involves
making repeated button presses following visual instructions, where the sequences are either fixed
or random (Nissen and Bullemer, 1987; Karni et al., 1995, 1998; Robertson, 2007; Clark and Ivry,
2010; DeCoster and O’Mally, 2011; Schwarb and Schumacher, 2012; Stefanescu et al., 2013). In
contrast, AGL involves learning implicit rules of a probabilistic transition structure, based on a
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finite state machine, and is used as a model of language
acquisition (Reber, 1967; Perruchet and Pacteau, 1990; Reber
et al., 1996; Pothos, 2007; Erickson et al., 2016), though similar
procedures have also been used to study memory for sequences
(Reed and Johnson, 1994; Jones and Pashler, 2007; Bornstein and
Daw, 2012; Schuck et al., 2012; Altmann, 2016). Both of these
paradigms, however, miss an important component relative to the
skill acquisition involved in real-world behaviors: Conventional
SRTT only uses fixed or random sequences, but does not have
implicit rules; artificial grammar has implicit rules but does not
involve sequences of motor commands. Moreover, it remains an
open and important question as to whether statistical learning
operates via separate modality-specific mechanisms compared to
a single high-level integrated system that is multi-modal in nature
(Mitchel et al., 2014).

While some prior studies have sought to integrate both
SRTT and AGL procedures (Hunt and Aslin, 2001), we were
particularly interested in the influence of multisensory cues
and the role of motor commands in implicit and explicit
statistical learning tasks. Our design was based on the idea
that a general central system would need to optimally integrate
visual and auditory information for both implicit and explicit
components of a statistical motor-learning paradigm, whereas a
set of modality-specific systems might vary in their influences
on motor learning.

Participants were presented with visual instructions to tap a
specified fingertip with their thumb, with sequences of finger
taps designed to follow a probabilistic transition structure, as
shown in Figure 1. Transitions were designed such that some
transitions were more likely, e.g., ring finger is most likely to
be followed by index finger, but that all finger taps occurred
equally often. Reaction time was measured using a computer
glove that detected when finger taps occurred before advancing
to the next instruction, allowing us to measure implicit knowledge
of the probabilistic transitions as the experiment progressed.
Participants were periodically also asked to predict the next finger
tap, providing a measure of explicit knowledge of the probabilistic
transitions. A second group of participants received both visual
and auditory instructions, where a pure tone additionally
accompanied the visual instruction. This comparison group
allowed us to examine how additional sensory information can
help or hinder learning.

A third and fourth group of participants were not permitted
to make motor movements based on the instructions, and
were instead explicitly asked to only observe the instructions
while keeping their hands flat on the table in front of them.
The timing of the instructions for these participants was
yoked to participants in the prior two groups, who did make
motor movements based on the finger tap instructions. These
participants, however, were still probed for their knowledge of the
probabilistic transitions, allowing us to examine the contribution
of motor movements, i.e., enactment, to explicit knowledge of the
transition structure.

In summary, by varying the learning cues presented to
each group of participants, we will compare how multimodal
sensorimotor information may enhance or impair learning
of probabilistic sequences, in comparison to the idea of

modality specificity, where unimodal information is sufficient.
Furthermore, here we included both implicit and explicit tests
of task knowledge, allowing for the measurement of potential of
trade-offs between learning systems.

MATERIALS AND METHODS

Participants
A total of 90 young adults (64 female; aged 18–35) participated
for a $10 (Canadian) honorarium. Participants were recruited
using ads posted around the University of Alberta campus. All
participants were right handed (laterality quotient: M = 89.4,
SD = 9.1), measured using the Edinburgh Handedness Inventory
(Oldfield, 1971). Informed written consent was obtained from all
participants prior to beginning the study, which was approved by
the University of Alberta Institutional Review Board.

Participants were excluded for being ambidextrous
(laterality < 70; N = 4), having insufficient English fluency
(i.e., had difficulty understanding the task instructions; N = 1);
tapping along while being in one of the Observe groups (N = 3),
or had particularly slow response times (> 3 SD; N = 2). A total
of 80 participants were included in the reported analyses.

Procedure
Participants were randomly assigned to one of four groups,
following a 2 × 2 design. Participants either wore a glove and
followed the finger taps presented on the screen (Glove, “G”),
or passively observed the finger tap images with presentation
times yoked to another participant (Observe, “O”). Additionally,
finger tap presentation screens were either accompanied by a
coinciding tone (Tone, “T”), or were silent without any auditory
cues (Silent, “S”). Thus, the four groups were Glove + Tone
(GT), Glove + Silent (GS), Observe + Tone (OT), and
Observe+ Silent (OS).

