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Abstract

The metabolic pathways of methane formation vary with environmental conditions, but whether this can also be linked to
changes in the active archaeal community structure remains uncertain. Here, we show that the suppression of aceticlastic
methanogenesis by methyl fluoride (CH3F) caused surprisingly little differences in community composition of active
methanogenic archaea from a rice field soil. By measuring the natural abundances of carbon isotopes we found that the
effective dose for a 90% inhibition of aceticlastic methanogenesis in anoxic paddy soil incubations was ,0.75% CH3F (v/v).
The construction of clone libraries as well as t-RFLP analysis revealed that the active community, as indicated by mcrA
transcripts (encoding the a subunit of methyl-coenzyme M reductase, a key enzyme for methanogenesis), remained stable
over a wide range of CH3F concentrations and represented only a subset of the methanogenic community. More precisely,
Methanocellaceae were of minor importance, but Methanosarcinaceae dominated the active population, even when CH3F
inhibition only allowed for aceticlastic methanogenesis. In addition, we detected mcrA gene fragments of a so far
unrecognised phylogenetic cluster. Transcription of this phylotype at methyl fluoride concentrations suppressing
aceticlastic methanogenesis suggests that the respective organisms perform hydrogenotrophic methanogenesis. Hence,
the application of CH3F combined with transcript analysis is not only a useful tool to measure and assign in situ acetate
usage, but also to explore substrate usage by as yet uncultivated methanogens.
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Introduction

Methanogenesis is the dominating terminal process in anoxic

freshwater habitats like sediments and flooded soils. In rice fields,

most labile organic carbon is derived from plant material, and

carbohydrates are the primary source for anaerobes resulting

eventually in acetate and H2 + CO2 as most important

methanogenic precursors [1]. The theoretical ratio of acetate :

H2 + CO2 usage equals 2 : 1 [2]. However, depending on the exact

oxidation state of labile organic carbon, but also on competing

microbial processes, this ratio may vary. Hence, the fraction of

methane produced via acetate is an important variable in

understanding what controls mineralization in anoxic environ-

ments.

The amount of acetate-derived methanogenesis can be assessed

with CH3F (methyl fluoride, fluoromethane), a specific inhibitor

for aceticlastic methanogenesis. When applied for the first time in

microbial ecology, CH3F was assumed to be a specific inhibitor for

methane oxidation and ammonium oxidation [3,4]. While

providing direct access to processes, inhibitor experiments may

be misleading, if specificity is confined to certain conditions [5].

Indeed, CH3F turned out to be an efficient inhibitor of methane

and ammonium monooxygenases. However, it soon became

evident that it may also inhibit methanogenesis [6,7]. In anoxic

incubations treated with CH3F, approximately as much acetate

accumulates as methane is lacking compared to untreated controls.

Selectivity of CH3F for suppression of aceticlastic methanogenesis

was further validated in pure culture studies demonstrating that

1% v/v inhibited growth of and methanogenesis by pure cultures

of aceticlastic Methanosaeta and Methanosarcina. Other microbes,

homoacetogenic, sulfate reducing and fermentative bacteria, and a

methanogenic mixed culture based on hydrogen syntrophy, were

not inhibited [7]. In Methanosarcina barkeri, which is able to use

acetate and H2 + CO2 simultaneously, only acetate utilization was

suppressed, when both acetate and hydrogen were supplied [7].

However, pure cultures are not necessarily representative for yet

uncultured populations, and many operational taxonomic units

(OTUs) have been designated to a phylogenetic clade and named

from environmental sequence information alone. Hence, some

populations may show a behavior different from that found in pure

cultures.

Another approach to determine methanogenic pathways uses

isotopic signatures; for review see [8]. In short, methanogenesis

from H2 + CO2 discriminates stronger against isotopically heavier

carbon than does aceticlastic methanogenesis [8,9]. This differ-

ence can be used to calculate the contribution of these two
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methanogenic pathways, provided the respective isotopic fraction-

ation factors are known [8,10,11]. Indeed, combining the

application of CH3F with the analysis of isotopic signatures

revealed the expected patterns [12].

