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Most ligands and receptors from the tumor necrosis factor (TNF) superfamily play 
very important roles in the immune system. In particular, many of these molecules are 
essential in the regulation of B  cell biology and B  cell-mediated immune responses. 
Hence, in mammals, it is known that many TNF family members play a key role on B cell 
development, maturation, homeostasis, activation, and differentiation, also influencing 
the ability of B  cells to present antigens or act as regulators of immune responses. 
Evolutionarily, jawed fish (including cartilaginous and bony fish) constitute the first animal 
group in which an adaptive immune response based on B cells and immunoglobulins 
is present. However, until recently, not much was known about the expression of TNF 
ligands and receptors in these species. The sequences of many members of the TNF 
superfamily have been recently identified in different species of jawed fish, thus allowing 
posterior analysis on the role that these ligands and receptors have on B cell function-
ality. In this review, we summarize the current knowledge on the impact that the TNF 
family members have in different aspects of B cell functionality in fish, also providing 
an in depth comparison with functional aspects of TNF members in mammals, that will 
permit a further understanding of how B cell functionality is regulated in these distant 
animal groups.
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Abbreviations: Ab, antibody; AD, autoimmune disease; Ag, antigen; APRIL, a proliferation-inducing ligand; BAFF, 
B cell-activating factor of the TNF family; BAFFR, BAFF receptor; BCMA, B cell maturation antigen; BCR, B cell receptor; 
Blimp-1, B lymphocyte-induced maturation protein-1; BM, bone marrow; CRD, cysteine-rich domain; CSR, class-switch 
recombination; DcR3, decoy receptor 3; DR3, death receptor 3; DC, dendritic cell; DD, death domain; EDA, ectodysplasin; 
EDAR, EDA receptor; FasL, Fas ligand; GC, germinal center; GITR, glucocorticoid-induced TNFR; GITRL, GITR ligand; 
HVEM, herpesvirus entry mediator; LPS, lipopolysaccharide; LIGHT, homology with lymphotoxin, inducible expression, 
competing for GpD of herpes virus, that binds to the HVEM, and is expressed on activated T  lymphocytes; LN, lymph 
node; LT, lymphotoxin; MHC, major histocompatibility complex; MZ, marginal zone; NGFR, nerve growth factor receptor; 
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TaBle 1 | Relation of TNF superfamily ligands (TNFSF) present in human 
indicating their standard name within the TNF superfamily and their alternative 
(most common) name.

Standard name (encoding gene) alternative name UniProt iD

TNFSF1 Ltα P01374
TNFSF2 TNF-α P01375
TNFSF3 LTβ Q06643
TNFSF4 OX40L P23510
TNFSF5 CD40L P29965
TNFSF6 FasL P48023
TNFSF7 CD70 P32970
TNFSF8 CD153 P32971
TNFSF9 4-1BB-L P41273
TNFSF10 TRAIL P50591
TNFSF11 RANKL O14788
TNFSF12 TWEAK O43508
TNFSF12-13 TWE-PRIL O43508-2
TNFSF13 APRIL O75888
TNFSF13b BAFF Q9Y275
TNFSF14 LIGHT O43557
TNFSF15 TL1A O95150
TNFSF18 GITRL Q9UNG2
N/A EDA Q92838

Uniprot ID links for each ligand are also provided.
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iNTRODUCTiON

In mammals, the tumor necrosis factor (TNF) ligand superfamily 
(TNFSF) signal through members of the tumour necrosis factor 
receptor superfamily (TNFRSF) to activate signaling pathways which 
play biological roles in development, organogenesis, cell death, and 
survival. Since the discovery of the first TNFSF members, TNF (1) 
and lymphotoxin α (Ltα) (2), more than 40 years ago, 17 additional 
TNFSF members and 29 cognate receptors have been identified in 
humans (3). With the completion of the large-scale sequencing of 
the human and mouse genomes, it is assumed that almost all TNFSF 
and TNFRSF members have now been identified in mammals (3, 4).  
Thus, ligands within the TNFSF which include 4-1BBL, a prolifer-
ation-inducing ligand (APRIL), B cell-activating factor of the TNF 
family (BAFF), CD27L, CD30L, CD40L, EDA1, EDA2, Fas ligand 
(FasL), GITRL, LIGHT, Ltα, Ltβ, OX40L, RANK ligand, TL1A, TNF, 
TNF-like weak inducer of apoptosis and proliferation, and TNF-
related apoptosis-inducing ligand (TRAIL) are key effector proteins 
in the orchestration of innate and adaptive immune responses 
[reviewed in Ref. (3) and summarized in Table 1].

TNFSF ligands are type II membrane-bound proteins with 
an intracellular N terminal and an extracellular C terminal 
domain. Among the 19 known ligands described in human and 
mouse, 11 encode for a proteolytic cleavage site that generates 
biologically active soluble forms (5). Within the C terminus, 
they contain the TNF homology domain (THD), which pre-
sents a weak degree of conservation (20–30%) between ligand 
members, and is typically formed by 10 β-strands (6). The THD 
folds into what has been called an antiparallel β-sandwich (3) 
exhibiting a compact jellyroll topology (4). The THD structure 
has the ability to assemble each TNF ligand into conical trimers 
which allow the ligands to bind respective receptors to initiate 
signaling (6).