The task consisted of 16 sequences (blocks) of 145 items/trials
(i.e., finger tap instructions) each, for a total of 2,320 trials. Finger
tap instructions remained on the screen until the appropriate
tap was made, and were immediately followed by the following
trial upon the tap occurring. An example of a sequence of
trials is shown in Figure 1A. Transitions between the finger
tap instructions are shown in Figures 1B,C. Briefly, finger tap
sequences were constructed such that (a) instructions never
sequentially repeated, (b) no transitions were deterministic, and
(c) all instructions occurred equally often. See the caption of
Figure 1 for further details.

For the participants in a Glove groups, a Peregrine glove
(Iron Will Innovations Canada Inc., Lloydminster, AB) was used
to detect finger tap responses. Participants’ non-dominant (left)
hand was measured so the correct glove size (small, medium, or
large) could be used. The glove is designed for use with computer
gaming and as such only left-handed gloves are produced by
the manufacturer. The design intention is for the glove to be
worn on the user’s off-hand and replace a computer keyboard,
with their dominant hand uses a computer mouse. However, in
the current study the dominant hand was not involved in the
experimental task.
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FIGURE 1 | Experimental procedure. (A) Illustration of task design, (B,C) matrix and finite state schematics, and (D) photos of computer glove input device.
Transition values and line weights correspond to the proportion (out of every six occurrences), that finger tap instruction t - 1 will be followed by instruction t. Note
that finger taps were never sequentially repeated (i.e., t - 1 and t are never the same), nor are any transitions deterministic (i.e., no 6 s in the matrix). All fingertips
occurred equally often overall (i.e., all marginals are 6/6).

A short practice task preceded the experiment to test that
participants were able to successfully make finger taps that
registered on the computer. In the main task, finger tap
instructions remained on the computer screen until the response
was made. For participants in the Observe groups, instruction
presentation times were yoked to a unique participant in the
corresponding Glove group, to match for presentation durations
diminishing over the course of the experiment as the glove
participants learned the transition probabilities. Participants were
asked to keep their hands flat on the table and explicitly instructed
to not make movements based on the finger tap instructions and
to only imagine the movements.

Every 30–35 trials, participants were prompted to predict
which finger tap instruction would occur next. Participants were
shown a row of the four finger images, with the numbers 1, 3,
5, and 7 displayed below them. Participants were asked to press
the corresponding key on the computer keyboard to make their
prediction. The experiment had a total of 72 explicit probe tests.

For participants in the Tone groups, each of the four fingers
was additionally associated with pure tones with frequencies
of 220, 440, 880, or 1,760 Hz (i.e., “A” note across four
octaves). Tones were presented for the first 100 ms of each
finger tap instruction—participants were instructed that tones
would occur with the onset of each finger tap instruction,
but were not informed that these would be redundant with
the instructions. The mapping of finger (e.g., index finger)
to tone was counterbalanced across participants. It is well
established that differences in pitch (i.e., frequency) influence
perceived loudness (Stevens, 1934; Robinson and Dadson, 1956;
Molino, 1973); however, for these frequencies, differences in
perceived loudness have been shown to be minimal (ISO-
226, 2003; Glasberg and Moore, 2006). Mean loudness of
the tones was measured at the approximate position of the
participants’ head using a Dawe Sound Level Meter 1400G (Dawe

Instruments Ltd., London, United Kingdom) and was between
60 and 70 dB for the 4 tones. Participants in the Silent groups
experienced the same visual presentation but did not receive
any auditory cues.

RESULTS

Explicit Knowledge
Explicit knowledge of the statistical learning was measured as
accuracy on the probe tests, where participants were asked to
predict the next finger tap instruction. Predictions of the highest
likelihood response were scored as correct, not necessarily based
on the instruction that occurred next. As there were 72 explicit
probe tests throughout the experiment, we divided the overall
experimental task into quarters of four blocks each, rather than
the 16 sequence blocks, such that there would be a sufficient
number of trials in each unit of analysis. As such, there are 18
explicit probes per experiment quarter.