The methanogenic community in rice fields mainly consists of

versatile Methanosarcinaceae and strictly acetotrophic Methanosaeta-

ceae, as well as of hydrogenotrophic Methanomicrobiales, Methano-

bacteriales, and Methanocellales; the latter were formerly known as

rice cluster I [1,8,12–14]. Rice paddy soil is found to be

compartmented into two habitats: rhizosphere and bulk soil.

Methanogenic communities on rice roots are dominated by

Methanocellales, with hydrogenotrophic methanogenesis contribut-

ing 60–80% to total methane production [15–17]. The influence

of rice cultivars was found to be minor [18]. In bulk soil however,

methane is mainly derived from acetate (50–83%), and Methano-

sarcinaceae are the prevailing methanogens [19,20]. The commu-

nity structure of methanogens remains rather stable even under

dry-wet cycles [21]. In summary, cell numbers fluctuate with

management [21], but methanogenic communities in paddy fields

of different geographical origin are highly related [22].

Here, we re-visit the inhibition of aceticlastic methanogenesis in a

paddy soil asking not only how specifically CH3F inhibits aceticlastic

methanogenesis, but also for the response of different methanogenic

archaea to this inhibitor. We studied the dose-response relationship

of methanogenesis as a function of CH3F concentration by

combining process measurements with isotopic data and molecular

analyses targeting the mcrA gene (encoding the subunit A of methyl

coenzyme M reductase, a protein characteristic and essential for

methanogenesis [23]). Since quite often only a minor fraction of a

methanogenic community is metabolically active [16,25,26], we

aimed at both the mcrA gene (community) and the respective mRNA

(active community), as mcrA transcripts have been shown to be

directly connected to energy metabolism and methanogenesis [24].

Materials and Methods

One kg bulk soil was sampled in spring 2008 from a rice field in

the delta region of River Yangtze (Zhejiang Province, China)

representing one of the major rice growing areas of the world. The

particular field had been used for wetland rice production for

about 2000 years [27–29]. Ten grams air-dried soil were mixed

with ten milliliters oxygen-free distilled water in 26-ml pressure

tubes. Tubes were capped with butyl rubber stoppers and flushed

with N2 for ten minutes. Different amounts of CH3F correspond-

ing to initial concentrations of 0.2, 0.3, 0.4, 0.6, 0.79, 0.99, 1.19,

1.57, 1.96, 2.72 and 3.85% were injected by syringe in two tubes

each. Another three tubes did not receive CH3F serving as control,

and three were sampled immediately as primary soil material.

Figure 1. Residuals, the difference between real and estimated size, of a FAM-labeled size standard used as ‘sample’ in t-RFLP
analysis. Data from three replicate runs are shown. Fit: fifth order polynomial, red line; 95% prediction intervals: black lines.
doi:10.1371/journal.pone.0053656.g001
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Water, tubes, and stoppers had been sterilized. The tubes were

incubated for14 days in the dark at 25uC. Methane, carbon

dioxide and methyl fluoride in the headspace were measured

repeatedly after sampling with a 0.25-ml pressure-lok syringe

(Valco Instruments, USA) on a GC-FID (SRI-8610, SRI

Instruments, USA). Only endpoint measurements are shown here.

Quantification of lactate, formate, acetate, propionate, ethanol

and butyrate were performed by analyzing filtered (ReZist, 0.2 mm

PTFE, Schleicher and Schuell, Germany) pore water samples after

14 days of incubation by HPLC (SRI Instruments, USA).

Methane produced from carbon dioxide (mCO2) was measured

under inhibition of aceticlastic methanogenesis ($0.75% CH3F,

see below), while methane produced from acetate (macetate) was

calculated from the balance to total methane produced in controls

without inhibitor: macetate = mtotal2mCO2.

Carbon isotopic signatures in methane and acetate were

measured as described elsewhere [30]. 13C signatures are given

in d-notation referring to the respective standard material, Vienna

Pee Dee Belemnite (VPDB) [8].

