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ABSTRACT

The era of big data and precision medicine has led to accumulation of massive 
datasets of gene expression data and clinical information of patients. For a new 
patient, we propose that identification of a highly similar reference patient from an 
existing patient database via similarity matching of both clinical and expression data 
could be useful for predicting the prognostic risk or therapeutic efficacy.

Here, we propose a novel methodology to predict disease/treatment outcome 
via analysis of the similarity between any pair of patients who are each characterized 
by a certain set of pre-defined biological variables (biomarkers or clinical features) 
represented initially as a prognostic binary variable vector (PBVV) and subsequently 
transformed to a prognostic signature vector (PSV). Our analyses revealed that 
Euclidean distance rather correlation distance measure was effective in defining an 
unbiased similarity measure calculated between two PSVs.

We implemented our methods to high-grade serous ovarian cancer (HGSC) based 
on a 36-mRNA predictor that was previously shown to stratify patients into 3 distinct 
prognostic subgroups. We studied and revealed that patient’s age, when converted 
into binary variable, was positively correlated with the overall risk of succumbing to 
the disease. When applied to an independent testing dataset, the inclusion of age 
into the molecular predictor provided more robust personalized prognosis of overall 
survival correlated with the therapeutic response of HGSC and provided benefit for 
treatment targeting of the tumors in HGSC patients.

Finally, our method can be generalized and implemented in many other diseases 
to accurately predict personalized patients’ outcomes.

INTRODUCTION

Rapid technological advancement is a major driver 
of knowledge discovery in science today. Specifically 
in the field of genomics research, the development of 
high-throughput technologies such as microarrays, next-
generation sequencing or mass spectrometry, coupled 
with the ability to implement computationally intensive 
algorithms, have led to the accumulation of varied and 
massive amount of biological data. The convergence 
of the basic sciences, along with technological and 
computational discipline with biomedical studies are 
considered as the main driver of precision medicine by 
refining the classification of disease, potentially with 
improved prognostic and therapeutic benefits [1].

While currently the state of precision and 
personalized medicine is still relatively immature, the 
promise of the field has been much discussed in detail 
[1–4]. Jameson and Longo defined precision medicine 
as “treatment targeted to the needs of individual patients 
on the basis of genetic, biomarker, phenotypic, or 
psychosocial characteristics that distinguish a given patient 
from other patients with similar clinical presentations. 
Inherent in this definition is the goal of improving clinical 
outcomes for individuals and minimizing unnecessary side 
effects for those less likely to have a response to particular 
treatment. [1]” Chan et al. stated that “the overarching 
goal of personalized medicine is to optimize medical 
care and outcomes for each individual, resulting in an 
unprecedented customization of patient care. [2]” These 
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definitions are quite similar in the context of treated targets 
and they both emphasize that a given patient treatment 
have to be driven based on solid scientific knowledge and 
advanced technology, thereby providing an improvement 
in diagnostics, prognostics, therapy response predictions 
and optimal therapeutics.

Specifically with regards to disease prognosis or 
therapy response prediction, the use of gene expression 
data in discriminating between patient subgroups has 
been amongst the most commonly proposed [5, 6] as 
well as studied in many cancers [7–12]. This is typically 
accomplished via the classification ability of a gene 
signature, which in the most general term, is defined as 
a set of the disease-related molecular variables, whose 
values could be directly or indirectly detected and used 
for molecular characterization of certain normal and/or 
pathological cells, tissues, organisms, functions, processes 
and biomedical conditions. Research progress of the use of 
gene signature in prognosis and adjuvant systemic therapy 
recommendation is especially advanced in breast cancer, 
where prognostic kits such as MammaPrint®, PAM50 
and Oncotype DX® have been commercially developed 
and subsequently used for predicting tumor recurrence 
risks for eligible pre-selected patients recommended by 
the kit’s protocol [8, 13, 14]. Analyses of predictions of 
clinical outcomes in different cohorts suggested that each 
of these multi-gene expression test could assist doctors in 
making adjuvant systemic treatment decisions in addition 
to currently adopted clinical guidelines and professional 
judgments [15]. The kits often produce similar results for 
low and high-risk patients but do not agree well in their 
predictions for those at intermediate risk or in poorly-
defined tumor subtypes. Currently, for many highly 
aggressive cancers, the assays/kits developed based on 
novel biomarkers and their computational models are not 
in clinical use.

Epithelial ovarian cancer (EOC), which high-grade 
serous ovarian carcinoma (HGSC) is the most prevalent, 
is one of the most lethal gynaecological diseases in the 
world today. The heterogeneity of HGSC tumors meant 
that clinical status of the patients is varied and poorly 
defined and that tumors are often treated sub-optimally 
with standard therapy. Despite progress in high-throughput 
biotechnology and EOC oncogenomic studies, the 
biomarkers for prognostic and disease prediction have 
not been implemented in clinical practice. Therefore, 
identification of high confidence molecular markers for 
risk of disease development and recurrence is important 
in prognosis and patient clinical management of HGSC.

Many published studies have investigated the tumor 
heterogeneity and identified biologically meaningful 
tumor subgroups [10, 16–18]. Based on meta-analysis 
of miRNA and mRNA expression profiles of more than 
1100 HGSC tumors, Tang et al. identified a signature 
comprising 36 let-7b-correlated mRNA transcripts, that 
stratified patients into three high-confidence prognostic 

subgroups associated with cell cycle, EMT pathways and 
primary chemotherapy treatment outcome [10]. However, 
the application of this signature and that of others to 
personalized prognosis has not been studied yet.

Several publications have clearly demonstrated 
that a molecular signature, combined with patient’s 
information related to disease risk (e.g. body mass index, 
ethnic group, sex or smoking status, etc.) could improve 
the accuracy and reproducibility of the signature. Age 
is often considered a risk factor for survival in cancer 
[19–22]. However, usually disease development risk 
predictors do not include this important personalized 
variable which plays significant roles in origin and 
development of cancer as well as involved in many 
aspects of the management of cancers in the elderly. 
This includes prognostic implications of advanced age 
on chemotherapy options, surgical considerations and 
geriatric assessment in predicting toxicity [20]. Despite 
these, older patients have often been under-represented in 
clinical trials, and evidence which potentially could aid 
clinical decisions is lacking. Studies are needed to develop 
strategies to determine the optimal treatment for patients 
of different age, including those of relative advanced age. 
For example, it has been reported that rapamycin could 
prevent cancer indirectly by slowing down the aging 
process [23, 24], which suggests the possibility that it 
could be used to slow tumor growth via the aging process.

We previously developed methods to eventually 
chart a path towards the desirable goal of construction 
of multi-gene prognostic signature that stratify cancer 
patients according to disease development risk and 
personalized prognosis scoring. These algorithms which 
include statistically weighted syndromes [25], data-
driven grouping [26, 27] and statistically weighted voting 
grouping [10] have been applied to various studies such as 
glioblastoma [28], breast cancer [12, 29, 30] and ovarian 
cancer [10].

We aim to develop a method that assigns a new 
patient (from prospective study) based on molecular, 
personalized data and clinical variables profile, onto one 
of the reference risk groups computationally identified 
after training of the computational model on the reference 
cohort data.

With regards to the development of the personalized 
prognostic method, we propose that analyses of the 
prognostic variables in a classifier can generate a risk 
classification scheme, which typically for a patient can be 
best represented by an n-length vector where n denotes the 
number of variables in the classifier. In this case, a key step 
towards the aim of our study would rely on similarity or 
dissimilarity matching of a new patient to other reference 
patients, where each patient is suitably represented by a 
classifier vector.

Often, the experimental variables in the classifier 
may comprise of continuous values of RNA gene 
expression levels, copy number variation or methylation 
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across the sample cells. Mathematical approaches to 
compare vectors of continuous variables have been 
developed and these methods of similarity or dissimilarity 
comparison have formed the basis of many bioinformatics 
analytical methods, including but not limited to 
applications in clustering and pattern recognition [31].