Accuracy on the explicit probe tests was analyzed using
a 2 (Glove) × 2 (Tone) × 16 (Block) mixed ANOVA. As
expected, accuracy on these probe trials improved across blocks
[F(3, 76) = 7.13, p = 0.009, ηp

2 = 0.086] as shown in
Figure 2, confirming that participants were acquiring explicit
knowledge of the task, not procedural learning of the transition
probabilities (discussed below; see Figure 3). The between-
groups main effects and most interactions were non-significant;
only the Block × Glove × Tone interaction was significant [F(1,
76) = 4.70, p = 0.033, ηp

2 = 0.058].
Here we conducted a 2 (Glove) × 2 (Tone) between-group

ANOVA on the explicit probe accuracy from the first quarter
of the task (i.e., blocks 1–4), following from a simple main
effects approach. We observed a significant Glove × Tone
interaction [F(1, 76) = 5.61, p = 0.020, ηp

2 = 0.066]. Results
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FIGURE 2 | Mean accuracy in explicit probe tests for each group across
quarters of the experimental task. Shaded bands represent standard error of
the mean, adjusted for inter-individual differences.

FIGURE 3 | Mean response times for each transition probability and block, for
both (A) Glove + Tone (GT) and (B) Glove + Silent (GS) groups. Shaded bands
represent standard error of the mean, adjusted for inter-individual differences.

indicate that participants who had either the glove or the
tones, but not both, performed best [mean (SEM) accuracy—
GT: 36.9% (2.9); GS: 49.2% (2.6); OT: 48.6% (2.1); OS:
41.4% (2.6)]. A comparable 2 × 2 between-groups ANOVA
was conducted on the last quarter of the task (i.e., blocks
13–16). Here we observed significant main effects of Glove
[F(1, 76) = 5.49, p = 0.022, ηp

2 = 0.067] and Tone [F(1,

76) = 5.49, p = 0.022, ηp
2 = 0.067], but no significant interaction

[p = 0.97].
We then examined the change between the first and last

quarters using paired-samples t-tests for each group. Mean
accuracy improved, but the improvement was nominal in
magnitude for all groups except for the Observe + Silent
group—where the improvement was more definite [mean (SEM)
accuracy—GT: 40.8% (2.1); GS: 50.0% (2.6); OT: 50.0% (2.8); OS:
58.9% (3.1); three p’s > 0.05, except OS: t(19) = 3.43, p = 0.003,
Cohen’s d = 1.03].

Implicit Knowledge
Implicit knowledge of the statistical learning was measured as
the response time (RT) for the finger tap responses; as such, this
analysis only applies to participants that wore the computer glove
(GT and GS groups). Here we calculated the mean response time
for trials based on their Transition Probability [1, 2, 3, 4, or 5 (out
of 6)]; response times are shown in Figure 3.

Response times was initially analyzed as a 2 [Tone: Tone
(Group GT) vs. Silent (Group GS)]× 16 (Block)× 5 (Transition
Probability) mixed ANOVA. Here we observed a significant
effect of Block [F(15, 570) = 29.76, p < 0.001, ηp

2 = 0.439],
with faster response times as participants progressed through
the experiment. The main effect of Transition Probability was
also significant [F(4, 152) = 51.12, p < 0.001, ηp

2 = 0.574],
with faster responses for the higher probability transitions. The
Block × Transition Probability interaction was also significant
[F(60, 2,280) = 2.58, p < 0.001, ηp

2 = 0.064] and was investigated
with further ANOVAs following from a simple main effects
approach. However, we did not observe a significant main effect
of Tone [F(1, 38) = 2.56, p = 0.12, ηp

2 = 0.063] nor were
any interaction effects including tone statistically significant [all
p’s > 0.1].

To further characterize the interaction, we conducted two
additional ANOVAs. The first ANOVA averaged the response
times across the first four blocks (i.e., blocks 1–4) and was
examined as a 2 (Tone) × 5 (Transition Probability) mixed
ANOVA. The factor of Tone was included as a planned factor
as multisensory learning was the focus of the study. Response
time was significantly faster for higher Transition Probability
[F(2, 88) = 15.92, p < 0.001, ηp

2 = 0.295]. Response times were
98.0 ms faster for the highest probability transitions than the
lowest probability transitions. This finding was expected and
also suggests that RT reflects initial learning of the transition
structure. However neither the main effect of Tone [F(1,
38) = 1.02, p = 0.32, ηp

2 = 0.026] nor the interaction [F(2,
88) = 0.41, p = 0.69, ηp

2 = 0.011] was significant—indicating that
addition of a tone was not faciliatory initially.

