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Abstract

In diet-induced obesity, metformin (MF) has weight-lowering effect and improves glucose

homeostasis and insulin sensitivity. However, there is no information on the efficiency of MF

and the mechanisms of its action in melanocortin-type obesity. We studied the effect of the

10-day treatment with MF at the doses of 200, 400 and 600 mg/kg/day on the food intake

and the metabolic and hormonal parameters in female C57Bl/6J (genotype Ay/a) agouti-

mice with melanocortin-type obesity, and the influence of MF on the hypothalamic signaling

in obese animals at the most effective metabolic dose (600 mg/kg/day). MF treatment led to

a decrease in food intake, the body and fat weights, the plasma levels of glucose, insulin

and leptin, all increased in agouti-mice, to an improvement of the lipid profile and glucose

sensitivity, and to a reduced fatty liver degeneration. In the hypothalamus of obese agouti-

mice, the leptin and insulin content was reduced and the expression of the genes encoding

leptin receptor (LepR), MC3- and MC4-melanocortin receptors and pro-opiomelanocortin

(POMC), the precursor of anorexigenic melanocortin peptides, was increased. The activities

of AMP-activated kinase (AMPK) and the transcriptional factor STAT3 were increased,

while Akt-kinase activity did not change from control C57Bl/6J (a/a) mice. In the hypothala-

mus of MF-treated agouti-mice (10 days, 600 mg/kg/day), the leptin and insulin content was

restored, Akt-kinase activity was increased, and the activities of AMPK and STAT3 were

reduced and did not differ from control mice. In the hypothalamus of MF-treated agouti-

mice, the Pomc gene expression was six times higher than in control, while the gene expres-

sion for orexigenic neuropeptide Y was decreased by 39%. Thus, we first showed that MF

treatment leads to an improvement of metabolic parameters and a decrease of hyperleptine-

mia and hyperinsulinaemia in genetically-induced melanocortin obesity, and the specific

changes in the hypothalamic signaling makes a significant contribution to this effect of MF.
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Introduction

Biguanide metformin (MF) is the first-line pharmacologic agent for management of the type 2

diabetes mellitus and metabolic syndrome [1]. Acting on the peripheral tissues of diabetic

individuals, the MF improves their sensitivity to insulin and reduces the plasma glucose levels

due to both an inhibition of gluconeogenesis and a decrease of glucose production by hepato-

cytes [1]. Nowadays, the obtained clinical evidences show that the MF can be an effective drug

for the treatment of both diabetic and non-diabetic patients with obesity [2–4]. The MF treat-

ment of obese animals and patients has the weight- and fat-lowering effects and improves the

glucose and insulin sensitivity [5–8]. The effectiveness of MF to treat the different types of obe-

sity varies greatly and depends on the etiology of obesity, its severity and duration, as well as

on the comorbid metabolic disorders, such as diabetes mellitus and metabolic syndrome.

There is no evidence of a therapeutic effect of MF on the melanocortin-type obesity that is

induced by chronic inhibition of the type 4 melanocortin receptor (MC4R). The weakening of

hypothalamic MC4R-signaling can be caused by the reduced level of pro-opiomelanocortin

(POMC), a precursor of the melanocortin peptides with MC4R-agonistic activity, by the

increased levels of agouti-related peptide (AgRP) and agouti-signaling protein-1 (ASIP1), the

endogenous MC4R antagonists, and by the impaired activity of MC4R due to inactivation

mutations in the Mc4r gene [9–17]. Currently, the effective drugs to prevent and treat the mel-

anocortin-type obesity are not developed [18–20], which makes it necessary to develop the

new pharmacological approaches for its correction, including the use of MF.

In the peripheral tissues, the main mechanism of MF action includes the inhibition of mito-

chondrial respiratory chain and the stimulation of AMP-activated protein kinase (AMPK), a

crucial cellular energy sensor, which provides the regulation of metabolism, mitochondrial

dynamics and endoplasmic reticulum stress [21, 22]. In the recent years, the greatest attention

has been focused on the central mechanisms of MF action, which are based on its effect on the

different brain structures, including the hypothalamus. The ability of MF to influence the

brain functions and the neuronal plasticity determines the effectiveness of this drug in treating

the neurological and neurodegenerative diseases [23, 24]. The MF is easily transferred to the

hypothalamus and the other brain regions due to its efficient transport across the blood-brain

barrier (BBB). As a result, the concentration of MF in the brain and the cerebrospinal fluid

rapidly increases with different routes of its administration, as shown in the animal experi-

ments [25–28] and in the clinical studies [29]. At the same time, in obesity the central mecha-

nisms of MF action remain little investigated, and in the melanocortin-type obesity the

mechanisms are not studied at all.

Nowadays, the hypothalamic signaling systems and, in the first place, the leptin signaling

system are considered as the main targets of MF treatment, since their activity largely depends

on the energy status of hypothalamic neurons. In the hypothalamus, leptin through leptin

receptor (LepR) activates the 3-phosphoinositide and the STAT3 (signal transducer and activa-

tor of transcription 3) signaling pathways [30]. The 3-phosphoinositide pathway includes

Janus kinase-2 (JAK2), insulin receptor substrate-2 (IRS2), phosphatidylinositol-3-kinase

(PI3K) and serine/threonine-specific Akt kinase, the latter is responsible for control of neuro-

genesis and neuronal survival and growth [31–33]. The STAT3 pathway includes JAK2-me-

diated phosphorylation of LepR and subsequent phosphorylation and dimerization of STAT3,

resulting in the activation of STAT3-dependent gene expression [30, 34]. In the hypothalamus,

the 3-phosphoinositide and STAT3 pathways are involved in the functional interaction of the

leptin system with the insulin, melanocortin and other signaling systems, which contributes to

leptin-mediated regulation of food intake, energy expenditure and endocrine functions [31,

33, 35–37]. This is supported by the fact that PI3K and Akt-kinase are also the key enzymes in
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the brain insulin signaling [38, 39]. The PI3K, being a target for both leptin and insulin, inte-

grates their regulatory effects on energy balance, glucose homeostasis, neurogenesis, neuronal

survival and endocrine functions [40]. In diet-induced obesity the hypothalamic leptin and

insulin signaling is largely changed, and these changes are the result of hormonal dysregula-

tions and metabolic dysfunctions [38, 41]. We hypothesized that in melanocortin-type obesity

the hypothalamic signaling systems also undergoes the significant changes, and anti-obesity

effects of MF may include restoration and modulation of their activity.

The purpose was to study the effects of MF treatment of female yellow C57Bl/6J (genotype

Ay/a) agouti-mice (Agouti yellow) with the melanocortin-type obesity on their metabolic and

hormonal parameters, as well as on the hypothalamic signaling. We investigated the influence

of the 10-day treatment of obese agouti-mice with MF at three daily doses of 200, 400 and 600

mg/kg on the body weight, fat mass, food intake, glucose sensitivity, and the plasma levels of

glucose, insulin, leptin and lipids. In the case of the most effective metabolic-improving dose

(600 mg/kg/day), in the hypothalamus the activity of AMPK, STAT3 and Akt-kinase, as well as

the gene expression for LepR, MC3R, MC4R and the anorexigenic and orexigenic factors

which are involved in the regulation of food intake and energy expenditure were studied. We

also investigated the effect of long-term administration of MF at a dose of 600 mg/kg/day on

the functional state of the liver, evaluating its histology and the expression of the inflammatory

and apoptotic factors, and also measured the plasma levels of lactate, which can be increased

when using the high doses of MF [42–44].