While in many cases, the vectors comprise of 
continuous variables that quantify biological signals, it 
is also likely that for practical purposes, the classifier-
generated vector could contain binary-formatted values 
that represent one of two binary states, e.g. low or high-
risk. We termed such vectors that contain binary-formatted 
values “prognostic binary variable vectors (PBVV)”. 
Methods to compare pairs of PBVV play fundamental 
roles in a wide range of applications, ranging from 
biology, bio-imaging [32] and chemistry [33] to image 
recognition [34, 35]. A two-by-two contingency table can 
be generated from the comparison of two PBFVs and the 
similarity measure is typically a ratio of the concordant 
diagonal to the discordant anti-diagonal. Despite the 
simplicity that analysis of a two-by-two contingency table 
entails, there are at least 70 methods to calculate similarity 
or dissimilarity (distance) measures, according to a recent 
review by Choi et al. [36].

From the list of similarity or distance (dissimilarity) 
measures reviewed by Choi et al, it appears that while 
most are variants of each other, there are some differences 
with regards to the relative importance (and hence, 
contribution to the value of the measure) of one binary 
state over the other. A simple example is illustrated in 
Supplementary Figure S1, where the Euclidean distance 
and Lance and Williams distance were calculated for two 
column vectors (Supplementary Figure S1A). It becomes 
clear that while Euclidean distance considers both binary 
states equally (Supplementary Figures S1B-C), Lance and 
Williams distance prioritizes one of the two binary states 
depending on how it is implemented (Supplementary 
Figures S1B-C). Such asymmetric distance or similarity 
measures that prioritize one of two binary states in the 
calculations are less applicable in current works as both 
binary states denoting low and high risk are equally 
important. It is therefore important to select the most 
appropriate similarity or dissimilarity measure that best 
represents the aim of their application as well as the nature 
and characteristic of the data.

Unlike current methods of multi-variable signature-
based personalized prognosis which typically predicts 
patient subgroups with differential disease recurrence 
risks [18, 37, 38], it may be equally important to define 
a method where a prospective newly diagnosed patients 
could be compared to existing (retrospective individual) 
patients’ signatures with known tumor diagnostics and 
disease outcomes, such as to derive future clinical benefit.

Therefore in this work, we integrated age, an 
important prognostic and predictive factor, into our 
molecular prognostic signature of HGSC [10] and 

subsequently introduced a novel prognostic method 
of personalized medicine. The methods that directly 
measured the similarity or dissimilarity between two 
PBVVs were first evaluated. Subsequently, we propose 
a method to transform the PBVVs into a prognostic 
signature vector (PSV) which considers both the relative 
importance (via implementation of weights) as well as the 
order of variables in the signature. Finally, we proposed a 
method of personalized prognosis, where a patient’s post-
surgery disease recurrence risk can be reliably predicted 
based on the comparison of the patient’s PSV with known 
PSVs of the training cohort.

RESULTS

Proposed schema and strategy for personalized 
diagnosis, prognosis or prediction of therapy 
success

With the emergence of integrated strategies and 
technologies, many countries are adopting the use of 
electronic health record systems. The potential of such 
integrated system has been elucidated by Chawla et al., 
who proposed the use of the underlying patients’ clinical 
histories in predicting and ranking probabilistic risk 
of future diseases [4]. Furthermore, the cataloging of 
genomic, transcriptomic, proteomic or epigenetic patients’ 
profile may be important in addressing the multi-factorial 
origins of many diseases.

In contrast to most personalized prognosis methods 
which are primarily interested in stratification of patients 
or diseases into prognostically relevant subgroups [18, 
37, 38], we proposed that in the field of personalized 
medicine, it may be important to identify for each newly 
diagnosed patient, the most “prognostically similar” 
reference patients which could aid clinicians in clinical 
case studies when designing therapy for a newly recruited 
patient diagnosed with the same disease (Figure 1). 
Essentially, the pairwise comparison of each newly 
recruited patient (defined as “query” patient) with all other 
reference patients in the existing database form the basis 
of our proposed method.

Dataset and classifier rules

We started our analysis of microarray gene 
expression profiles data belonging to high-grade serous 
ovarian carcinoma (HGSC) patients collected by The 
Cancer Genome Atlas (TCGA) research network [16]. 
Via meta-analysis of miRNA and mRNA gene expression 
as well as clinical data belonging to 350 HGSC patients, 
we had found that let-7b miRNA could be considered a 
master regulator of several hundreds of protein-coding 
genes. Subsequently, we identified a let-7b associated 
protein-coding gene prognostic signature, comprising 36 
mRNAs that can stratify the TCGA cohort of patients into 
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low, intermediate or high-risk subgroups with significantly 
distinct overall survival (OS) outcomes and sensitivity to 
post-surgery chemotherapy [10]. This prognostic model 
include the genes ARPC1B, CALD1, CAV2, CBX3, CCL2, 
CCT2, CD44, CD93, CDC6, CDK4, CFD, CHEK1, 
COL3A1, DNMT1, EDNRA, FGFR1, FZD1, GNG12, 
HGF, LAMA4, MCM2, MIS12, MMP13, NCAPD2, 
NCAPG2, NCAPH, PDGFRA, PIK3R1, PLAUR, POLA2, 
POLR2D, POLR2J, TCP1, TGFBR2, TUBB and VCL. 
Each of these genes is survival-significant and has been 
shown to be an independent classifier that assigned 
each patient a binary value of 1 or 2 representing low 
or high-risk subgroup respectively. Overall, the 36-gene 
combined prognostic classifier had been shown to provide 
highly significant and reproducible stratification of HGSC 
patients in several independent cohorts [10]. Therefore in 

this work, we used this classifier as the initial model of our 
new prognostic model of HGSC patients.

In addition, of these 350 TCGA HGSC patients, 349 
have information regarding age at initial diagnosis. As age 
is a well-established factor of OS rates in ovarian cancer 
[19, 21, 22], we also consider the patient’s age variable 
as an additional prognostic variable of our (combined) 
personalized patients’ prognostic model of HGSC.

We first assessed the prognostic significance of 
age in TCGA HGSC patients via the one-dimensional 
data-driven grouping method (1D-DDg, see Methods, 
see also [10, 26]). Our results revealed that age was a 
significant prognostic factor of OS in HGSC (Figure 2). 
We observed that an age cut-off value of 67 years could 
stratify the patients into two subgroups with most 
statistical significance (Figure 2A). The hazard ratios 

Figure 1: Proposed schema of big data and strategy for personalized diagnosis, prognosis or prediction of therapy 
success.
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of the higher-aged patient subgroup with respect to the 
lower-aged patient subgroup were always greater than 1 
(Figure 2B). The survival curves, as well as the hazard 
curves for the subgroups defined via the most optimal age 
cut-off were shown in Figure 2D-2F. Patients with higher 
age at diagnosis were faced with a poorer overall survival 
rate than those with lower age at diagnosis and vice versa 
(p = 0.00159). Therefore, we chose to incorporate the 
age information into our previously identified molecular 
signature comprising the 36 binary variables (predictors) 
represented by mRNAs from tumors.

In summary, our combined prognostic model 
comprises 37 binarized variables that include 36 mRNA 
expression variables and age as personalized patient 
clinical prognostic factor. Briefly, we used 1D-DDg for 
construction of the prognostic binary variable vector 
(PBVV), via estimating the threshold value of expression 
signal for each mRNA expression variable and age. 
Subsequently, for each variable of our combined signature, 
the patients were rank-ordered by their prognostic variable 

quantity and assigned to numerical risk value 1 or 2, 
depending on whether they were classified into the low 
or high-risk subgroups respectively (Supplementary Table 
S1). For each jth patient and ith variable, the risk value is 
denoted by ri,j.