Total nucleic acids were extracted as described elsewhere [31].

For tRFLP analysis, mcrA gene fragments were obtained with

primers ME1/ME2 [32], where the forward primer was labeled

with FAM. PCR conditions were: initial denaturing at 94uC for

5 minutes, 35 cycles of 30 s at 94uC, 45 s at 55uC, 1.5 min at

72uC, and a final extension at 72uC for 5 min. Amplicons were

digested with SAU96I and analyzed on a capillary sequencer

(3130 Genetic Analyzer, Applied Biosystems). For reverse tran-

scriptase PCR (RT-PCR), 5 ml sample were treated with DNA-

free DNase (Qiagen) followed by exonuclease treatment (mRNA-

ONLY Prokaryotic mRNA Isolation Kit, Epicentre Technologies)

and cleaning (RNAeasy Mini Kit, Qiagen) according to manu-

facturers’ instructions. Reverse transcription and amplification was

performed in one step combining reverse transcription (Reverse

Transcription System, Promega, Germany) with 30 PCR cycles at

Figure 2. Accumulation of acetate and methane (A), and the respective d13C signatures in % VPDB (B) depending on initial
concentrations of methyl fluoride; d13Cacetate is the combined signature for both C-atoms. Data are endpoint measurements and not
corrected for initial concentrations. The fitted dose-response curves follow a log-logistic model with the parameters ED50 (effective dose for 50%
inhibition), upper limit, and slope, while the lower limit was fixed to the respective averages for 0% CH3F. ED50, ED90, and ED95 are marked by red
lines. (C) Box-plot summarizing accumulation of methane and acetate in control (n = 3) and in samples with CH3F$0.75%, n = 6) after 14 days of
anoxic incubation.
doi:10.1371/journal.pone.0053656.g002
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conditions as described above, but without a FAM-label on primer

ME1.

In tRFLP analysis measured fragment size may deviate from real

(in silico) size. Different factors have been claimed to be responsible for

size shifts [33,34], but a detailed residual analysis was lacking so far.

Residuals, the difference between real and estimated size, were

calculated by running a FAM-labeled size standard as ‘sample’

against a ROX-labeled size standard. Both standards were purchased

from Eurogentec (Germany). The ‘fragment’ size of the FAM-labeled

standard was calculated with the built-in software using a third order

polynomial as calibration function. Even if the calibration curve gave

nearly perfect fit, residuals showed a considerable non-linearity being

best described by a fifth order polynomial (Figure 1; inter-

cept = 16.67359, a = 20.3238648, b = 1.831838e-3, c = 23.81772e-

06, d = 3.17735e-09, e = 28.61187e-13). This polynomial was used

to correct measured TRF size making it comparable to in-silico

fragment size.

Gene libraries for archaeal mcrA sequences were constructed

using cDNA from the control samples and from samples incubated

under 3.85% methyl fluoride, as well as DNA from the primary

soil material. (RT)-PCR products were ligated into pGEM-T

vector plasmids (Promega, Germany) and transformed into

Escherichia coli competent cells JM109 (Promega, Germany)

according to the manufactures’ instructions. The sequences were

assembled with SeqManII (DNASTAR) and compared with

sequences available in the GenBank database using the BLAST

network service to determine the approximate phylogenetic

affiliations. Alignment and phylogenetic analysis of the mcrA

sequences from 69 DNA- and 91 mRNA-derived clones was done

with ARB [35]. OTUs were defined by the average neighbor

algorithm at 5% amino acid sequence divergence level; represen-

tative sequences for these OTUs were determined using mothur

ver. 1.19.3 [36]. Sequence data have been submitted to GenBank

under accession numbers JQ283291-JQ283438.

Statistical analysis was done in R ver. 3.12.2 [37]. Dose-

response models were fitted using package drc, ver. 2.2-1 [38].

Constrained correspondence analysis (CCA) and non-metric

multidimensional scaling (NMDS) were done with package vegan

ver. 2.1-0 [39], and a multivariate regression tree (MRT) was fitted

with package mvpart ver. 1.4-0 [40]. Graphics were produced with

package ggplot2 [41].