The choice of yellow C57Bl/6J (Ay/a) mice with the mutation at the Agouti locus (Ay) was

due to the fact that they are the most suitable model of the melanocortin-type obesity. The

agouti-mice (Ay/a) have the increased expression of ASIP1, which antagonizes MC4R and pro-

vokes weight gain, fat deposition, glucose intolerance, the leptin and insulin resistance, and the

impaired transport of leptin into the brain structures [45–50].

In our study, it was first shown that the 10-day treatment of agouti-mice with melanocor-

tin-type obesity with MF at the doses ranging from 200 to 600 mg/kg/day led to the decrease

in the body and fat weight, food intake, dyslipidemia, hyperinsulinaemia and hyperleptinemia

and to the restoration of the intrahypothalamic levels of leptin and insulin, and these effects

were dose-dependent. In the hypothalamus of obese agouti-mice we detected the increase of

the AMPK and STAT3 activities and the increased expression of the genes encoding LepR and

the components of melanocortin signaling system, which can be considered as a compensatory

response to obesity-associated metabolic abnormalities. At the most effective metabolic dose

(600 mg/kg/day), the MF normalized the AMPK and STAT3 activities and increased the activ-

ity of Akt-kinase, the main effector enzyme of the 3-phosphoinositide pathway. Moreover, the

MF treatment led to a significant increase in hypothalamic expression of the gene encoding

POMC. It should be noted that MF at a dose of 600 mg/kg improved the liver functions, reduc-

ing the hepatic steatosis and normalizing the expression of pro-inflammatory and apoptotic

factors in the liver tissue. These results indicate that MF should be considered as the effective

drug to treat the melanocortin-type obesity, and give grounds to believe that specific changes

in the leptin, melanocortin and insulin systems in the hypothalamus have an important role in

the realization of the metabolic-improving effect of MF.

Materials and methods

Animals

In the experiments six-month female black C57Bl/6J (a/a) mice (control) and six-month

female yellow C57Bl/6J (Ay/a) mice (Agouti yellow) were used. The animals were housed in the

plastic cages, ten animals in each, with a normal light–dark cycle (12 h/12 h, light on at 9.00 a.
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m.) and temperature (24±3˚C) and had free access to laboratory chow pellets and water. The

mice were obtained from the Institute of Cytology and Genetics of the Siberian Branch of the

Russian Academy of Sciences. The experimental procedures were approved by the Institu-

tional Animal Care and Use Committee at the Sechenov Institute of Evolutionary Physiology

and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia, and according to

“Guide for the Care and Use of Laboratory Animals” and to the European Communities

Council Directive of 1986 (86/609/EEC). All efforts to minimize animal suffering and to

reduce the number of animals were made.

Five groups of animals were investigated: black C57Bl/6J (a/a) mice (n = 15, Group a/a)

that considered as control, obese yellow C57Bl/6J (Ay/a) agouti-mice (n = 15, Group Ay/a)

without MF treatment, and yellow C57Bl/6J (Ay/a) agouti-mice treated with MF at the daily

doses of 200 (n = 10, Group Ay/a-M200), 400 (n = 10, Group Ay/a-M400) and 600 (n = 15,

Group Ay/a-M600) mg/kg for 10 days. The MF was dissolved in water and given to agouti-

mice orally twice daily (at 10.00 and 18.00). In the Groups a/a and Ay/a, the animals received

saline instead of MF solution. During the experiment, all the studied groups of mice received a

standard chow diet that contained 19% protein, 4% fat, and 66% carbohydrates (“Assortment

Agro”, Moscow Region, Turacovo, Russia), which provided 3.7 kcal/g. The blood samples to

measure the levels of insulin, leptin, lipids and lactate were obtained from the heart under

anesthesia (chloral hydrate, 400 mg/kg, intraperitoneally). Then, the anesthetized animals

were decapitated, and the hypothalamus and liver were removed. The hypothalamus samples

were used for qRT-PCR and Western blotting and for the determination of the intrahypothala-

mic leptin and insulin content, while the liver samples were used for qRT-PCR and histochem-

ical analysis.

The measurements of the plasma glucose, insulin, leptin, triacylglycerols,

cholesterol and lactate levels and the intrahypothalamic leptin and insulin

content

The glucose concentration in the whole blood from the tail vein was measured using a gluc-

ometer (“Life Scan Johnson & Johnson”, Denmark) and the test strips “One Touch Ultra”

(USA). The concentration of insulin in the serum of mice and in the hypothalamus samples

was measured using the Mouse Insulin ELISA kits (“Mercodia AB”, Sweden). The leptin levels

in the serum and in the hypothalamus samples were measured using the ELISA kit for Leptin

(“Cloud-Clone Corp.”, Houston, USA). To determine the intrahypothalamic leptin and insulin

content, the samples of the hypothalamus tissue were homogenized in the ratio 1:10 in the

lysis buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2 mM EDTA, 2 mM EGTA,

0.25 M sucrose, 0.5% Triton X-100, 0.5% sodium deoxycholate, 15 mM NaF, 10 mM sodium

glycerophosphate, 10 mM sodium pyrophosphate, 1 mM Na3VO4, 1 mM phenylmethylsulfo-

nyl fluoride (PMSF), 0.02% NaN3, and the protease inhibitor cocktail (“Sigma-Aldrich”, USA).

The obtained homogenate was centrifuged (10 000 g, 5 min), and the concentration of leptin

and insulin in the supernatant fraction was measured according to the manufacturer’s instruc-

tions. The concentrations of total triglycerides and total cholesterol in the serum and the lactic

acid levels in the blood plasma were measured using the enzyme colorimetric kits obtained

from “Olvex Diagnosticum” (Russia).

The glucose tolerance test

For glucose tolerance test (GTT), D-glucose (2 g/kg of the body weight) was intraperitoneally

injected into the mice fasted during 6 h, and the plasma glucose levels were measured before

(0 min) and 15, 30, 60, and 120 min after the glucose load. The area under the glucose
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concentration curve (AUC0-120) during the time interval from 0 to 120 min was calculated, as

described earlier [51]. The GTT was performed two days before the end of experiment.

Western blotting

The dissected hypothalamus tissues were homogenized in the ratio 1:20 in the lysis buffer con-

taining 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2 mM EDTA, 2 mM EGTA, 0.25 M sucrose,

0.5% Triton X-100, 0.5% sodium deoxycholate, 15 mM NaF, 10 mM sodium glyceropho-

sphate, 10 mM sodium pyrophosphate, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride

(PMSF), 0.02% NaN3, and the protease inhibitor cocktail (“Sigma-Aldrich”, USA). The cell

fragments and the undamaged cells were separated by centrifugation at 500 g for 10 min (4˚C).