Average weighted risk value correlates with 
patients’ survival

We next calculated the average weighted risk 
(AWR) value for each reference patient jth in the training 
cohort using the 37 variables via:
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The results of the calculations are shown in 

Supplementary Table S1. The heat map of the risk 
classification across each of the 37 variables and each of 

Figure 2: Stratification of reference patients from the TCGA training cohort into two prognostic subgroups based on 
their age at diagnosis. One-dimensional data-driven grouping method was used as the classification method. A. Plot of stratification 
log-rank p-value (transformed y-axis) against the patients’ age cut-off value. B. Plot of hazard ratio against the patients’ age cut-off value. 
C. Histogram and cumulative distribution of the patients’ age at diagnosis. D. Survival curves, E. hazard curves and F. cumulative hazard 
curves of the training TCGA cohort of 349 HGSC patients.
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the 349 patient samples is shown in Figure 3A. To evaluate 
whether the AWR values provide good quantitative 
indication of prognostic significance, the patients were 
first ranked in ascending order of their AWR values 
and classified into four arbitrary equal-sized subgroups. 
Subsequently, we represented these patient subgroups on 
Kaplan-Meier survival curves (Figure 3B). Our results 
showed that patient subgroup 1, which contains the group 
of patients with the smallest AWR values, has the most 
favorable OS rates across all years. In contrast, patient 
subgroup 4 which contains the group of patients with the 
largest AWR values has the least favorable OS rates across 
all years. Therefore, our results suggest that AWR value 
could be a reliable indicator of patients’ survival patterns 
(Figure 3). Figure 3C and 3D show the cumulative hazard 
and hazard plots of the patient subgroups, additionally 
supporting our suggestion.

Application of the prognostic model parameters 
to an independent dataset

We downloaded two independent testing datasets 
belonging to ovarian cancer patients, GSE9899 and 

GSE26712 [17, 39]. Initial analysis of expression across 
the TCGA reference datasets and the two independent 
datasets revealed the gene expression distribution within 
each patient cohort is different (Supplementary Figure 
S2A). These two independent datasets were treated 
as detection batches and via the pamr R package, the 
expressions were batch-corrected using the original TCGA 
data as the reference cohort. All the datasets were mean-
centered and aligned to the TCGA reference cohort to 
allow for valid comparison across the datasets. After data 
preprocessing, the plots for the 0th, 5th, 25th, 50th, 75th, 95th 
and 100th percentiles for each sample in the three cohorts 
showed that their gene expression values are aligned 
(Supplementary Figure S2B).

For each of the 37 variables which consist of 36 
mRNA expression variables and age information, we 
applied the quantity cut-off (threshold) value learned from 
the reference TCGA patient cohorts to the independent 
testing datasets and assign each of these patients to low 
or high-risk subgroups (corresponding to risk value 
of 1 or 2 respectively). The results after applying the 
variable threshold values to the independent testing 
datasets can be found in Supplementary File 1 and 

Figure 3: A. Heatmap of risk classification for 37 variables and 349 HGSC from the TCGA cohort. B. Kaplan-Meier survival curves of the 
four patient prognostic subgroups. C–D. Nelson-Aalen estimated cumulative hazard curves and hazard curves of the four patient prognostic 
subgroups. The 37 variables comprise 36 mRNA expression variables and 1 clinical variable (age). The risk classification for variable 
and patient was assessed using the 1D-DDg method. The average weighted risk (AWR) value for each patient across all 37 variables was 
calculated and used for ranking patient samples. The patient cohort was arbitrarily classified into four equal-sized sub-groups based on their 
AWR values.
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Supplementary Table S2. Consequently, each patient in 
either the reference or testing cohort can be represented 
by a PBVV based on the risk group assignment via the 
37 independent variables (gene expression value or age 
information).

The AWR values could also be calculated for each 
of the patients in the independent testing datasets by using 
the variable weights as defined during training of the 
individual variable (Supplementary Table S2). However 
unlike the training dataset, the AWR in the testing 
dataset has poor association with overall survival rates 
(Supplementary Figure S3) which suggest that alternative 
methods would be required to provide prognostic 
prediction of the query patients based on a set of classifier 
variables defined a priori.

Comparison of PBVVs and association with risk

Next, for each PBVV belonging to each query 
patient kth in the testing datasets, we calculated the 
measure of dissimilarity with all the other PBVVs 
belonging to all other reference patient jth in the training 
datasets (Supplementary Methods). The Euclidean 
distance is used as the measure of dissimilarity where a 

larger distance implies lower level of similarity and vice 
versa. The distances between the PBVVs of patients 
in the testing dataset against the training datasets are 
shown in Supplementary Table S3. The scatter plots of 
distances and AWR for each query-reference sample 
pairs can be plotted and examples for query samples 
GSM249732, GSM249737 and GSM249853 are shown 
in Figure 4A-4C (see also Supplementary File 2 for all 
query patients).

It should be expected that if a particular method is 
appropriate for comparing between a query patient and 
other reference sample pairs, the theoretical expected 
distribution of distance versus reference patients’ AWR 
would have quadratic characteristics (see Methods). 
However, our analysis here revealed that Euclidean 
distance between PBVVs is not strongly associated with 
the AWR (Figure 4A–4C). This is because the AWR values 
are not uniquely associated with any Euclidean distances 
and vice versa, especially around the intermediate 
AWR value range (Figure 4B). As we have earlier 
shown that the AWR is a strong indicator of patients’ 
OS prognosis (Figure 3B), our results here suggest that 
direct comparison of PBVVs between pairs of query 
and reference patients via Euclidean distances could not 

Figure 4: Scatter plots of A-C. Euclidean distance and D-F. Kendall’s tau rank correlation coefficient against average weighted risk 
(AWR) values calculated for three representative testing samples GSM249732, GSM249737 and GSM249853 against each reference 
sample in the training cohort (n=349). Each query sample and reference sample is represented by a prognostic binary variable vector 
(PBVV). Each point on the plot represents each of 349 reference samples, and the y-axis represents the value of the Euclidean distance or 
Kendall’s tau rank correlation coefficient with the testing sample. The color blue, green and red corresponds to the low, intermediate and 
high prognostic risk group of the reference patients. The x-axis represents the AWR values associated with each reference sample. (All 
results can be found in Supplementary Files 2 and 3).
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provide a reliable measure for identification of the most 
“prognostically similar” reference patients for any given 
query patient from the testing cohort.

Also, we compared the PBVVs between each query-
reference sample pairs using Kendall’s tau rank correlation 
coefficient measure (Supplementary Table S4). Similarly, 
results revealed that there is no clear relationship between 
the measures of similarity with the AWR of the reference 
sample (Figures 4D-4F, see also Supplementary File 3 for 
all query patients).

Thus, results suggested that an identification of 
the “most prognostically similar” reference patient in 
the training set via direct comparison of PBVVs using 
published measures of similarity or dissimilarity is neither 
effective nor informative.

Visually, the PBVV for any patient could be 
represented on a two-dimensional plot where the 
horizontal axis represents the dimension of variables 
(for 37 variables) and the vertical axis represents binary 
values (of low-risk vs high-risk). It could be observed that 
assessing patients’ similarities based on PBVV could be 
challenging due to the lack of discriminative information 
of the original PBVVs (Figure 5A).

Comparison of the PSVs and association with 
risk

In view of the failure of the methods which 
directly compare pairs of PBVVs to indicate level of 
similarity or dissimilarity between patients (Figure 5A), 
new methods should be proposed and studied. Here, we 
propose a novel and unbiased computational approach to 
assign a new patient to another patient based on firstly, 

the transformation of a PBVV to a more informative and 
higher resolution PSV and subsequently, the similarity 
matching of the PSVs (Supplementary Methods).

The procedures to generate the PSVs for an example 
reference patient jth and query patient kth are listed in 
Table 1. Using the procedures, each patient can be 
represented by a relatively unique PSV with length equal 
to the number of gene variables (Figure 5B). Due to the 
design of the origin-centered risk grouping, the positive 
and negative directional movement of the PSV values 
along the variable axis is indicative of the patient’s shift 
towards a higher risk or lower risk prognosis respectively 
(Figure 5B). From Figure 5B, it can be observed that the 
values of the PSV of query patient (GSM249737) are most 
similar to that of the reference patient 24-1463 rather than 
patients 13-1489 and 25-2042.