Results and Discussion

Metabolites and isotopic signatures
With increasing CH3F concentration, acetate accumulated

while methane accumulation was reduced accordingly

(Figure 2A) resulting in a highly significant negative correlation

(r = 0.7, P = 0.0002). No other fermentation products, in particular

Table 1. Experiments quantifying methane oxidation from
the difference between methane fluxes measured with and
without CH3F.

Reference Year Ecosystem
Biome,
Ecozone

CH3F
concentration

[45] 1995 Wetland rice Temperate 1%

[58] 1997 Wetland Temperate 1.5%

[47] 1996 Wetland rice Tropics 1.5, 3%

[59] 1993 Wetland rice,
weeds

Subtropics 1.5, 3%

[6] 1996 Wetland rice Mediterranean 0.7, 1.7, 3%

[60] 2001 Weed
(Myriophyllum)

Temperate 84–140 mM

[48] 2001 Wetland rice Subtropical 3%

[61] 1996 Weed
(Sparganium)

Boreal 3–4%

[62] 1998 Tundra wetland Subarctic 1%

[63] 2000 Wetland Boreal 1.5–3%

doi:10.1371/journal.pone.0053656.t001

Figure 3. Multivariate analysis of relative abundances of
terminal restriction fragments (tRF). (A) Biplot of a constrained
correspondence analysis (CCA). Two constraints were applied: CH3F
concentration and the type of nucleic acid, i.e. DNA or mRNA. The CCA
explains about 71% of overall variation, with CCA1 being the most
important axis. The arrows indicate the direction in which constraints
correlate with the ordination axes. Confidence ellipses (95%) surround
the centers of DNA- and mRNA-derived communities, respectively.
Closed circles represent the samples, and black triangles the different
tRFs. The triangle surrounded by a red outline corresponds to tRF 133,
the numerically dominant fragment. (B) Multivariate regression tree
(MRT) based on squared Euclidean distances. The vertical spacing of the
branches is proportional to the error in the fit; the first split reduces the
error by 75%. The tree is pruned, i.e. the least important splits have
been removed. Barplots at the leaves show the relative abundance of
different tRFs; from left: 126, 133, 503, 648, 652, 663, 683, 743, and
752 bp. As in panel A, tRF 133 is marked by a red outline.
doi:10.1371/journal.pone.0053656.g003
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not formate, propionate, butyrate, or ethanol, did accumulate

(data not shown). Along with the reduction of methanogenesis,

both the d 13C values of methane and acetate decreased

(Figure 2B). The shift in d 13C-CH4 by about 220% VPDB

between control (0% CH3F) and incubations receiving $0.75%

CH3F is in accordance with a shift from mixed substrate usage to

H2 + CO2 dependent methanogenesis [17,42]. Correspondingly,

the relatively heavy carbon isotopic signature of 210% in acetate

from control incubations implies that lighter acetate was prefer-

entially consumed, thus enriching the remaining acetate in 13C.

With increasing CH3F concentration, d13Cacetate continuously

decreased until values stabilized around 223%, as known for

acetate derived from fermentation of organic matter in rice fields

[12]. Thereby we can exclude that homoacetogenesis was an

important process in the incubations, as otherwise the isotopic

signature of acetate should have been substantially lower [43].

All fitted dose-response curves have ED90 (effective dose for

90% inhibition) concentrations of ,0.75% CH3F. The dose-

response curves for acetate and methane accumulation even

showed ED99 concentrations of ,1%. The higher ED99 for the

isotopic signatures may be due to the rather gentle slope of the

respective curves (Figure 2B).