The protein concentration was measured by the Lowry method with BSA as a standard. Thirty

micrograms of protein per sample were run on 8% (the proteins with MW> 80 kDa) or 12%

(the proteins with MW < 80 kDa) SDS-polyacrylamide gel, followed by transfer to a nitrocel-

lulose membrane (0.45 μm) (“GE Healthcare, Amersham Biosciences AB”, United Kingdom)

by electroblotting (300 mA, 1 h) in the mini trans-blot module (“Bio-Rad Laboratories Inc.”,

USA). The non-specific binding was blocked in the TBST buffer containing 50 mM Tris-HCl

(pH 7.5), 150 mM NaCl and 0.1% Tween 20 with the addition of 5% fat-free milk for 1 h at the

room temperature. The membranes were incubated at 4˚C overnight with the primary anti-

bodies raised against phospho-Akt(Ser473) (1:1000) (#4085, “Cell Signaling Technology”,

USA), phospho-Akt(Thr308) (1:1000) (#9275, “Cell Signaling Technology”, USA), phospho-

AMPK-α(Thr172) (1:1000) (#2535, “Cell Signaling Technology”, USA), phospho-AMPK-α1

(Ser485)/phospho-AMPK-α2(Ser491) (1:1000) (#4185, “Cell Signaling Technology”, USA),

phospho-STAT3(Tyr705) (1:1000) (#9131, “Cell Signaling Technology”, USA). The immunos-

taining was made using the horseradish peroxidase-conjugated anti-mouse (#7076, “Cell Sig-

naling Technology”, USA) or anti-rabbit (#7074, “Cell Signaling Technology”, USA)

immunoglobulins at 1:1000–1:3000 dilution for 1 h at the room temperature, and the Novex

ECL Chemiluminescent Substrate Reagent Kit (“Invitrogen, Life Technologies”, USA) and the

premium X-ray film (“Phenix Research Product”, USA). To normalize the data, the mem-

branes were treated with the antibodies raised against Akt-kinase (1:2000) (#9272, “Cell Signal-

ing Technology”, USA), AMPK-α2 subunit (1:2000) (#NB100-238, “Novus Biologicals”, USA),

STAT3 (1:1000) (#9139, “Cell Signaling Technology”, USA) and glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) (1:5000) (#NB600-502, “Novus Biologicals”, USA). The list of anti-

bodies is present in the S1 Table. The relative amount of each protein was determined by

adjusting for total protein (Akt-kinase, AMPK-α2, and STAT3) transferred to the blot or to

GAPDH. The optical densities of the positive bands of the scanned films were quantified using

the NIH Image Analysis software (“National Institutes of Health”, USA). A more detailed

description of the Western blotting procedure is available at doi: http://dx.doi.org/10.17504/

protocols.io.xqpfmvn

The RNA extraction and qRT-PCR analysis

Total RNA was isolated from the sections of the hypothalamus and liver using the ExtractRNA

Reagent (TRIzol analogue) (“Evrogen”, Moscow, Russia) according to the manufacturer‘s pro-

tocol. Prior to use, the RNA samples were examined by agarose gel electrophoresis to demon-

strate clear bands corresponding to the ribosomal 5S/5.8S, 18S and 28S RNA and no

degradation. The samples containing 1 μg of RNA were reverse-transcribed to cDNA using

the MMLV RT kit (“Evrogen”, Moscow, Russia) and the random oligodeoxynucleotide prim-

ers. The PCR amplification was performed using the mixture (final volume of 25 μl) contain-

ing 10 ng of RT product, 0.4 μM each of the forward and reverse primers, and qPCRmix-HS
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SYBR+LowROX kit (“Evrogen”, Moscow, Russia). The amplified signals were detected contin-

uously with the Applied Biosystems 7500 Real-Time PCR System (“Life Technologies, Thermo

Fisher Scientific Inc.”, Waltham, Massachusetts, USA). The following qRT-PCR amplification

protocol was used: (i) an initial denaturation at 95˚C for 5 min; (ii) a 3-segment amplification

and quantification program consisting of 38 cycles of 95˚C for 30 s, 55–58˚C for 10 s, and

72˚C for 30 s; and (iii) the ABI Melt Curve program to verify the presence of a single peak and

the absence of primer-dimer formation in each template-containing reaction. The annealing

temperatures were optimized using the Primer-Blast program (http://www.ncbi.nlm.nih.gov/

tools/primer-blast/). In the preliminary studies, the SYBR Green-labeled PCR products were

evaluated by agarose gel electrophoresis, and the authenticity of each amplicon was verified by

nucleic acid sequencing. The list of primers is present in the S2 Table. The data was calculated

using the delta-delta Ct method and expressed as fold expression relative to the expression in

control animals [52]. In the hypothalamus, the expression of the Lepr, Mc3r and Mc4r genes

encoding LepR and MC3R and MC4R, and the expression of the Pomc, Agrp and Npy genes

encoding the POMC, AgRP and neuropeptide Y (NPY) were estimated. In the liver, the

expression of the Bax, Bcl-2, IL1beta and TNFalpha genes encoding pro-apoptotic factor Bax,

anti-apoptotic factor Bcl-2 and the pro-inflammatory cytokines interleukin 1β and tumor

necrosis factor-α (TNFα) were measured. The expression of the genes encoding 18S rRNA

and hypoxanthine-guanine phosphoribosyl transferase (Hprt) was used as an endogenous con-

trol. A more detailed description of the qPCR procedure is available at doi: dx.doi.org/10.

17504/protocols.io.xrnfm5e

Histochemical analysis of the liver

After decapitation of anesthetized mice, the liver was removed and fixed using a buffered 10%

formalin solution (pH 7.4) for 24 hours, and then the liver tissue was washed with 0.1 M

Na+-phosphate buffer, pH 7.4. To prepare the liver sections the cryoprotection procedure was

used. The liver tissue was immersed in a buffered solution containing 30% sucrose (+4˚C, 48

h), and then frozen using dry ice and Tissue-Tek medium (“Sakura Finetek Europe”, Nether-

lands). Freezing liver was cut on a cryostat (“Leika Microsystems”, Germany), and the sections

(7 μm thickness) were mounted on the Super Frost/Plus glasses (“Menzel”, Germany). The

liver sections from animals of each of the studied groups were mounted on the same glass.

According to standard histological procedures, the sections were stained with hematoxylin

and eosin (“Labiko”, Russia), and after treatment with alcohol and xylene were placed into the

BioMount medium (“Bio Optica”, Italy). In the case of the Sudan staining, the liver sections

were washed sequentially with distilled water and 50% ethanol and then immersed in a solu-

tion of Sudan III (“Labiko”, Russia) for 15 min. After washing with distilled water and 50%

ethanol, the Sudan-stained liver sections were stained with hematoxylin, washed with distilled

water, placed under a cover glass using glycerol and used for histochemical analysis [53].

Statistical analysis

All data were analyzed using the software IBM SPSS Statistics 22 (“IBM”, USA). An assump-

tion of normality was assessed using the Kolmogorov-Smirnov test. The metabolic and hor-

monal data are presented as the weighted mean ± weighted standard deviation (M± SD). The

Western-blotting data are presented as the mean value ± standard error of the mean

(M± SEM). The qRT-PCR data are presented as RQ (mean) ± standard error of the RQ

(mean) (M± SEM). The difference between the groups of mice was assessed statistically using

the one-way analysis of variance (ANOVA, t-test) with the LSD (Least Significant Difference

test) post hoc test and considered as significant at the P< 0.05.
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Results

The effect of metformin treatment on the body and fat weight, food intake

and lipid metabolism in obese agouti-mice

In the Group Ay/a, the body weight and the abdominal fat mass were increased significantly,

despite the fact that the food intake did not differ significantly from the control animals

(Table 1 and S1 Dataset), which corresponds to the data obtained earlier [50]. The treatment

of obese agouti-mice with MF at all investigated doses led to a significant decrease in the body

and fat weight. The MF treatment also reduced food intake, and in the Group Ay/a-M600 the

food consumption was reduced by 18 and 14% as compared to the control and obese mice,

respectively (Table 1). The plasma levels of total triglycerides and total cholesterol in the obese

mice were increased significantly, and MF treatment at the dose of 600 mg/kg/day resulted in

their normalization (Table 1). In agouti-mice treated by MF, including a daily dose 600 mg/kg/

day, no mortality, indigestion, diarrhea and visible signs of pathological processes were

observed. This data shows that MF is effective in reducing the body and fat weight and the food

intake and is able to improve the lipid metabolism in genetically-induced melanocortin obesity.