Again, we have chosen to represent a high 
dimensional vector (37 dimensions of 37 variables) on 
two-dimensional plot where the horizontal axis represents 
the dimensions and the vertical axis represents value of 
the prognostic risk score defined by PSV (Figure 5B). 
This plot is possible to construct because the variables 
have been rank-ordered according to their weight values. 
Visually, the level of similarity between any pair of 
PSVs can be assessed by the area or vertical distance 
between the two curves (Figure 5B). For instance to 
assess the similarity between any two curves, we could 
define a simple metric as the sum of square differences 
along the horizontal axis. Quantitatively, this value is 
proportional to the Euclidean distance. Specifically, they 
differ by a square root factor, but as the quantity is only 
used for patient ranking, the actual value is not important. 
Therefore, we used the quantitative measures of Euclidean 

Figure 5: Two dimensional representation of A. PBVVs and B. PSVs across the 37 variables for one representative query patient and three 
representative reference patients. Euclidean distances between the query patient and the three reference patients are shown inset.
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Table 1: Conversion of prognostic binary variable vectors to prognostic signature vectors for example reference 
patient (jth) and query patient (kth)

Ranked variable order Reference patient: 
13-1489 = patient jth

Query patient: 
GSM249737 = patient kth

Variable Variable 
index (ith)

W Dj Aj Vj Dk Ak Vk

205382_s_at (CFD) 1 3.429 -1 -3.429 -3.429 -1 -3.429 -3.429

202246_s_at (CDK4) 2 3.124 -1 -3.124 -6.553 -1 -3.124 -6.553

204451_at (FZD1) 3 3.071 -1 -3.071 -9.625 1 3.071 -3.482

201947_s_at (CCT2) 4 3.024 -1 -3.024 -12.648 -1 -3.024 -6.506

205959_at (MMP13) 5 2.928 -1 -2.928 -15.577 1 2.928 -3.577

201954_at (ARPC1B) 6 2.805 -1 -2.805 -18.382 -1 -2.805 -6.382

age 7 2.800 1 2.800 -15.582 -1 -2.800 -9.182

201615_x_at (CALD1) 8 2.793 -1 -2.793 -18.374 1 2.793 -6.389

204464_s_at (EDNRA) 9 2.713 -1 -2.713 -21.088 -1 -2.713 -9.102

208944_at (TGFBR2) 10 2.673 -1 -2.673 -23.760 1 2.673 -6.430

203968_s_at (CDC6) 11 2.660 -1 -2.660 -26.420 -1 -2.660 -9.090

209026_x_at (TUBB) 12 2.640 -1 -2.640 -29.060 -1 -2.640 -11.730

201774_s_at (NCAPD2) 13 2.559 -1 -2.559 -31.619 -1 -2.559 -14.289

212239_at (PIK3R1) 14 2.545 -1 -2.545 -34.165 -1 -2.545 -16.834

203131_at (PDGFRA) 15 2.468 -1 -2.468 -36.632 -1 -2.468 -19.302

212063_at (CD44) 16 2.466 1 2.466 -34.166 1 2.466 -16.836

212782_x_at (POLR2J) 17 2.464 -1 -2.464 -36.630 -1 -2.464 -19.299

214144_at (POLR2D) 18 2.459 -1 -2.459 -39.089 1 2.459 -16.841

219588_s_at (NCAPG2) 19 2.375 -1 -2.375 -41.463 -1 -2.375 -19.215

209960_at (HGF) 20 2.364 -1 -2.364 -43.827 -1 -2.364 -21.579

212294_at (GNG12) 21 2.360 -1 -2.360 -46.187 -1 -2.360 -23.939

207822_at (FGFR1) 22 2.298 -1 -2.298 -48.486 1 2.298 -21.641

204441_s_at (POLA2) 23 2.283 -1 -2.283 -50.768 -1 -2.283 -23.924

216598_s_at (CCL2) 24 2.206 -1 -2.206 -52.974 1 2.206 -21.719

202107_s_at (MCM2) 25 2.156 -1 -2.156 -55.130 -1 -2.156 -23.875

202202_s_at (LAMA4) 26 2.116 -1 -2.116 -57.246 -1 -2.116 -25.991

215076_s_at (COL3A1) 27 2.095 -1 -2.095 -59.341 1 2.095 -23.896

210845_s_at (PLAUR) 28 2.081 -1 -2.081 -61.422 1 2.081 -21.815

201697_s_at (DNMT1) 29 2.052 1 2.052 -59.370 1 2.052 -19.763

202877_s_at (CD93) 30 2.044 -1 -2.044 -61.413 1 2.044 -17.719

203323_at (CAV2) 31 1.985 -1 -1.985 -63.398 1 1.985 -15.735

221559_s_at (MIS12) 32 1.961 -1 -1.961 -65.359 1 1.961 -13.774

208778_s_at (TCP1) 33 1.955 -1 -1.955 -67.313 -1 -1.955 -15.729

201091_s_at (CBX3) 34 1.921 -1 -1.921 -69.234 1 1.921 -13.808

205393_s_at (CHEK1) 35 1.918 -1 -1.918 -71.152 -1 -1.918 -15.727

200931_s_at (VCL) 36 1.902 -1 -1.902 -73.055 1 1.902 -13.824

212949_at (NCAPH) 37 1.889 -1 -1.889 -74.944 -1 -1.889 -15.714

Notations: W: weight vector, D: centered grouping vector (-1=“low-risk”, 1=“high-risk”), A: adjustment vector, V: signature vector.
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distance between the pairs of query-reference patients to 
rank the reference patients 24-1463, 13-1489 and 25-2042 
in order of decreasing similarity with the query patient 
GSM249737 from the testing cohort. Subsequently, the 
most similar reference patient to the query patient could 
be identified for prognostic risk prediction.

Next, using our proposed procedures as described 
earlier, we converted the PBVVs of all the reference patient 
jth from the training cohort and query patients kth from the 
testing cohort to their PSVs (Supplementary Tables S5-S6) 
and calculated the Euclidean distances between pairs of 
PSVs (Supplementary Table S7). We then evaluated whether 
Euclidean distance between pairs of PSVs can provide 
strong association with the AWR of the reference patients. 
Our results revealed that for any given query sample, there 
are clear associations between the Euclidean distances and 
the AWRs of the reference patients (Figures 6A-6C, see also 
Supplementary File 4 for all query patients). This suggests 
that our mathematical procedures of processing the PBVVs 
can provide a reliable way of generating relatively unique 
PSVs for further pair comparisons, as well as facilitating 
ranking and identification of the “most prognostically 
similar” reference patients from the training cohort.

On the other hand, the use of Kendall’s tau rank 
correlation coefficient was observed to be less effective 
in identifying the “most prognostically similar” reference 
patients from the training cohort, specifically at the 
intermediate ranges of AWRs (Figures 6D-6F, see also 
Supplementary File 5 for all query patients).

Distance measure of PSVs is an appropriate 
metric of patient similarity

We next compared summary statistics of each of the 
analyses performed previously, namely (i) comparison of 
PBVVs via Euclidean distance, (ii) comparison of PBVVs 
via Kendall’s Tau rank correlation, (iii) comparison of 
PSVs via Euclidean distance, and (iv) comparison of PSVs 
via Kendall’s Tau rank correlation.

We first analyze the relationship between the AWR 
of each query patient, with the AWR of its corresponding 
most quantitatively similar reference patient as derived 
via each of the discussed methods (Supplementary 
Figure S4A). Our analyses revealed that of the similarity 
measures (the Euclidean distance or the Kendall’s tau rank 
correlation coefficient) and vectors (PBVV or PSV) used, 
the pairwise Euclidean distance of query patient’s PSV 
and reference patient’s PSV is most linearly correlated 
(Supplementary Figure S4A). On the other hand, for each 
query patient, other measures of similarity tend to predict 
reference patients that are not as similar, leading to a rather 
large difference between the AWR of the query patient and 
the AWR of the predicted most similar reference patient 
(Supplementary Figure S4A).

A related analysis that assessed the coefficient of 
variation of the top 15 quantitatively similar reference 

patients’ AWR also revealed that Euclidean distance 
measure of PSVs provide the most specific association 
of similarity measure with the reference patients’ AWR 
(Supplementary Figure S4B). In contrast, other methods 
tend to predict for a new query patient, AWR values that 
spanned across a wider range.