To date, 29 TNFRs have been identified in mammals, namely, 
4-1BB, BAFFR, B  cell maturation antigen (BCMA), CD27, 
CD30, CD40, decoy receptor 3 (DcR3), death receptor 3, DR6, 
EDAR, Fas, Fn14, glucocorticoid-induced TNFR, herpesvirus 
entry mediator (HVEM), LTbR, OPG, OX40, RANK, receptor 
expressed in lymphoid tissues (RELT), transmembrane activator 
and calcium-modulating cyclophilin ligand interactor (TACI), 
TNFR1, TNFR2, TRAILR1, TRAILR2, TRAILR3, TRAILR4, 
TROY, and XEDAR [reviewed in Ref. (7)]. The main feature of 
these TNFRs is a cysteine-rich domain (CRD) formed of three 
disulfide bonds surrounding a core motif of CXXCXXC creat-
ing an elongated molecule. There is an important variation in 
the number of CRDs among family members, from BAFFR or 
BCMA containing only one CRD to CD30 containing six CRDs. 
These receptors are type I membrane proteins, with the excep-
tions of BAFFR, BCMA, TACI, and XEDAR, which are type III 
membrane proteins, and OPG and DcR3, which are secreted  
(4, 8). The determination of the X-ray crystal structures of some 
ligands bound to the extracellular domain of their receptors has 
been primordial to characterize the binding mechanisms between 
them (9, 10). These analyses have revealed that those receptors 
with several CRDs adopt an elongated structure and bind at the 
interface between two ligand monomers, whereas single CRD 
receptors are more compact and contact a single ligand monomer 
in a trimeric ligand (5, 11, 12). Generally, one trimeric ligand 
engages three monomeric receptors, a key event for the activation 
of intracellular signaling pathways. By conducting a systematic 
flow cytometry-based assay, Bossen et al. elegantly demonstrated 
the mechanisms that regulate TNFSF–TNFRSF interactions in 
mouse and human (8). They found that TNFSF ligands bound 
from one to five different receptors, while most receptors bound 
from one to three ligands. Strikingly, they observed that, although 
containing the classical CRD structure, DR6, RELT, TROY, and 
nerve growth factor receptor (NGFR) did not bind to any of the 
TNFSF, thus suggesting that they either bind to other ligands or 
function in a ligand-independent manner. In this sense, it was 
later shown that although NGFR has the classic CRD structure, it 
binds a structurally different kind of ligands, the neurotrophins 
(13). This information regarding the different ligands that signal 
through each receptor in mammals is summarized in Table 2.

evOlUTiON OF TNFSF aND TNFRSF 
MeMBeRS

The appearance and further specialization of the adaptive immune 
response is a hallmark of the successful evolution of vertebrates. 
The adaptive immune system is based on the presence of recom-
bination-activating gene (RAG)-recombined B  cell receptors 
(BCR) and T cell receptors (TCR) on the surface of B cells and 
T  cells, respectively, and the major histocompatibility complex 
(MHC). Molecular studies have shown that adaptive immunity 
arose early on vertebrate evolution, between the divergences of 
cyclostomes (lampreys) and cartilaginous fish, around 450 million 
years ago, by diversification and recombination of gene clusters 
on a span of time of 20 million years (36). This event is known as 
the “big bang” theory of the appearance of the adaptive immune 
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TaBle 2 | Functional relation of the tumour necrosis factor receptor superfamily (TNFRSF) and their cognate ligands (TNFSF).

Name Gene ligands immune functions Reference

LTβR Tnfrsf3 LTβ Development and organization of lymphoid tissues (14)
TNFR1 Tnfrsf1A LTα, TNF-α Development of lymphoid tissues

B and T cell activation
(15)

TNFR2 Tnfrsf1B LTα, TNF-α T cell activation
Fn14 Tnfrsf12 TWEAK Inflammation

Angiogenesis
(16)

HVEM Tnfrsf14 LTα, LIGHT T cell homeostasis (17)
DcR3 Tnfrsf6B FasL, LIGHT, TL1A Inhibition of FasL and LIGHT mediated apoptosis of T cells (18)
Fas Tnfrsf6 FasL T cell homeostasis (death)

T cell co-stimulation
(19)

GITR Tnfrsf18 GITRL T cell survival and activation (20)
CD40 Tnfrsf5 CD40L (CD154) T cell-mediated activation of B cells and dendritic cells (DCs) (21)
OX40 Tnfrsf4 OX40L B and T cell activation (22)
TRAILR1 Tnfrsf10A TRAIL T cell and natural killer cell-mediated tumor surveillance