The effect of metformin treatment on the plasma glucose, insulin and

leptin levels and the intrahypothalamic content of leptin and insulin in

obese agouti-mice

In obese agouti-mice the plasma levels of fasting glucose and insulin were increased, and the

treatment with MF at the dose of 600 mg/kg/day led to their decrease, while the doses of 200

and 400 mg/kg/day were less effective (Table 2 and S1 Dataset). The insulin resistance index

calculated as the [fasting glucose, mmol/L]x[fasting insulin, ng/mL] in the obese mice was 6.7

times higher than in the control mice, and was reduced significantly in the agouti-mice treated

with MF. In the Group Ay/a, the plasma leptin level was 8.7 times higher as compared to those

in the control animals, and MF treatment reduced it (Table 2). Thus, the MF treatment led to

the weakening of the peripheral hyperinsulinaemia and hyperleptinemia in obese agouti-mice,

which indicates the partial restoration of the insulin and leptin sensitivity.

In contrast to the peripheral hyperleptinemia and hyperinsulinaemia, in obese mice the

intrahypothalamic content of leptin and insulin was reduced by 24 and 21%, respectively, as

Table 1. The body and fat weight, food intake and lipids in the obese agouti-mice and the effect of metformin treatment.

a/a Ay/a Ay/a-M200 Ay/a-M400 Ay/a-M600

Body weight (start), g a 23.1±1.5 37.4±1.8� 37.0±2.0� 37.1±2.1� 36.9±2.0�

Body weight (final), g b 23.2 ± 1.3 38.8 ± 1.8� c 32.5 ± 1.4�# c 32.3 ± 2.5�# c 32.0 ± 1.8�# c

Abdominal fat mass, g 0.41 ± 0.05 3.99 ± 0.25� 3.33 ± 0.20�# 2.93 ± 0.34�# 2.90 ± 0.21�#

Fat content, % 1.78 ± 0.17 10.31 ± 0.76� 10.24 ± 0.43� 9.07 ± 0.69�# 9.06 ± 0.49�#

Food intake, g/day/mouse& 2.89 ± 0.22 2.75 ± 0.17 2.46 ± 0.22�# 2.43 ± 0.19�# 2.36 ± 0.19�#

Triglycerides, mg/dL 2.08 ± 0.39 2.98 ± 0.30� 2.59 ± 0.33�# 2.26 ± 0.31# 2.32 ± 0.37#

Total cholesterol, mg/dL 4.02 ± 0.64 4.74 ± 0.57� 4.34 ± 0.40 4.18 ± 0.72# 4.06 ± 0.39#

The data are presented as the M ± SD.

�—the difference between the Group a/a and all the groups of agouti-mice is significant at P < 0.05,

#—the difference between the Group Ay/a and the MF-treated agouti-mice (Ay/a-M200, Ay/a-M400 and Ay/a-M600) is significant at P < 0.05.
&—the averaged values for the food intake during 10 days. In each group: n = 10.
a and b–the body weight of mice at the beginning and at the end of the experiment, respectively.
c–the difference between the body weight at the beginning and at the end of the experiment in MF-treated groups is significant at P < 0.05.

https://doi.org/10.1371/journal.pone.0213779.t001
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compared to the control mice (Table 2). The decreased levels of leptin and insulin in the hypo-

thalamus of obese agouti-mice, we believe, are the result of the impaired receptor-mediated

transport of leptin and insulin across the BBB in the conditions of the leptin and insulin resis-

tance. The MF treatment reduces the peripheral hyperleptinemia and hyperinsulinaemia and

normalizes the transport of leptin and insulin through the BBB. The ratio intrahypothalamic/

plasma leptin in the Group Ay/a was 11 times lower than in the control mice, and in the

Groups Ay/a-M200, Ay/a-M400 and Ay/a-M600 this ratio was increased by 54, 73 and 119%,

respectively. The ratio intrahypothalamic/plasma insulin in the obese agouti-mice was four

times lower than in control C57Bl/6J (a/a) mice, and MF (600 mg/kg/day) led to increase of

this ratio by 105% (Table 2).

The glucose tolerance in obese agouti-mice and the effect of metformin

treatment

Using the GTT, it was shown that in obese agouti-mice the glucose tolerance was impaired,

which was illustrated by the increased glucose concentration 30, 60 and 120 min after the glu-

cose load and by the elevated AUC0-120 value calculated for area under the glucose concentra-

tion curve (Fig 1A and S2 Dataset), which is consistent with previously obtained data [50].

The MF treatment of obese animals led to the improvement of the glucose sensitivity, and the

dose of 600 mg/kg/day was the most effective. The glucose levels 60 and 120 min after the glu-

cose load and the AUC0-120 values in MF-treated obese mice were significantly decreased in

comparison with the Group Ay/a and did not differ from control (Fig 1B and S2 Dataset).

The effect of high-dose metformin on the functional state of the liver and

the plasma lactate levels in obese agouti-mice

The above data indicates that the most pronounced improving effect of MF on the metabolic

and hormonal parameters in obese agouti-mice was obtained when the MF was used at the

high dose of 600 mg/kg/day. At the same time, there is evidence that high-dose MF can induce

the histological and biochemical changes in the liver, and can increase the plasma lactate levels,

inducing lactic acidosis [42–44]. To study the influence of high-dose MF on liver functions in

the melanocortin-type obesity, we studied the liver histology and the hepatic expression of the

genes encoding the pro-inflammatory and apoptotic proteins and also measured the plasma

lactate levels in the Groups Ay/a and Ay/a-M600.

Table 2. The plasma levels of glucose, insulin and leptin and the intrahypothalamic leptin and insulin content in obese agouti-mice and the effect of metformin

treatment.

a/a Ay/a Ay/a-M200 Ay/a-M400 Ay/a-M600

Fasting glucose, mmol/L 5.2 ± 0.6 10.0 ± 1.6� 9.7 ± 1.5� 8.7 ± 1.0�# 8.1 ± 1.2�#

Plasma insulin, ng/mL 0.32 ± 0.10 1.09 ± 0.40� 0.85 ± 0.29� 0.88 ± 0.32� 0.63 ± 0.23�#

Insulin resistance index 1.67 ± 0.58 11.13 ± 4.79� 8.24 ± 3.37�# 7.52 ± 2.62�# 5.00 ± 1.70�#

Intrahypothalamic insulin, ng/g wet weight 1.60 ± 0.13 1.27 ± 0.12� ND ND 1.49 ± 0.10#

The ratio of the intrahypothalamic/plasma insulin 5.37 ± 1.36 1.31 ± 0.44� ND ND 2.68 ± 1.03�#

Plasma leptin, ng/mL 1.58 ± 0.32 13.74 ± 3.98� 9.83 ± 2.47�# 9.48 ± 2.52�# 7.20 ± 1.49�#

Intrahypothalamic leptin, ng/g wet weight 12.89 ± 1.98 9.80 ± 1.08� 11.08 ± 0.98� 11.73 ± 1.20# 11.80 ± 1.93#

The ratio of the intrahypothalamic/plasma leptin 8.43 ± 1.87 0.78 ± 0.28� 1.20 ± 0.33� 1.35 ± 0.50� 1.71 ± 0.49�#

The data are presented as the M ± SD.