Next, we performed residual analysis for each of the 
above-mentioned methods based on an expected quadratic 
function that would be expected of a strong relationship 
between the similarity values with the AWR values 
(see Methods). Our results revealed Euclidean distance 
calculated between PSVs provided the least residuals 
across all query patients, which further suggests the 
potential of this method in the identification of the most 
similar reference patient (Supplementary Figure S4C).

Additionally, within the training cohort, we 
performed similarity calculations based on each of the 
above-mentioned methods on pair of patients within a 
particular prognostic risk group (intra-class) or between 
two prognostic risk groups (inter-class). The results for 
each of the four methods described above are presented in 
Supplementary Figure S5. Our results revealed that when 
PBVVs were used as the basis for pairwise comparison, 
there were no significant differences in Euclidean distance 
or Kendall’s Tau rank correlation whether patients were 
from the same prognostic group or between two different 
prognostic groups (Supplementary Figures S5A-S5B). 
This suggested that PBVVs are inadequate for similarity 
calculation. On the other hand, when the PBVVs were 
converted to PSVs and subsequently compared via 
Euclidean distance, we observed that the distance between 
pairs of patients from within low, intermediate or high-risk 
patients were lower, and showed less variation in contrast 
to inter-class comparisons (Supplementary Figure S5C). 
Therefore, our results suggested that Euclidean distance 
could be a reliable measure of comparison between pairs 
of PSVs.

Finally, for each of the four methods, we assessed 
its accuracy and stability of the results via 10-fold cross 
validation analysis performed for the training cohort 
(see Methods). Our results showed that of the four 
methods studied, calculating the Euclidean distance 
between PSVs yielded the highest mean accuracy as 
well as the least variation across the ten cross validation 
analyses (Supplementary Figure S6A). This indicated 
the ability of our method in classifying independent 
patient cohort with high accuracy and robustness. 
Also, for the method of patient risk prediction based 
on Euclidean distance between PSVs, we assessed if 
gains in accuracy or robustness could be achieved if 
the prediction is based on the top few patients rather 
than the most quantitatively similar reference patient 
(Supplementary Figure S6B). Our results revealed no 
significant benefit of predicting the prognostic risk 
based on the consensus prognostic risk of the top 5, 9, 
13 or 17 most similar reference patients.
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Evaluation of an entire independent testing 
cohort

For each query patient from the testing cohort, 
the reference patients in the training cohorts can be 
ranked in order of decreasing similarity via our proposed 
procedures. The prognostic risk of each query patient can 
then be predicted and assigned, based on the actual risk 
grouping of the “prognostically most similar” reference 
patient which was assigned during the training of the 
gene classifier variables in the training cohort. The OS 
subgroupings of the reference patients from the training 
cohort into low, intermediate or high-risk subgroups was 
generated via the statistically-weighted grouping (SWVg) 
method previously developed by our group [10]. Our 
results following the 1D-DDg variable selection method 
and the SWVg method revealed that the use of 37 variables 
(comprising 36 mRNA variables and 1 patient clinical 
variable) can effectively and significantly stratify the 
training cohort into three distinct prognostic subgroups. 
The plots of Kaplan-Meier survival, cumulative hazard 
function and hazard function for the three subgroups for 

this training cohort are shown in Figure 7A. Subsequently, 
we implemented the above-described method of the 
prediction of the risk subgroups for all query patients in 
the testing cohort based on identification of the nearest 
reference patient in the training cohort. The Kaplan-Meier 
survival, cumulative hazard function and hazard value 
functions for the prediction of the risk groups for the 359 
patients from the testing patient cohorts (GSE9899 and 
GSE26712) are shown in Figure 7B. Our results revealed 
that our method of matching query patients from the 
testing cohort to the quantitative “most similar” reference 
patient can be effective in assigning individual query 
patients into the pre-defined prognostic risk groups.

Additionally, during the classification of the 
training cohort of reference patients, we reduced the 
number of variables used to the top 35, 30, 25 and 
20 variables and assessed the impact of the reduced 
number of variables on classification performance 
(Supplementary Figure S7). The reduction of the 
number of less significant variables (mRNAs) correlates 
with the number of patients in the high-risk subgroup, 
suggesting the loss of predictor’s stability when the 

Figure 6: Scatter plots of A-C. Euclidean distance and D-F. Kendall’s tau rank correlation coefficient against average weighted risk 
(AWR) values calculated for three representative testing samples GSM249732, GSM249737 and GSM249853 against each reference 
sample in the training cohort (n=349). Each query sample and reference sample is represented by a prognostic signature vector (PSV). Each 
point on the plot represents each of 349 reference samples, and the y-axis represents the value of the Euclidean distance or Kendall’s tau 
rank correlation coefficient with the testing sample. The color blue, green and red corresponds to the low, intermediate and high prognostic 
risk group of the reference patients. The x-axis represents the AWR values associated with each reference sample. (All results can be found 
in Supplementary Files 4 and 5).
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number of variables in the multi-variable classifier 
was reduced (Supplementary Figure S7). The results 
for the classification of the testing cohort are shown 
in Supplementary Figure S8. The panels of this figure 
showed similar patterns of reduction of the number of 
patients in the high-risk subgroup when the number of 
top predictor variables becomes smaller. Interestingly, 
while the use of the top 25 variables resulted in a 
statistically more significant stratification of the training 
cohort (p=7.56e-20) than the use of all 37 variables 
(p=3.81e-19), the use of the entire 37 variables showed 
a relatively stronger classification performance when 
applied to an independent testing dataset. This suggests 
that our combined 37-variable classifier is reproducible 

and the method of assigning query patients to the 
quantitatively “most similar” reference patients could 
be an effective computational strategy of personalized 
patient’s prognostic risk assessment.

Next, we removed the age variable from the 
combined 37-variable signature, and validated the 
resulting 36-mRNA signature in the independent 
dataset. The stratification of the low, intermediate 
and high-risk prognostic subgroups of the testing 
dataset are shown in Figure 7C. Our results revealed 
that when age was excluded from the classifier, the 
predictive performance of the prognostic signature in 
the independent dataset worsened (Figure 7B–7C). Our 
results further confirmed that age, as an independent 

Figure 7: A. Stratification curves of the training cohort of 349 TCGA HGSC patients obtained via a 37-variable classifier comprising 36 
mRNA variables and 1 age variable. B. Stratification curves of the testing cohort of 359 patients from GSE9899 and GSE36712 obtained 
via the 37-variable classifier comprising 36 mRNA variables and 1 age variable. C. Stratification curves of the testing cohort of 360 patients 
from GSE9899 and GSE36712 obtained via a 36-variable classifier comprising 36 mRNA variables. The p-values were calculated via 
multivariate log-rank test. Left panel: Kaplan-Meier curves; Middle panel: Cumulative hazard curves; Right panel: Hazard curves.
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prognostic factor of overall survival of HGSC patients, 
when included into a combined multi-variable classifier, 
can improve its predictive performance in the testing 
cohorts.

To illustrate the improvement in stratification 
performance when PSV instead of PBVV was used for 
query-reference patient similarity matching, we assessed 
the stratification performance when the prediction of the 
testing cohort was performed via similarity matching 
of PBVV directly instead of converting it to PSV first 
(Supplementary Figure S9). Our results revealed that 
when PBVV is used, a large proportion of patients from 
the testing cohort (around 20%) could not be classified 
reliably. This is because there could be more than one 
solution (i.e. most similar reference patient from the 
training cohort) when PBVV is used for similarity 
calculations (see Supplementary File 2). Our findings 
clearly demonstrated the superiority of our approach 
when converting the PBVV to PSV before similarity 
matching.

In the generation of PSV from PBVV, it is 
intuitive to note that the variance of the signature 
vector value (across all patients) will increase along 
the variable axis ith. Therefore, we studied the use of 
Mahalanobis distance (rather than Euclidean distance) 
which is scale-invariant. Our results showed that there 
was no association between Mahalanobis distance 
with AWR (result not shown). Furthermore, patient 
stratification based on Mahalanobis distance was not 
survival significant. In summary for each query patient, 
the conversion of a PBVV to a PSV as stipulated by 
our method may have increased the variance along 
the variable axis (i = 1, 2, 3, … 37), but it is also a 
necessary feature required and designed by us for higher 
resolution matching to an ensemble of vectors each 
representing one reference patient from the training 
cohort.