If only aceticlastic methanogenesis was inhibited while acet-

ogenesis proceeded, the sums of methane and acetate in control

and fully inhibited samples (assumed at $0.75% CH3F) should be

equal. Indeed, no significant difference was found (Figure 2 C; two

sample t-test, p = 0.87). On basis of the results of the different dose-

response curves we conclude additionally that above 0.75% CH3F

virtually no acetate was consumed. Furthermore, our data does

not indicate an effect on residual, hydrogenotrophic methanogen-

esis. In a previous experiment, hydrogenotrophic methanogenesis

was found unaffected even at 4% CH3F [6: in a hypersaline

microbial mat from Solar Lake, Sinai]. However, in two

incubations at elevated CH3F concentrations (2.7 and 2.9%) not

included in the dose-response fits, the amount of acetate produced

was about 50% higher than the corresponding methane deficit.

Methanogenesis and isotopic signatures, on the other hand, were

not affected. Similar disproportionate acetate values have been

reported before [44] and perhaps, these imbalances are caused by

substrate heterogeneities, not by effects on methanogenesis.

Assuming that an initial CH3F concentration of 0.75% inhibited

aceticlastic methanogenesis, hydrogenotrophic methanogenesis

contributed 18.3% to total methane production. The inhibitory

concentration is within the range usually applied to rice field

[2,4,6,17,44–49] and other wetland soils [50–53]. A decade ago,

CH3F was thought to be a specific inhibitor for methane oxidation

in general [3] and has been applied to chamber experiments

quantifying methane oxidation from the difference between

methane fluxes with and without CH3F (Table 1). Considering

an ED50 of ,0.25% CH3F for aceticlastic methanogenesis, these

experiments may likely have underestimated the amount of

methane oxidized due to co-inhibition of aceticlastic methano-

genesis.

The methanogenic community
Community composition (DNA-based) and transcripts were

analyzed by t-RFLP analysis as well as by cloning of the mcrA gene

fragments and transcripts. Results of the t-RFLP analysis of the

mcrA gene (Figure 3) indicated a high relative abundance of

versatile Methanosarcinaceae (tRF 126, 133, 652, 683) and hydro-

genotrophic Methanobacteriales (tRF 126, 663, 752). In addition,

Methanocellales (tRF 133) were found in all incubations. Two tRFs

could not be separated further: an in silico analysis of mcrA

sequences from the clone library revealed that tRF 133 occurred

in Methanocellales, the Fen cluster, and Methanosarcinaceae, while tRF

126 comprised both Methanobacteriales and Methanosarcinaceae.

Despite this, t-RFLP patterns showed a distinct separation

between total and active community in all analyses applied:

CCA (Figure 3A) and MRT igure 3B) demonstrated consistently

that a homogenous, active community was found across the whole

CH3F gradient applied. Furthermore, virtually the same separa-

tion was found with non-metric multidimensional scaling (NMDS;

stress = 0.02, r2
linear = 0.99; ordination not shown). As found

recently for methanogens [21] and other microbial guilds [54],

the active community consisted only of a subset of the total. Most

remarkable was here the nearly complete absence of restriction

fragments indicative for Methanobacteriales mcrA transcripts.

Cloning and sequencing allowed further differentiation. The

DNA-based library constructed from soil sampled at the beginning

of the experiment was dominated by sequences affiliated to

Methanocellales, Methanosarcinaceae and Methanobacteriales, but also by

a few members of the Fen cluster and a so far uncharacterized

Table 2. Abundances of the 22 operational taxonomic units
(OUTs) with a maximum intra-group distance of 5% (AA) in
the clone library.