�—the difference between the Group a/a and all the groups of agouti-mice is significant at the P < 0.05,

#—the difference between the untreated and MF-treated agouti-mice is significant at the P< 0.05. In each group: n = 10. ND, No Detection.

https://doi.org/10.1371/journal.pone.0213779.t002
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A histochemical analysis of the liver sections obtained from the obese agouti-mice and control

animals showed that in agouti-mice there were signs of fatty liver dystrophy and vacuolar degen-

eration of hepatocytes that are typical for non-alcoholic fatty liver disease (Fig 2). The size of

hepatocytes and the cytopasm/nucleus ratio in them were increased, and some hepatocytes had

nuclei localized at the periphery rather than in the central part of the cell (Fig 2C). In the hepato-

cytes of agouti-mice, a total number of Sudan-positive vacuoles was 3–4 times higher than in the

control mice (Fig 2B and 2D). In MF-treated agouti-mice, the liver degeneration and vacuolar

degeneration of hepatocytes were significantly less pronounced as compared to the Group Ay/a

(Fig 2). The number of Sudan-positive lipid inclusions in hepatocytes was only 1.5–2 times higher

than in controls (Fig 2B and 2F), and the location of the nuclei in hepatocytes was predominantly

Fig 1. Glucose curves and AUC0-120 in GTT in obese agouti-mice and the effect of metformin treatment. (A) The

glucose concentration curves in the glucose tolerance test. (B) The AUC0-120 values for the glucose concentration

curves during the time interval from 0 to 120 min. The data are presented as the M± SD. �—the difference between the

control mice and all the studied groups of agouti-mice is significant at P< 0.05; #—the difference between the Group

Ay/a and MF-treated agouti-mice is significant at P< 0.05. In each group: n = 5.

https://doi.org/10.1371/journal.pone.0213779.g001
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central (Fig 2). Thus, the 10-day treatment with MF (600 mg/kg/day) significantly reduced the

obesity-associated pathological changes in the liver of agouti-mice.

Fig 2. The histological evidence of steatosis in the liver of obese agouti-mice, and the improving effect of long-

term metformin treatment (600 mg/kg/day). A, B–Group a/a (control); C, D–Group Ay/a; E, F–Group Ay/a-M600.

The liver histology was evaluated using the staining of liver sections with hematoxylin and eosin (A, C, E), while the

hepatic lipid deposition was evaluated by the Sudan III-staining (B, D, F). The orange inclusions and granules after the

Sudan III staining are the lipid and lipoproteins accumulations located within hepatocytes. The liver sections from

animals of each of the three studied groups were mounted on the same glass. Scale bars, 100 μm.

https://doi.org/10.1371/journal.pone.0213779.g002
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The expression of the Bax gene in the liver of obese agouti-mice was increased by 51% as

compared to the Group a/a, and it was decreased significantly in MF-treated agouti mice (Fig

3 and S2 Dataset). The Bax/Bcl-2 ratio was also increased by 72%, and the difference was sig-

nificant as compared to the control animals (1.62±0.24 vs. 0.94±0.07, P<0.05). The MF treat-

ment returned the Bax/Bcl-2 ratio to that in the control animals, and this ratio was differed

significantly from that in agouti mice (0.92±0.15, P<0.05 as compared with the Group Ay/a),

which indicates a normalization of the Bax-mediated apoptosis in the liver of agouti-mice

treated with MF. In the Group Ay/a, the expression of the IL1beta gene encoding pro-inflam-

matory interleukin 1β was increased by 90% (P<0.05 as compared to control), while in the

Group Ay/a-M600 the IL1beta gene expression was similar to that in the control animals (Fig

3). The expression of the TNFalpha gene in agouti-mice did not differ significantly from con-

trol. In the Group Ay/a-M600, the TNFalpha expression was decreased as compared with the

Group Ay/a, but the difference was not significant (P = 0.062) (Fig 3). These data demonstrate

a decrease in the gene expression of the main pro-inflammatory cytokines in the liver of

agouti-mice treated with high-dose MF.

The plasma level of lactic acid in agouti-mice was higher than in the control mice, but the

difference was not significant (3.53±0.82 vs. 2.64±0.65 mM, P>0.05), and long-term treatment

of agouti-mice with MF (600 mg/kg/day) led to an increase in lactate level by 129% as com-

pared to untreated animals (8.08±1.90 mM, 16 hours after the final administration of MF)

(P<0.05 as compared to both the Groups a/a and Ay/a) (S1 Dataset). These data indicated

that the dose 600 mg/kg/day led to a mild increase in the plasma lactate level and, therefore,

did not cause the severe lactic acidosis. It should be noted that when MF was administered to

agouti-mice for one day at the same dose, the plasma level of lactate was increased to 6.95±1.47

mM, which did not differ from those in agouti-mice after 10-day MF treatment (P>0.05).

These results indicate that there is no effect of lactate accumulation in the blood of obese

agouti-mice in the conditions of long-term administration of high-dose MF.

Fig 3. The gene expression of the proteins involved in apoptosis and inflammation in the liver of obese agouti-

mice and the effect of metformin treatment. The levels of mRNA expression of the Bax, Bcl-2, IL1beta and TNFalpha
genes encoding pro-apoptotic factor Bax, anti-apoptotic factor Bcl-2, the inflammatory cytokines interleukin 1β and

TNFα are normalized by the expression of the reference 18s rRNA gene. The relative mRNA expression is calculated

with the respect to control group. The data are presented as the M± SEM, n = 5. �—the difference between the Groups

a/a and Ay/a-M600 is significant at the P< 0.05, #—the difference between the Groups Ay/a and Ay/a-M600 is

significant at the P< 0.05.

https://doi.org/10.1371/journal.pone.0213779.g003
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The activity of AMPK, Akt-kinase and STAT3 in the hypothalamus of

obese agouti-mice and the effect of metformin

The AMPK is the target of MF both at the periphery and in the CNS [21–23], and the phos-

phorylation of its α1/2-subunits at the Thr172 leads to the activation of AMPK, while the phos-

phorylation of the α1/2-subunits at the Ser485/491 is the regulatory mechanism inducing the

decrease in AMPK activity [23, 54, 55]. We showed that the Thr172-phosphorylation of

α1/2-AMPK in the hypothalamus of obese mice was increased significantly, while the

Ser485/491-phosphorylation did not change (Fig 4 and S2 Dataset). The treatment with MF

(600 mg/kg/day) led to a decrease in the Thr172-phosphorylation, but did not affect the

Ser485/491-phosphorylation, normalizing, thus, AMPK activity in the hypothalamus of MF-

treated animals.

In the hypothalamus, the Akt-kinase, the main component of the 3-phosphoinositide path-

way, is activated by leptin (LepR/JAK2/IRS2/PI3K/Akt) and insulin (insulin receptor/IRS2/

PI3K/Akt), while the transcriptional factor STAT3 is the downstream component of leptin-regu-

lated LepR/JAK2/STAT3 pathway [30, 31, 34, 39, 40, 56]. The activation of the 3-phosphoinosi-

tide pathway by leptin and insulin leads to an increase in the Ser473- and Thr308-phosphorylation

of Akt-kinase, and the activation of STAT3 by leptin induces an increase in the Tyr705-phos-

phorylation of STAT3. We showed that in the hypothalamus of agouti-mice, the Ser473- and

Thr308-phosphorylation of Akt kinase did not differ from the control (Fig 5 and S2 Dataset),

while the Tyr705-phosphorylation of STAT3 was increased by 116% (Fig 6 and S2 Dataset). The

MF treatment led to a significant increase of the Ser473-phosphorylated Akt kinase, which indi-

cates the activation of this enzyme (Fig 5). Alongside, the Tyr705-phosphorylated STAT3 in the

Fig 4. Phosphorylation of AMPK α-subunits in the hypothalamus of obese agouti-mice and the effect of

metformin treatment. (A) The histograms for the ratio of the Thr172- and Ser485/491-phosphorylated α1/2-AMPK and

the non-phoshorylated α2-AMPK. (B) and (C) The Western blotting for the Thr172- and Ser485/491-phosphorylated

forms of α1/2-AMPK, respectively. The data are presented as the M± SEM. �—the difference between the Groups a/a

and Ay/a is significant at the P< 0.05, #—the difference between the Groups Ay/a and Ay/a-M600 is significant at the

P< 0.05. In each group: n = 5.

https://doi.org/10.1371/journal.pone.0213779.g004
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Group Ay/a-M600 was decreased and did not differ significantly from control (Fig 6). Thus, in

the hypothalamus of untreated agouti-mice the STAT3 pathway was hyperactivated, while MF

treatment led to the normalization of STAT3 activity and to the strengthening of the 3-phos-

phoinositide signaling.