Using the variables’ continuous value directly as 
the measure of similarity

An interesting possibility would be to use the 
initial continuous variables (microarray gene expression 
signals and actual age) directly for correlation or 
distance calculations as measures of similarity between 
two patients (see Supplementary Methods). Typically, 
this is also analogous to the use of a clustering algorithm 
such as hierarchical or k-means clustering to group 
together the patients who have similar expression 
profiles. We analyzed the similarity between pairs of 
vectors of 37 variables from the query patients and the 
reference patients. However, our results indicated the 
lack of association between such measures and patients’ 
risks when either Euclidean distance or Kendall’s tau 
rank correlation coefficient was used as the similarity 
metric (Supplementary Files 6-7).

Risk groups from the training and testing cohort 
correlates with clinical information

To specify the clinical relevance of our signature-
derived classification, we first studied the association 
between clinical parameters with the prognostic risk 
groups defined during the training of the classifier. 
For the training data, we studied the association of the 
prognostic risk groups (low, intermediate and high-risk) 
with tumor residual disease, and with primary therapy 
outcome success (Table 2A). Our results revealed a strong 
correlation between prognostic risks with the tumor 
residual size (p = 0.00801) and with primary therapy 
outcome success (p = 0.00104).

Next, we also studied the clinical relevance of the 
predicted prognostic risk groups in the testing cohort with 
the debulking information (Table 2B). Our results showed 
that there was a borderline association between debulking 
information with the prognostic risk groups (p = 0. 02884). 
Specifically, patients with predicted low prognostic risk 
have optimal debulking. It would be interesting to note 
that the debulking information has not been designed to be 
part of the classifier, and therefore the resulting association 
of the predicted risk group with debulking information 
suggests that our signature could work independently from 
debulking information, and could potentially be useful in 
pre-operative prognostic prediction of patients based on 
non-invasively obtained biosamples.

DISCUSSION

Previously, we have developed computational and 
statistical methods to identify a robust and reliable multi-
variable classifier that stratifies a retrospective reference 
cohort of patients into at least two subgroups with distinct 
prognostic risk patterns [25, 27]. The classifier information 
regarding the number of variables and the predictive model 
parameters of each variable such as stratification p-value, and 
expression ranges of the risk subgroups, could be applied to 
the expression data of a testing patient cohort, or a query 
patient to predict which risk groups he or she belongs to. 
Effectively, a new patient could be assigned to one of the 
reference risk curves identified from the training cohort.

However in general, sometimes for a newly 
recruited query patient diagnosed with the disease, 
it may be clinically relevant to identify a specific 
reference patient that is most similar based on their 
prognostic signature. In our current work, we propose a 
mathematical scheme where a newly diagnosed patient 
would be matched to a reference patient in the training 
cohort based on similarities in their prognostic signature 
vectors (PSVs), which in turn is derived from prognostic 
binary variable vector (PBVV) generated from variable 
selection and risk classification methods from 1D-DDg or 
from other similar approaches [5, 6, 11, 12, 15, 38, 40]. 
The ability of our algorithm to match a new query patient 
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to a known reference patient or several known reference 
patients in the training cohort could be beneficial in a 
clinical setting where, the success or lack of success of 
therapeutic strategies in previous and “similar” reference 
patients are already known and the information might aid 
in the clinical intervention of this new query patient.

Our approach could also provide a non-biased 
priority ranking of reference patients based on similarity 
matching with the new query patient which could be useful 
for case study analysis during the therapeutic assignment. 
Finally, our method assumes that all training and testing 
data should be measured with the same detection 
instrument and pre-processed via identical normalization 
procedure and parameters.

Our survival predictive method for a query patient 
is based on specification of a general concept where 
each variable of the variables in the classifier assigns the 
patient to a binary risk classification based on an optimal 
quantity cutoff (threshold) variable quantity [25–27], 
leading to the generation of a PBVV. Subsequently, 
the method personalizes the risk of disease recurrence 

based on similarity matching of any pair of PBVV (each 
representing one patient) via the best distance measure 
(Euclidean distance), found in this study.

While we propose that binarization procedure could 
be based on our data-driven grouping (DDg) methodology, 
other classification rules such as mean-based or median-
based gene expression value classification that similarly 
assign patients into binary groupings associated with 
either low or high risk prognostic subgroups could also 
be used to generate the PBVV [5, 6, 11, 12, 15, 38, 40]. 
Other patho-biological nature of input data, including 
that of copy number variation, mutation, or methylation, 
could also be converted to a binary risk classification 
schema and incorporated into the multi-gene (or multi-
variable) classifier if they exhibited strong and significant 
stratification performance.

Additionally, clinico-pathological parameters 
such as estrogen receptor status, lymph node status, 
histologic grade or patient’s age could also be integrated 
into the classifier since they are known to be strong 
predictors of clinical outcome [41]. Mathematically, our 

Table 2: Significant associations of our prognostic risk grouping with essential therapeutic factors in the (A) training 
(TCGA data) and (B) testing cohorts (GSE9899 and GSE26712) indicates the potential clinical value of our method
(A) Training (TCGA)
Tumor Residual Disease

Prognostic risk No Macroscopic disease 1 to 20 mm > 20 mm

low 25 51 14

intermediate 30 104 36

high 3 23 10

Kappa coefficient = 0.1501
Kappa p-value = 0.00801
Primary therapy outcome success

Prognostic risk Complete response Partial response Progressive and stable 
disease

low 82 4 11

intermediate 88 33 32

high 13 10 3

Kappa coefficient = 0.183
Kappa p-value = 0.00104
(B) Testing (GSE9899 and GSE26712)
Debulking

Prognostic risk optimal suboptimal

low 69 36

intermediate 92 92

high 21 21

Chi-sq p-value = 0. 02884
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procedures could be implemented, as long as for a given 
experimental variable or clinical parameter, patients could 
be assigned values of either -1 or +1 for low-risk or high-
risk subgroups respectively. We have demonstrated the 
possibility of combining variables of different types in 
our model. In our combined prognostic signature of 37 
variables, it includes 36 mRNA expression-based variables 
and patient’s clinical information (age). Our results 
revealed that our method can be effective in combining 
variables of different nature in an easy computational 
pipeline, thereby lending its use in effective patient risk 
prediction.

Mathematically, the Euclidean distance between 
any two points in an n-dimensional space is well-
defined. However, in the context of a prognostic 
vector profile (Dj ) which is represented by a binary 
classification along the variable axis, the similarity 
or dissimilarity between the two prognostic binary 
variable vectors (e.g. between Dquery and Dreference) cannot 
be easily determined from the Euclidean distance. In 
fact, there is no clear correlation between the distances 
with the overall risk value of the patients (Figures 4A-
4C, see also Supplementary File 2), which we have 
shown earlier to be indicative of patients’ overall time-
to-event survival curves (Figure 3).

Therefore, we propose a method to convert a vector 
of prognostic binary variable vector (D) to a prognostic 
signature vector (V) which incorporates contribution by 
previous variables when moving along the variable axis 
(Table 1). For each patient, he or she can be represented by 
the prognostic signature vector (V) which is effectively the 
cumulative value based on current and previous variables’ 
contributions (Figure 5).

Our results also suggest the importance of weights 
in the multi-variable classifier, where it could be used 
to order and weigh the variables based on their relative 
contribution in the overall classifier [25–27]. In this work, 
we have used weights at two distinct parts of the analysis. 
In the first part, we have incorporated variable weights as 
part of the definition of the term average weighted risk 
(AWR) which provides a summary prognostic risk score 
(ranging from 1 to 2 for low or high-risk respectively) for 
each reference patient in the training cohort. The concept 
of AWR has been previously applied successfully to 
several of our biomarker discovery studies of ovarian and 
breast cancers [10, 42]. In the second part, we have used 
variable weights to generate a prognostic signature vector 
(PSV) from a prognostic binary variable vector. While we 
have conveniently derived the variable weights using the 
logarithmized p-values of the stratified survival curves 
for each individual variable, other statistical indicators 
that can numerically represent the relative importance of 
one variable over the other could also be used to weigh 
each variable [6, 8, 11, 12, 15, 18, 38, 40]. In this work, 
we have also studied the effect of using other weights 
on the stratification of the test cohort. We have used 

inverse p-values, hazard ratios, product of logarithmized 
p-values and hazard ratios, summation of logarithmized 
p-values and hazard ratios, and even equal weights. For 
our studied dataset using the specified prognostic signature 
and classification method, our results revealed that none 
of the alternative weight measures could outperform 
the stratification performance when just negative 
logarithmized p-values were used (results not shown). 
The specific effects of incorporating multiple statistical 
measures into the weights of each variable should be 
explored for individual biomarker discovery studies.