OTU Affiliation TRF
Start,
DNA

Control,
mRNA

CH3F
3.85%,
mRNA

1 Msarc 139 15 40 42

2 Mcell 139 6 0 0

3 Mcell 138 6 0 0

4 Mcell 139 1 0 0

5 Mcell 139 5 0 0

6 Mbac 760 10 0 0

7 Mbac 131 3 0 0

8 Mbac 760 3 0 0

9 Mbac 666 1 0 0

10 Mbac 666 1 0 0

11 Mcell 138 10 3 0

12 NN 139 1 0 2

13 Msaeta 131 2 0 0

14 Fen 139 1 0 0

15 Msarc 139 1 0 0

16 Mbac 733 1 0 0

17 Mbac 760 1 0 0

18 Mcell 138 1 0 0

19 Mcell 138 0 1 0

20 Msarc-like 139 0 2 0

21 Mcell 139 0 0 1

x2 test,simulated p-values Control,
mRNA

CH3F,
mRNA

Start, DNA 0.0001 0.0001

Control, mRNA 0.05

Clones were derived from samples taken before (‘start’, based on DNA) and
after (‘control’ and 3.85% CH3F, based on transcripts) anoxic incubation for 14
days. OTU number and affiliation to families are given as in Figure 4. Msarc:
Methanosarcinaceae, Mcell: Methanocellales, Mbac: Methanobacteriales,
Msaeta = Methanosaetaceae, Fen = Fen cluster, Msarc-like = uncertain affiliation,
but nearest to Methanosarcinaceae; NN = unknown cluster. Simulated p-values
are from a Monte-Carlo simulation with 9999 replicates.
doi:10.1371/journal.pone.0053656.t002
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cluster (Table 2). The latter (OTU 12; Table 2) were found in

clones retrieved under CH3F suggesting a hydrogenotrophic mode

of life. In accordance with our t-RFLP findings, only a minor

fraction of this diversity could be retrieved from mRNA resulting

in highly significant differences between DNA- and mRNA-based

clone libraries (Table 2). Considering mRNA derived sequences as

a proxy for group-specific activity, Methanobacteriales appeared to

not produce methane at all. Similarly, Methanocellales seemed to

have been much less important for methanogenesis than expected

from their high dominance in the DNA-based clone library. With

and without repression of aceticlastic methanogenesis, Methano-

sarcinaceae were the most active methanogens suggesting that they

used acetate when possible, but shifted to H2 + CO2, if acetate

usage was inhibited. This is in accordance with a previous

experiment on Methanosarcina barkeri strain MS that was inhibited

by CH3F when supplied with acetate, but not if grown on H2 +
CO2 [7]. Methanosarcinaceae sequences detected here were affiliated

to the type strain of Methanosarcina mazei (Figure 4) being able to use

Figure 4. Neighbor-joining tree based on 147 deduced amino acid positions from 949 mcrA sequences. Phylogenetic nodes verified by a
maximum likelihood tree are marked with closed circles. The outer branches of distinct clusters are collapsed, and those containing OTUs defined in
this study are marked in blue. Only representative sequences for the OTUs have been incorporated into the tree and are depicted as ‘OTU name
(accession number, number of sequences representing the OTU)’. Environmental clusters were labeled with two reference sequences showing
maximum phylogenetic distance within the respective cluster, given as ‘name 1 (accession number 1), name 2 (accession number 2). The
corresponding tRFs were calculated in silico using the TRiFLe package [64] and are given to the right. Scale bar: 0.09 changes per amino acid position.
The outgroup is Methanopyrus kandleri.
doi:10.1371/journal.pone.0053656.g004
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both these substrates, too [55]. It is intriguing that under CH3F

inhibition, no Methanocellales-related sequences could be retrieved

anymore from mRNA, resulting in a small yet still significant

difference between the respective libraries (Table 2). While we

cannot rule out a direct effect, shifting Methanosarcinaceae towards a

hydrogenotrophic mode of life might also have changed compe-

tition for H2 resulting in an indirect effect on Methanocellales.

Conclusion

While we found CH3F to act specifically on aceticlastic

methanogenesis, the results obtained from the analysis of mcrA

transcripts allow for relevant conclusions beyond this technical

aspect. Community composition has often been regarded as a

controlling factor for the flow of carbon and reductants through

microbial communities. However, this experiment has shown how

versatile Methanosarcinaceae are very well capable of delivering the

same end-product under totally different conditions. This supports

concepts developed to understand and predict the reaction of

microbial communities to environmental changes [56,57]. Fur-

thermore, this experiment demonstrates how the sensible applica-

tion of selective inhibitors can help detecting physiological traits of

yet uncultivated microbes eventually supporting the design of

cultivation strategies. Having found previously the same effect of

CH3F on methanogenesis in a soil from an Italian rice field [6]

more than 10,000 km apart from that in China let us trust that our

findings are widely applicable.
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