Fig 5. Phosphorylation of Akt-kinase in the hypothalamus of obese agouti-mice and the effect of metformin

treatment. (A) The histograms for the ratio of the Ser473- and Thr308-phosphorylated and non-phosphorylated Akt-

kinase. (B) and (C) The Western blotting for the Ser473- and Thr308-phosphorylated forms of Akt kinase, respectively.

The data are presented as the M± SEM. #—the difference between the Groups Ay/a and Ay/a-M600 is significant at

the P< 0.05. In each group: n = 5.

https://doi.org/10.1371/journal.pone.0213779.g005

Fig 6. Phosphorylation of STAT3 in the hypothalamus of obese agouti-mice and the effect of metformin

treatment. (A) The histograms for the ratio of the Tyr705-phosphorylated and non-phosphorylated STAT3. (B) The

Western blotting for the Tyr705-phosphorylated STAT3. The data are presented as the M± SEM. �—the difference

between the Groups a/a and Ay/a is significant at the P< 0.05. In each group: n = 5.

https://doi.org/10.1371/journal.pone.0213779.g006
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The expression of the genes encoding the leptin and melanocortin

receptors and the orexigenic and anorexigenic factors in the hypothalamus

of agouti-mice, and the effect of metformin

In the hypothalamus, the expression of the genes encoding the receptor components of the lep-

tin (LepR) and melanocortin (MC3R and MC4R) signaling systems and the orexigenic (AgRP,

NPY) and pro-anorexigenic (POMC) factors was estimated by qRT-PCR analysis. We showed

a significant increase in the Lepr, Pomc, Mc3r and Mc4r genes expression in obese agouti-mice

as compared to control (Fig 7 and S2 Dataset). The MF treatment led to an increase in this

expression even more than in the Group Ay/a, although a significant difference between the

Groups Ay/a and Ay/a-M600 was detected only for the Pomc expression. The Pomc expression

in the Group Ay/a-M600 was six and three times higher than in the Groups a/a and Ay/a,

respectively (Fig 7). The expression of the Npy gene had tendency to a decrease in the Group

Ay/a, and it was significantly decreased in the Group Ay/a-M600. Meanwhile, the expression

of the Agrp gene encoding the orexigenic factor AgRP did not change significantly in all inves-

tigated groups (Fig 7).

Discussion

The results obtained by us indicate that the agouti-mice with the “yellow” mutation at the mouse

agouti locus (Ay) associated with the overexpression of ASIP1, the endogenous antagonist of the

MC1R and MC4R had the increased body weight and fat mass, the elevated levels of glucose, insu-

lin and leptin, the impaired glucose tolerance and the altered lipid metabolism (Fig 8). These data

indicate the decreased glucose, insulin and leptin sensitivity and the signs of dyslipidemia in

MC4R signaling-deficient animals, and are in a good agreement with the previously obtained

results on metabolic abnormalities and hyperleptinemia in obese agouti-mice [49, 50, 57].

Fig 7. The expression of the genes in the hypothalamus of obese agouti-mice and the effect of metformin

treatment. The levels of mRNA expression of the Lepr, Pomc, Agrp, Npy, Mc3r and Mc4r genes encoding LepR,

POMC, AgRP, NPY, MC3R and MC4R are normalized by the expression of the reference 18s rRNA and Hprt genes.

The relative mRNA expression is calculated with the respect to control group. The data are presented as the M± SEM,

n = 5. �—the difference between the Groups a/a and Ay/a-M600 is significant at the P< 0.05, #—the difference

between the Groups Ay/a and Ay/a-M600 is significant at the P< 0.05.

https://doi.org/10.1371/journal.pone.0213779.g007
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In the agouti-mice, the main cause of metabolic abnormalities described above is the chronic

ASIP1-induced inhibition of hypothalamic MC4R-mediated signaling that regulates the food

intake, energy expenditure, insulin sensitivity and the carbohydrate and lipid metabolism [45–48,

50, 57]. This conclusion is supported by the data of other researchers on the close relationship

between dysfunctions in the hypothalamic MC4R-melanocortin system and the development of

obesity, insulin resistance and other metabolic abnormalities [10, 11, 14, 58]. In clinical studies of

patients with obesity and type 2 diabetes mellitus, it was demonstrated that some of them had the

impaired hypothalamic MC4R-signaling and the inactivating mutations within theMc4r gene

[12, 16, 59, 60]. The treatment of mice with MC4R antagonists and the knockout of theMc4r
gene in the hypothalamus led to hyperphagia, obesity, insulin resistance and reduced energy

expenditure, while the treatment of obese rodents with MC4R agonists and the restoration of the

Mc4r gene expression in the paraventricular hypothalamus of theMc4r-/- mice resulted in the nor-

malization of their body and fat weight, the decrease in appetite and the improvement of the glu-

cose and insulin sensitivity [9–11, 13–15]. The obeseMc4r-/- mice had the strongly pronounced

hyperleptinemia [9] and did not respond to the inhibitory effects of leptin on feeding [61].

Fig 8. Metabolic and hormonal parameters and hypothalamic regulation in obese agouti-mice and the effect of

metformin treatment.

https://doi.org/10.1371/journal.pone.0213779.g008
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Moreover, it is commonly believed that the Mc4r-/- mice are considered as an appropriate

model of non-alcoholic fatty liver disease with its typical features, such as the hepatic steatosis

and the increased activity of the pro-inflammatory and apoptotic factors [62, 63]. These data

are in a good agreement with our results on the liver dysfunctions in agouti-mice. We detected

the fatty liver dystrophy, vacuolar degeneration of hepatocytes and the increased expression of

factors responsible for inflammation and apoptosis in the liver of obese agouti-mice, which

indicates the metabolic dysregulations in the hepatocytes and, along with the insulin and leptin

resistance is considered as an important mechanism of triggering the non-alcoholic fatty liver

disease [64–66].

We showed that obese agouti-mice had the decreased intrahypothalamic levels of leptin

and insulin, which, we believe, is mainly due to the disruption of their receptor-mediated

transport across the BBB in the conditions the peripheral leptin and insulin resistance. It

should be noted that a decrease in the intrahypothalamic leptin level in the agouti-mice was

shown by us earlier [50], while a decrease in the intrahypothalamic insulin level in the melano-

cortin obesity was shown by us for the first time. In another work, Pan and coauthors showed

that in 8-month old agouti-mice with pronounced hyperleptinemia the permeation of the

plasma leptin through the BBB was slower as compared to the control B6 mice, despite the

increased level of ObRa, the main transport form of LepR, in astrocytes and cerebral microves-

sels [67]. The reduced insulin level in the cerebrospinal fluid was observed in rats with type 2

diabetes mellitus associated with obesity and hyperinsulinaemia [68].