We investigated the use of comparing continuous 
variables directly for comparing a query patient with the 
reference patients from the training cohort, but the results 
showed that there was a lack of association between 
such measures and patients’ risks whether Euclidean 
distance or Kendall’s tau rank correlation coefficient was 
used as the similarity metric (Supplementary Files 6-7). 
This could be due to the fact that unlike expression data 
alone, the generation of a prognostic signature implicitly 
incorporates information regarding the direction of 
variable quantity (e.g. gene expression or age) and 
the directional association with lower or higher risk 
prognostic subgroups. Such directionality is implied, 
when a prognostic signature of binary values is generated 
for a new query patient. However, the use of continuous 
variable data alone would not incorporate information 
regarding the favorable or unfavorable outcomes and 
would be a cause of concern when trying to identify a 
patient with the most similar prognostic profile. Further 
studies of these findings should be analyzed using other 
datasets and modeled via computation simulations in 
separate work.

Biomedical datasets often include both continuous 
variables (e.g. survival time, microarray gene expression 
signals) and discrete/categorical variable (e.g. stage, 
histological type). For diagnostics, prognosis and 
prediction implementation, the continuous variables are 
often converted into categorical variables by grouping 
values into two or more categories. Categorizing 
prognostic variables is essential for their use in clinical 
decision-making [1, 8, 13, 18, 30, 41, 43].

Such conversion of continuous or discrete 
variables to dichotomized values can address the bias 
of dynamical ranges of the continuous variables as well 
as provide reduction of the dimension of the predictor 
space (via excluding highly noisy and uninformative 
variables). It can also provide a robust and synergistic 
multivariate descriptor of disease complexity via 
explicit incorporation of the interaction (synergistic) 
effects of the individual predictors, thereby allowing 
investigation of a possible classification or prediction 
model as well as optimizing the predictor subset in 
input-output interconnections and personalized dose-
response relations [10, 44, 45]. Despite known loss 
of statistical power following dichotomization in the 
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univariate case and in the linear multivariate regression 
models, it has been shown by many studies that 
dichotomizing continuous data can greatly improve 
the power of multiple testing procedures (even in 
false discovery rate controlling methods) [43]. The 
appropriate statistical-based predictive models in this 
case, can lead to unbiased variable selection of highly 
informative, robust and reproducible components of 
classifiers and survival predictors [10, 25, 44–46]. It 
was demonstrated that statistical-based optimization of 
dichotomous threshold of the continuous variables can 
be quite accurate, even with highly correlated data [10, 
25, 30, 44–47].

In our strategy, dichotomization of a continuous 
variable, for example gene expression or age, is only a 
preliminary step that seeks to reduce noise and reduce the 
number of the variables subsequently considered during 
the next step of our analysis as the potential predictors in 
the training set. Subsequently, a follow-up complementary 
strategy, called statistically weighted voting grouping 
method SWVg [10, 26] is used to statistically synergized 
combinations of the predictors. Via optimization of 
the relatively large number of informative and robust 
univariate predictors, a multivariate feature predictor 
model could be constructed, appropriate for personalized 
outcome prediction.

Due to the high-dimensional and highly 
interconnected nature of genomic, transcriptomic and 
proteomic data, selections of feature lists (via different 
classification methods) that shares little overlap but 
that have similar prognostic significance or biologically 
relevance could be quite common. It is often necessary to 
evaluate both the signature (selected predictive variables, 
parameters of the predictive model) and the method 
of classification together rather than just consider the 
method of classification. This is because each method of 
classification (or prediction) would be able to identify a 
potentially unique small subset of features that are only 
useful and effective in their combination when used in 
the manner designed in the specific (computational or 
empirical-based) method. In our cases, the 1D-DDg and 
SWVg methods proposed have the ability to select a 
pathobiologically relevant sub-set of predictive variables 
where binarization was effective and reproducible for 
prognostic classification.

As such, predictors that utilize the full range 
of the continuous variables, as well as predictors that 
dichotomize the continuous variables should be considered 
as complementary methods which are able to identify 
informative and robust set of predictors unique to each 
predictor type, and only useful when applied to the test set 
in the intended designed manner.

As a result, our prognostic signature together with 
the classifier method (i.e. 1D-DDg) has resulted in a 
robust predictor of overall survival in ovarian cancer 

patients. In addition to matching query patients from 
the testing cohort directly to the most similar reference 
patient in the training cohort, we have also matched 
query patients to the reference subgroup centroids (via 
median or mean of the low, intermediate or high-risk 
prognostic subgroups) from the training cohort. It was 
expected that comparing with the average over a group of 
similar patients instead of comparing with a single patient 
would improve the robustness of our model. However, 
our findings revealed no statistical improvement when 
reference subgroup centroid matchings were used. In 
addition, averaging the prognostic risk predictions across 
the top 5, 9, 13 or 17 most similar reference patients 
also did not yield significant improvement in the mean 
accuracy (Supplementary Figure S6B).

Our proposal of personalized prognosis is based 
on retrospectively assigning patients from a reference 
cohort (training set) into binary states of low or high 
risk subgroups using clinically significant feature subset 
(pathobiologically relevant prognostic signature). 
For prospective analysis of a newly recruited patient 
diagnosed with the disease or a testing patient cohort, 
the new data under comparison is required to be 
adequately corrected for batch effects and aligned 
appropriately to the original training cohort data. In 
general, the specificity, sensitivity and reproducibility 
of the prediction of the new query patient with regards 
to risk subgroups is multi-factorial; it is invariably 
dependent on the training set, accuracy, reliability, 
robustness and reproducibility of the multi-feature 
classifier.

The notion of personalized and precise clinical 
therapy is a much desired goal in the field of medicine. 
This is especially true for complex, multi-factorial and 
genetic disorders such as cancers, where the heterogeneity 
within tumors and among patients is often a cause of worry 
to both clinicians and patients at all stages of clinical care 
such as disease diagnosis, prognosis and treatment. Here, 
we propose that each patient can be represented initially 
by a PBVV where the risk for each feature can be denoted 
using one of two binary states. Subsequently, our proposed 
algorithm can transform the PBVV to a more informative 
and robust PSV which allows for a better similarity or 
dissimilarity measure between any two patients. For any 
query patient from the testing cohort or a newly diagnosed 
patient, our algorithm facilitates the search for the most 
“prognostically similar” reference patient as well as 
provides an unbiased ranking of the reference patients 
from the training cohort, where analysis of historical cases 
could be prioritized and studied. The insights to clinical 
characteristics or response to any particular therapy for the 
most “prognostically similar” reference patients are likely 
to be beneficial to the prognosis of any new patients as 
well as represent a key step towards future personalized 
therapeutic intervention.
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Finally, results of our analyses revealed that 
independently, age could be an important pro-oncogenic 
prognostic factor of OS in HGSC patients. Incorporating 
the age information into the molecular predictor provided 
more robust personalized prognosis of OC which correlate 
with the therapeutic response of HGSC. Our method could 
provide benefit in optimization of the treatment targeting 
of the tumors in HGSC patients. It may be expected that 
our findings would be of interest to many, including 
clinicians and patients.

MATERIALS AND METHODS

Dataset

Expression datasets belonging to high-grade serous 
ovarian cancer (HGSC) patients were obtained from 
three independent sources: 1) The Cancer Genome Atlas 
(TCGA) research network [16], 2) GSE9899 [17] and 
3) GSE26712 [39]. Detailed clinical information was 
downloaded as well.