A similar 2 × 5 mixed ANOVA was conducted based on
the last four blocks (i.e., blocks 13–16). The effect of Transition
Probability on response times persisted [F(2, 88) = 72.48,
p < 0.001, ηp

2 = 0.656] and increased in magnitude relative to
the first blocks [F(3, 108) = 12.05, p < 0.001, ηp

2 = 0.241] (directly
compared through a post hoc analysis), demonstrating continued
learning of the task structure. Response times were 160.5 ms
faster for the highest than the lowest probability transitions. The
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interaction with tone remained non-significant [F(2, 88) = 0.51,
p = 0.63, ηp

2 = 0.013], however, the main effect of tone was
significant in the last four blocks [F(1, 38) = 4.56, p = 0.039,
ηp

2 = 0.107], where participants who received the auditory cues
had a mean response time that was 41.6 ms faster—potentially
indicating a facilitatory effect of the additional cues. Admittedly,
this effect is relatively weak and was examined as a planned
comparison, rather than in follow-up to an interaction involving
tone from the full ANOVA that included all blocks.

DISCUSSION

The purpose of this study was to examine the relationship
between auditory and visual input on implicit and explicit
measures of a statistical motor-learning paradigm as it applies to
hand motor commands. The primary question of multi-modality
vs. modality specificity in statistical learning has been debated in
the literature with some research strongly supporting the idea
of multiple neural systems (Conway and Christiansen, 2005)
and other research favoring the existence of a domain-general
learning system (Kirkham et al., 2002). Our study uniquely
contrasted a motor-learning paradigm with an observation
paradigm for finger-movement sequences that were presented
visually, with and without accompanying auditory tones that
paired a specific pitch with a particular finger movement.
The results showed two main findings, one related to explicit
measures of statistical motor-learning and one related to implicit
measures. Each will be discussed in turn, followed by a general
discussion of our results within the larger framework of modality
specificity vs. domain generality in statistical learning.

Our first result was that when auditory tones were paired with
the visual movement cues, explicit probe performance decreased
in the tapping task (i.e., Group GS > GT) but increased in
the observation task (i.e., Group OT > OS). That is, the tones
appeared to distract overt motor performance, but enhance
performance associated with passive observation. Interestingly,
this was only observed in early blocks of the task, and was
attenuated in later blocks. One possible explanation for these
findings is that in the tone groups, the task consisted of three
input modalities for action (visual, auditory, movement), but
only two were present for observation (visual, auditory). It is
well known that auditory stimuli can be arousing (Eason et al.,
1969; Paus et al., 1997), with both enhancing (Driver and Spence,
1998) and distracting effects (Escera et al., 2000). Thus, in
the early blocks of our study, the movement (Glove + Tone;
GT) group may have been optimally supported by a relatively
simple visual-to-motor representation that was not available in
the Observe + Tone (OT) group. This may have been related
to diminished performance due to an information overload
not essentially required (i.e., redundant) for the tapping task.
On the other hand, the Observe + Tone group lacked the
kinesthetic input afforded in the Glove + Tone group, and here
the addition of more sensory input may have aided observation
performance. While it has been shown that action observation
can support motor learning (Mattar and Gribble, 2005), in our
study, the observation groups (OT and OS) did not contain

movement observation, but rather an observed static visual
representation of the subsequent finger transition to be learned.
Thus a combination of multisensory (visual-auditory) cues may
have benefited the declarative task in the observation groups but
not in the movement groups where the auditory information
was redundant (Kalyuga et al., 1999). Interestingly, these effects
disappeared in the last four blocks of the task suggesting
that at some point in the skill-learning process (Fitts, 1964),
the respective distracting and beneficial effects were no longer
implicated in performance. Indeed, probe accuracy improved
across blocks with the largest improvements occurring in the
Glove+Tone (3.9%) and Observe+ Silent (17.5%) groups. Thus,
with repeated trials, the group with the least information input
(Observe + Silent) became more like all the other groups that
were richer in encoding input.