In the hypothalamus, leptin and insulin positively regulate the production of POMC, the

precursor of anorexigenic melanocortin peptides, and suppress the production of orexigenic

AgRP, the endogenous MC4R antagonist, controlling, thus, melanocortin-dependent food

intake and energy expenditure [39, 40, 56, 69–76]. The inhibition of hypothalamic leptin sys-

tem, as a result of the decrease in intracerebral leptin level in the fasting conditions and the

knockout of the genes encoding leptin and LepR, leads to the reduced expression of the Pomc
gene and the increased expression of the Agrp gene within the arcuate nuclei of hypothalamus

[69]. The intracerebroventricular administration of leptin results in both the increased expres-

sion of the genes encoding POMC and MC4R and the decreased expression of the Agrp gene

[71]. Leptin controls the production of POMC and AgRP by hypothalamic neurons through

the 3-phosphoinositide- and STAT3-dependent pathways, while insulin realizes this effect

mainly through the 3-phosphoinositide pathway [39, 40, 56, 77–81]. It was shown that the lep-

tin-induced activation of LepR located on the POMC/CART- and AgRP/NPY-neurons leads

to phosphorylation and dimerization of STAT3, translocation of homodimeric STAT3-com-

plex into the nucleus and its interaction with promoter regions of the Pomc and Agrp genes

[81]. The inhibition of 3-phosphoinositide pathway by PI3K antagonists and the specific

knockout of gene encoding the regulatory p85-PI3K subunit in POMC/CART neurons lead to

the suppression of the stimulating effect of leptin on the Pomc expression [72]. It should be

noted that the PI3K is the most important integrating component of the leptin and insulin sig-

naling pathways responsible for regulating the activity of the POMC/CART- and AgRP/NPY-

neurons. Moreover, in the hypothalamus insulin through PI3K induces the activation of the

leptin signaling, and this is a molecular mechanism that provides a synergistic action of insulin

and leptin on food intake and energy expenditure. Recently, it was shown that the long-term

disruption of the genes encoding p110α and p110β, the catalytic subunits of PI3K, within the

AgRP/NPY-neurons abrogates the leptin- and insulin-induced inhibition of AgRP/NPY-neu-

rons and lead to the strengthening of orexigenic regulations, hyperphagia and obesity [40].

In our experiments, the expression of the Lepr gene in the hypothalamus of obese agouti-

mice was increased significantly, which is a compensatory mechanism to restore the leptin sig-

naling in the conditions of the decreased intrahypothalamic level of leptin and insulin. In our
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view, the increased Lepr expression, at least in part, ensures the preservation (Akt-kinase) or

enhancement (STAT3) of activity of the effector components of the leptin signaling, which

illustrated by the increased Tyr705-phosphorylation of STAT3 and the unchanged Thr308- and

Ser473-phosphorylation of Akt-kinase in the hypothalamus of obese animals. As a result, the

expression of the Pomc gene was increased two-fold (Figs 5–8). This provides the increased

production of the melanocortin peptides required for activation of MC4R in the conditions of

chronic ASIP1 overexpression. On the other hand, it should be noted that a prolonged increase

in the STAT3 activity is not sufficient to promote the POMC expression. Moreover, the hyper-

activated STAT3 induces the suppression of the 3-phosphoinositide pathway and, as a result,

provokes the leptin and insulin resistance in the hypothalamus, as was shown in mice express-

ing a constitutively active STAT3 in the POMC-neurons [82].

The other compensatory mechanism includes the two-fold increase of the Mc3r and Mc4r
expression in the hypothalamus of obese agouti-mice (Figs 7 and 8). The most interesting is

an increase in the Mc3r expression, since hypothalamic MC3R functions as an autoreceptor

involved in feed back regulation of the MC4R-signaling. There are grounds for believing that

in the conditions of the ASIP1-antagonized MC4R-signaling, the functions of MC4R can be

forwarded to the MC3R, as was demonstrated in the Mc4r−/− mice and in obese rats with

chronic autoimmune inhibition of MC4R [38, 83]. It was shown that the anorectic effect of

melanotan-II, a mixed MC3R/MC4R agonist injected into the Mc3r−/− or Mc4r−/− mice was

maintained, although it was significantly decreased, while in the case of a double knockout of

these genes this effect was not detected [83]. Earlier we showed that immunization of rats with

the BSA-conjugated peptide homologous to the extracellular N-terminal region of MC4R,

inducing chronic inhibition of the MC4R-signaling led to the enhancement of intrahypothala-

mic MC3R signaling [38]. This indicates that the MC3R is able to interchange the MC4R, at

least to a certain extent, which, we believe, takes place in obese agouti-mice.

Despite the increased body weight and fat mass and the signs of dyslipidemia, the food con-

sumption in the obese agouti-mice did not differ significantly from the control animals. We

supposed that this fact was due to the reduced energy expenditure in adult obese animals with

the impaired hypothalamic MC4R-signaling. The other authors demonstrated that the

Mc4r-/--mice consumed less oxygen than control animals [14, 84]. Moreover, the decrease in

the metabolic rate in the knockout mice was detected before they had an increased body

weight and metabolic abnormalities. In the satiety state, the Mc4r-/—mice had an increased

respiratory rate, which indicated the enhanced utilization of carbohydrates due to lower fat

oxidation, and, eventually, led to the accumulation of the adipose tissue [85–87]. Thus, we

believe that the main cause of obesity and fat deposit in agouti-mice is a decrease in the rate of

energy metabolism, as result of the weakening of hypothalamic MC4R-signaling.

The 10-day treatment of obese agouti-mice with MF at the dose of 600 mg/kg/day led to the

decrease in the body and fat weight, food intake and plasma levels of insulin and glucose and

to the improvement of insulin sensitivity, which demonstrates the efficiency of MF to treat the

melanocortin-type obesity (Fig 8). The use of the lower daily doses, 200 and 400 mg/kg, also

had the weight- and fat-lowering effects, reduced the food intake and partially restored the

metabolic parameters, but was less effective than the dose of 600 mg/kg. Earlier, the improving

effect of MF on the body and fat weight and the metabolic parameters was demonstrated in

animals with the other types of obesity and in obese patients [2–8].

The increase of the insulin sensitivity and the restoration of lipid metabolism is the main

mechanism of weight-lowering effect of MF. At the periphery, this mechanism is realized pri-

marily due to the ability of MF to inhibit the mitochondrial respiratory chain and activate

AMPK [21, 22]. In the recent years, the strong evidences were obtained that the important tar-

get for MF is the hypothalamus, and its effects on the hypothalamic signaling makes an
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important contribution to MF-induced improvement of the metabolic processes and the

peripheral insulin and leptin sensitivity in obesity and other metabolic disorders [23]. In the

hypothalamus, unlike the peripheral tissues, the MF does not activate and even suppresses

AMPK activity, which leads to the activation of thermogenesis and decreases the body weight

and fat deposition [54, 55].

The effects of MF on appetite and food consumption can be realized through both the

AMPK-dependent and AMPK-independent mechanisms. It must be emphasized that in the

CNS, the MF does not increase, as at the periphery, but suppresses the AMPK activity [23]. It

was shown that MF-induced increase in POMC production by POMC/CART-neurons is

mainly carried out through the activation of the STAT3 and 3-phosphoinositide pathways,

while the suppressing effect of MF on the AgRP and NPY production by AgRP/NPY-neurons

is carried out through both AMPK-dependent and -independent mechanisms [28, 39, 40, 54,

88, 89].