TCGA expression data comprised of 463 primary 
solid ovarian cancer tissue samples from 11 batches 
(containing between 21 to 47 samples in each batch). More 
than 90% of the samples were classified with Stage III 
tumors. Pre-processing of the mRNA (Affymetrix U133A) 
data were performed via quality assessment within each 
batch, background correction, normalization and batch 
effect adjustment as previously described [10]. The final 
expression dataset belonging to 350 patients after quality 
control were designated as the reference/training cohort. 
Of these, 349 patients in this dataset have information with 
respect to age at initial diagnosis.

246 and 185 patient samples from GSE9899 and 
GSE26712 were downloaded and assessed for their data 
quality as previously described [10]. The final expression 
dataset belonging to 230 and 130 patient samples from 
GSE9899 and GSE26712 were designated as the query/
testing cohort. Of these, 230 and 129 patient samples from 
GSE9899 and GSE26712 have information with respect to 
age at initial diagnosis.

Systematic effects of the global expression 
intensities between the reference dataset (TCGA) and 
query datasets (GSE9899 and GSE26712) were removed 
via batch effect correction using the Anova method 
implemented from pamr R programming package [40].

Variable selection method and training data

We briefly summarize our method of patient 
grouping, called one-dimensional data-driven grouping 
(1D-DDg) [10, 26]. In 1D-DDg, samples (e.g. patients) 
are ranked based on a quantifiable variable (e.g. RNA 
expression of gene A). Samples are categorized into two 
groups (i.e. low or high-risk) based on a cut-off value, 
identified and optimized based on maximal separation 

of the Kaplan-Meier survival curves which in turn is 
evaluated via Wald test. For each variable, samples can be 
arbitrarily assigned a binary value of 1 or 2 corresponding 
to low or high-risk respectively. The procedure is repeated 
for several other quantifiable variables (e.g. other 
probesets in a microarray platform) to identify the most 
prognostically significant variables. Subsequently, each 
sample can be represented by a prognostic binary variable 
vector (PBVV) containing binary states of 1 or 2 across 
the selected variables. In addition, statistical quantities 
such as p-value can provide a simple way of assessing the 
relative importance of one variable over the others.

Several survival-significant variables selected from 
1D-DDg method could be combined into an integrative 
prognostic signature classifier via statistically weighted 
voting (SWV) as described and implemented previously [10].

Variable conversion of PBVV

Here, we proposed a method to transform a PBVV 
(representing each sample) to a PSV. The details could be 
found in Supplementary Methods.

Ordering the variable axis

Rank the variables in descending order of 
significance (correspondingly, ascending order of 
p-value) and select a subset of n variables to compose 
a signature/classifier. The variable order represented as 
i = 1, 2, 3, …, nth variable is thereafter, referred to as the 
variable axis.
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Calculating the weight vector

For all patients, the weight vector is the list of 
negative log10 p-values as calculated during the variable 
selection step of the reference training patient cohort:

�

�

=



























W

w

w

w

w

,
i

n

1

2

 

where wi ≥ wi+1 for i = 1, 2, ..., n-1th variable
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Centering and rescaling the PBVV

For each reference patient jth, the vector of grouping 
information, G j that was calculated from the variable 
selection step (e.g. 1D-DDg method), is origin-centered 
(i.e. centered to 0) and rescaled, so that the centered 
grouping vector, Dj, is now represented by -1 for low-risk 
and +1 for high-risk for each of the genes defined in the 
signature.
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Adjustment vector

For each reference patient jth from the training 
cohort, the adjustment vector Aj is defined as:
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where i = 1, 2, 3, ... nth variable.

Prognostic signature vector (PSV)

Finally, each reference patient jth from the training 
cohort can be represented by a characteristic PSV defined as:
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Prognostic signature vector for new patient

Profiling and classification for each variable

To generate a PSV for a prospective new patient, the 
patient is first profiled for the same variables identified in 
the training cohort.

Subsequently, for each variable in the signature, 
use the quantity cut-off (as established in the training 
cohort) to assign the query kth patient from the testing 
cohort to low or high-risk subgroups (subgroup 1 or 2 
respectively). The vector of grouping information for the 
query patient kth is defined as Gk whereas the centered 
design vector for the query patient kth is defined as Dk.

Adjustment vector

Using the weight vector W previously defined in 
the training cohort, the adjustment vector Ak for the query 
patient kth can be calculated as:

� �

� �

� � � � �
�

� � � � � �
� �

�

�

�

�

( )= =





















































=



























A W Ddiag

w

w

w

w

d

d

d

d

a

a

a

a

0 0 0

0 0 0

0
0 0 0 0

0 0 0

k k
i

n

k

k

i k

n k

k

k

i k

n k

1

2

1,

2,

,

,

1,

2,

,

,

Prognostic signature vector (PSV)

The unique PSV for the query patient kth is then 
defined as:
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Comparison of prognostic signature vectors

The difference in PSVs, for the query patient 
kth from the testing cohort with respect to a reference 
patient jth in the training cohort can be calculated by the 
Euclidean distance between the vectors Vj and Vk and is 
denoted by:
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Identification of the most similar reference 
patient

The reference patient jth from the entire training 
cohort M that is most similar to the query patient kth can 
be identified via:

( )=
∈

V  Vfj  arg min ,
M j kj

where M represents all reference patients in the training 
cohort.

Subsequently, the risk group of the query patient 
kth is predicted to be similar to that of the most similar 
reference patient jth.

Similarity-AWR scatter plots for PBVV-based or 
PSV-based approaches

Several ways of comparing patient pairs were 
described herein and in Supplementary Methods. We 
have evaluated some of the methods, e.g. (i) distance 
between PBVVs, (ii) correlation between PBVVs, (iii) 
distance between PSVs or (iv) correlation between 
PSVs.

For each query patient, he/she could be represented 
by a PBVV or PSV and compared with that from the 
reference patients in the training cohort. The quantitative 
results for each query patient could be illustrated with 
a scatter plot where each point is a result arising from 
comparison of that query patient with one reference 
patient. The similarity measure and the AWR of the 
reference sample are represented on the vertical and 
horizontal axes respectively. A good method (e.g. i-iv 
mentioned above) should yield a scatter plot with well-
structured association between AWR and the similarity 
measure.

In each of the plots, the reference patients from 
the training cohort were ranked from left to right in 
terms of ascending AWR values, which were associated 

with prognostic risk. If a hypothetical query patient has 
intermediate prognostic risk, the expectation would be 
that it would be most quantitatively similar to a reference 
patient with intermediate AWR values (e.g. AWR=1.5). 
Comparison with other reference patients further away 
from the intermediate AWR value (e.g. AWR from 1.5 
approaching 1.0, or AWR from 1.5 approaching 2.0) 
would yield decreasing similarity measure quantity. 
Therefore, the shape of such scatter plot would have 
quadratic characteristics with either a local minimum or 
maximum depending on whether Euclidean distance or 
Kendall’s Tau rank correlation was used as the similarity 
measure.

To assess which of the method would be appropriate 
for comparing between query and reference patients, we 
fitted all the data to a best-fit quadratic function. The residuals 
of each of the plot would be used to assess the fit of the data 
onto the best-fitted quadratic function. A good method would 
be quantitatively characterized by low residual values, which 
in turn could be observed by well-structured association 
between similarity measure and AWR.

For each plot, for valid comparison across the methods, 
we rescaled all y-axis value representing the Euclidean 
distance or Kendall’s Tau rank correlation coefficient to 0 and 
1 before calculating the normalized residuals.

10-fold cross validation in the training cohort

The training cohort comprised 349 HGSC patients 
from TCGA. To assess the predictive accuracy and 
the stability of our proposed methods, we performed 
10-fold cross validation analysis where the training 
cohort was split into 10 subgroups. For each subgroup, 
patients were assigned to the most quantitatively 
similar reference patient from the other 9 subgroups. 
The accuracy was calculated for each of the 10 cross 
validation analysis. Mean accuracy and the standard 
deviation of the accuracies across the 10 cross 
validation analyses were used as indicators of accuracy 
and stability.
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