The second main finding was that the glove response times
improved with successive trial blocks such that the last four
blocks were faster than the first four blocks (Figure 3). However,
in the last four blocks, the presence of auditory tones decreased
response times in the finger-tapping task compared to the
silent group. Thus the presence of tones enhanced the implicit
measure of motor learning, perhaps reflecting the progression
of knowledge of the task from a more conscious representation
in the earlier blocks to something more automatic in later
blocks (Masters, 1992). This idea is consistent with the explicit
Glove+Tone group results discussed above where the distracting
effects of the tones on the probe task disappeared in later trials
compared to earlier ones. It has been shown that the implicit
motor learning of a sequence can be improved 12 h following
an intervening explicit memory task. The authors argue that
this effect is due to off-line procedural improvements subserved
by a fundamental dissociation between explicit-declarative
and implicit-procedural memory systems, and neuroplasticity
(Brown and Robertson, 2007). Presumably the hippocampus is
a key player in the declarative memory circuit (Eichenbaum,
2000), whereas motor learning of a sequence involves many
pre-motor and motor areas that decrease in their activity as
learning progresses (Toni et al., 1998). Furthermore, Schendan
et al. (2003) showed that both explicit and implicit measures
of SRTT was associated with hippocampal/medial-temporal-lobe
activation suggesting that procedural learning is also subserved
by a memory system that overlaps with declarative memory. Such
an overlap might be the reason that we found a link between
the effects of the auditory tones on both the explicit and implicit
measures in the motor-learning task. It is additionally worth
considering, however, that the synchronous auditory and visual
cues may have increased the saliency of the visual cues, following
from the well-known pip-and-pop effect (Van der Burg et al.,
2008). This could be evaluated in an additional group where the
visual and auditory cues are both still presented, but with an offset
in their presentation. If the response time improvements related
to the auditory tones are attenuated, this would provide further
specificity in how the multisensory cues were combined, such that
the synchronicity of presentation was relevant—and potentially
shares the same attentional processing as the pip-and-pop effect.

While we describe the non-glove groups as “Observe” as
this is what we can assess behaviorally—that is, they did not
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make any overt motor movements, the instructions were more
precisely asking them to engage in movement imagery (i.e.,
“Imagine” as a group descriptor). Several studies have shown that
motor/movement imagery involves engaging similar networks of
brain regions as actual movements (Lotze et al., 2003; Lotze and
Cohen, 2006; Madan and Singhal, 2012; Hardwick et al., 2018;
Kline et al., 2020). The intention here was to minimize actual
movements as the experimental manipulation, but still encourage
active engagement in the presented finger-tapping sequences
through movement imagery and not allowing participants’ minds
to wander. As the participants in the Observe groups performed
comparably to the Glove groups in the explicit knowledge test,
and on average were numerically better, it does seem that
the Observe participants were engaged in the task and did
learn sequences.

Taken together, here we found that participants that only had
to observe visual cues performed best in the explicit probe tests—
with both enactment and additional auditory tones distracting
from explicit knowledge. In contrast, when evaluating implicit
knowledge (as measured by glove RT), we found that the
additional auditory cues were beneficial to performance. These
findings indicate that explicit knowledge of the statistical learning
was best with only the single modality, but implicit knowledge
was best when all three modalities were involved. Moreover, the
results demonstrated a clear main effect of transition probability
on response time and hastening of response time as learning
accumulated (Figure 3).

Regarding the domain generality vs. modality-specificity of
statistical learning, our results support the latter in the case of
a motor-learning paradigm. Frost et al. (2015) has proposed
a theoretical model to account for sensory modality effects
on statistical learning with both separate and shared systems,
particularly between auditory and visual inputs. A key concept in
this model is that a brain region like the medial temporal lobe
could support computational generality in statistical learning
as it does for memory (Bogaerts et al., 2016), but this circuit
will still have unique connections with individual sensory
cortices that support modality-specific representations (Frost
et al., 2015). On the basis of our findings, we argue in favor
of this theoretical approach, and suggest that it can easily
accommodate our observations in the motor-learning domain
for hand motor commands that demonstrate both a convergence
and a dissociation of modality effects on explicit and implicit
measures of statistical learning.

The computer glove procedure used here generally worked
well, while also being sufficiently different than more established
procedures used in AGL and SRTT studies. However, future

work may want to include a computer keyboard or response
pad group as a comparison to the computer glove and also
include a random-sequence control group to allow for distinct
estimates of practice and learning effects. These findings add
to the growing literature demonstrating different mechanisms
underlying explicit and implicit knowledge, convergent with
the notion of multiple distinct systems supporting motor skill
learning (e.g., Clark and Ivry, 2010).
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