We showed that in the hypothalamus of obese agouti-mice the Thr172-phosphorylation of

AMPK α1/2-subunit was increased, which indicates the hyperactivation of this enzyme, and

MF treatment at the metabolic-improving dose (600 mg/kg/day) led to normalization of

AMPK activity. It should be noted that the Ser485/491-phosphorylation responsible for AMPK

suppression did not change significantly in all studied groups (Fig 8). This data indicates that

MF, preventing the AMPK overstimulation, normalizes AMPK-dependent pathways in the

hypothalamus, which can contribute to the improvement of the hypothalamic control of

peripheral metabolism. It is important to note that more recently, Italian researchers have

shown an increase in hypothalamic AMPK activity in rats with diet-induced obesity, and the

increased AMPK activity was associated with oxidative stress and inflammation in the hypo-

thalamus [90].

Our results demonstrate that in the hypothalamus of MF-treated agouti-mice the STAT3

activity was decreased and did not differ significantly from control, while the Akt-kinase activ-

ity was increased as compared with both the Groups Ay/a and a/a. These results indicate that

the ratio of the STAT3 and 3-phosphoinositide cascades in the hypothalamus of MF-treated

agouti-mice is shifted toward the 3-phosphoinositide cascade. This is due to the restoration of

the leptin and insulin content and a threefold increase in the Lepr expression in the hypothala-

mus of MF-treated mice as compared to untreated animals. The stimulating effect of MF treat-

ment on the Lepr expression in the hypothalamus was previously described by other authors in

diet-induced obesity [91]. The increase in the content of leptin and insulin in the hypothala-

mus of the Group Ay/a-M600 to its value in the control may be due to the MF-induced resto-

ration of their transport through the BBB. There are numerous data on the ability of MF to

restore the functions of the BBB in cerebral ischemia, sepsis and inflammation which are asso-

ciated with the dysfunctions of brain microvascular endothelial cells responsible for transport

of hormones and other regulators through BBB [92–96].

The restoration of the activity of hypothalamic leptin system is usually associated with both

an increase in the Pomc expression and a decrease in the Agrp expression [89]. In our case, the

expression of the Pomc gene in the Group Ay/a-M600 was increased six times as compared

with the Group a/a and three times as compared with the Group Ay/a. In turn, a slight increase

in the Agrp expression in the Group Ay/a-M600 can be considered as a specific feature of the

ASIP1-induced melanocortin obesity. There are reasons to believe that AgRP is not able to

make a significant contribution to negative regulation of MC4R activity in the conditions of

ASIP1 overproduction.

In the Group Ay/a-M600, we detected a significant decrease in the expression of the orexi-

genic factor NPY, which, along with POMC overexpression, can contributes to the reduced

food consumption in MF-treated agouti-mice (Figs 7 and 8). The cause for the suppression of
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the Npy expression may be the improvement of the leptin and insulin signaling and the nor-

malization of AMPK activity in the hypothalamus, since the expression of the Npy gene is neg-

atively regulated through the leptin-, insulin- and AMPK-dependent mechanisms [28, 40, 54,

88, 89].7 It should be noted that when overproduction of the MC1/4R-antagonist ASIP1 inter-

feres with the inhibitory effect of AgRP, the role of NPY and other orexigenic factors acting

through non-MCR-receptors in the control of eating behavior should be increased.

Using the high doses of MF, it is necessary to consider the possibility of the negative influ-

ence of MF on the liver functions, which may already be impaired in metabolic disorders, and

the development of MF-induced lactic acidosis due to the altered metabolism in hepatocytes

[42–44, 97]. We demonstrated that the 10-day treatment of agouti-mice with MF at a daily

dose 600 mg/kg led to improvement of liver functions, reducing the hepatic steatosis and nor-

malizing the expression of pro-apoptotic and pro-inflammatory factors. As noted above, the

inflammation and apoptosis are the triggers for non-alcoholic fatty liver disease [64–66]. Pre-

viously, the other authors also showed the hepatoprotective effect of MF, which was based on a

decrease in the activity of pro-apoptotic factors and on the restoration of the energy state of

hepatocytes [98, 99]. At the same time, there is evidence that prolonged treatment with the

high-dose MF induces the morphological and biochemical changes in the liver and, as a result,

leads to an increase in the plasma lactate level, inducing lactic acidosis [42].

We showed that in the Group Ay/a-M600, the lactate level was doubled as compared to

untreated agouti-mice. However, it was below the threshold of lactate concentration (10 mM),

which in rodents characterizes the development of severe forms of lactic acidosis, leading to

pathological changes [43, 44]. We also showed the absence of the cumulative effect of MF,

taken at a dose of 600 mg/kg, on the plasma levels of lactate, since there were no significant dif-

ferences in the lactate concentration in agouti-mice treated with MF for one and ten days. The

absence or weak expression of this effect, even in the case of the high doses of MF and its long-

term administration, is due to the low lifetime of MF and its rapid removal from the blood

[100–102]. This significantly reduces the possible risks of using high doses of MF, which was

demonstrated by us in the treatment of agouti-mice and in other works where high doses of

MF were used to treat mice [103–106]. It should be noted that the effectiveness and safety of

high doses of MF largely depend on the duration of treatment, the metabolic and renal dys-

functions and the degree of liver damage [100, 101, 107, 108].

Conclusion

In agouti-mice with ASIP1-induced melanocortin-type obesity, hypothalamic signaling cas-

cades and factors regulating food intake and metabolic processes and the compensatory mech-

anisms that are triggered in the response to chronic suppression of the melanocortin system

was first studied. It was established that the intrahypothalamic leptin and insulin levels in

obese agouti-mice was reduced due to the peripheral leptin and insulin resistance and the

impaired transport of leptin and insulin through the BBB. The increase in both the LepR
expression and the STAT3 activity was necessary to improve the response of the hypothalamic

leptin system to leptin, resulting in the increased expression of the Pomc gene. The increased

expression of genes encoding POMC and the melanocortin receptors, MC3R and MC4R, is the

compensatory mechanism for prevention of ASIP1-mediated inhibition of the MC4R-signal-

ing in the obese agouti-mice.

In the conditions of a malfunction of MC4R-signaling, the effective approaches to correct

the melanocortin-type obesity are not currently developed. In this regard, a high efficacy of

MF to treat obese agouti-mice is of great theoretical and practical interest. We showed that the

treatment with MF (10 days, 600 mg/kg/day) resulted in the decrease of the body and fat
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weight, food intake and plasma levels of glucose, triglycerides and total cholesterol, all signifi-

cantly increased in obese agouti-mice, and led to weakening of hyperleptinemia and hyperin-

sulinaemia, indicating the restoration of the leptin and insulin sensitivity. The MF treatment

led to an improvement of liver functions, reducing the steatosis and the expression of the apo-

ptotic and pro-inflammatory factors. All of the above effects of MF on the metabolic and hor-

monal parameters, we believe, are largely due to the restoration of the leptin, insulin and

melanocortin pathways in the hypothalamus and their interaction, which demonstrates the

normalization of intrahypothalamic content of leptin and insulin, the increased expression of

the genes encoding LepR, POMC, MC3R and MC4R, the increased Akt-kinase activity, and,

addition to this, the normalization of AMPK activity. In summary, our data suggests that MF

should be considered as the effective drug for treating the melanocortin-type obesity, and the

hypothalamic signaling systems and AMPK, an energy sensor within hypothalamic neurons,

are one of the main targets of therapeutic action of MF.
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