Apoptosis of tumoral cells

Regulation of T cell functions

(23)
TRAILR2 Tnfrsf10B
TRAILR3 Tnfrsf10C
TRAILR4 Tnfrsf10D
RANK Tnfrsf11A RANKL B cell and DC maturation (24)
OPG Tnfrsf11B RANKL

TRAIL
Lymph node formation
Bone homeostasis

(25)

BAFFR Tnfrsf13C BAFF B cell maturation and survival (26)
BCMA Tnfrsf17 BAFF, APRIL Plasma cell survival (27)
TACI Tnfrsf13B BAFF, APRIL T-independent B cell responses (28)
CD27 Tnfrsf7 CD70 B cell and T cell activation (29)
4-1BB Tnfrsf9 4-1BB-L T cell survival and activation (30)
CD30 Tnfrsf8 CD153 B cell and T cell activation (31)
TROY Tnfrsf19 Unknown Development of ectoderm-derived tissues (32)
EDAR Edar EDA-A1
XEDAR Xedar EDA-A2
DR3 Tnfrsf25 TL1A T cell co-stimulation (33)
DR6 Tnfrsf21 APP Induction of neuronal death (34)
RELT Tnfrsf19L Unknown Co-stimulation of T cells (35)

TNFRSF containing a death domain are underlined. Main immune functions known for each TNFRSF are also indicated, together with the references describing their functions in 
mammals.
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response, since it occurred in the very short period of time in 
which jawed fish appeared and is thought to be linked to genome 
duplication events (37). Thus, jawed fish were the most ancient 
animal group where all these elements were found, while jawless 
fish (Agnathans) seemed to have none of them (38). However, the 
posterior discovery of a lymphoid cell-based adaptive immune 
system in Agnathans, in which immune receptors recombined 
in a similar way to that of the BCR (39), pushed the origin of 
the adaptive immune response earlier in evolution. Despite this, 
the “big bang” theory for the origin and development of acquire 
immunity still prevails.

Interestingly, Collette et al. postulated that the divergence of 
the TNFSF and TNFRSF members parallels the emergence of 
the adaptive immune response (7). Since 11 out of the 19 human 
TNFSF members are clustered within the MHC and paralogous 
regions on chromosomes 1, 6, 9, and 19, the authors suggest that 
this disposition might be a consequence of the ancestral arrange-
ment of a proto-TNFSF cluster, before en bloc duplication of 
the proto-MHC region in a vertebrate ancestor 500–800 million 
years ago (40). Remarkably, the different number of TNFSF 
and TNFRSF members found in the different species within 
vertebrates correlates with the number of rounds of genome 
duplication during evolution (4), thus supporting the idea that 
genome duplication created paralogous clusters. This hypothesis 

is further supported by phylogenetic analysis that indicates an 
ancient evolutionary origin of TNFSF ligand and receptor genes 
that precedes the appearance of vertebrates (7, 41).

As many invertebrate and vertebrate genomes are now 
available, the discovery of TNFSF and TNFRSF orthologs and 
paralogs has greatly increased. Consequently, recent phylogenetic 
studies on invertebrate TNFSF ligands and receptors have been 
key to better understand the appearance of TNF molecules in 
metazoans and to further support the hypothesis of their diver-
gent evolution [reviewed in Ref. (4)]. The most primitive TNF 
superfamily member that has been functionally characterized 
is Eiger, a TNFSF homolog found on the fruit fly (Drosophila 
melanogaster) (42). Eiger binds to a cognate TNFRSF member, 
called Wengen, which contains an intracellular death domain, 
thus inducing cell death through the activation of signaling path-
ways similar to those activated by mammalian TNFRSFs (43, 44). 
A TNFSF member named MjTNF has also been characterized 
in another invertebrate, the marine arthropod kuruma shrimp 
(Marsupenaeus japonicas) (45). This protein contains a predicted 
transmembrane region and a THD, and shares 30.7% sequence 
identity with Drosophila Eiger. Two molluscan TNFSF members 
containing transmembrane regions and THDs were identified 
in the disk abalone, Haliotis discus discus. One was designated 
AbTNF-α (46) and the other AbFas ligand (47). Within the 
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genome of the equinoderm purple sea urchin (Strongylocentrotus 
purpuratus), four different TNFSF genes have been found, identi-
fied as potential gene orthologs of TNFSF14 (LIGHT), TNFSF15 
(TL1A), and two separate genes resembling EDA (48, 49). In par-
allel, several TNF superfamily receptors were also identified on 
these invertebrate organisms [summarized in Ref. (4)]. As most 
of the invertebrate TNFSF members are constitutively expressed 
and most TNFRSFs are phylogenetically related to EDAR, a 
major role in development and organogenesis with restricted 
immunoregulatory properties is foreseen in these organisms.

By contrast, in teleost fish, the first animal group comprising 
all the elements of the adaptive arm of the immune system, a 
diversification of the TNFSF and TNFRSF has occurred. To date, 
13 different TNFSF and 13 TNFRSF homologs have been identi-
fied, together with new members of the TNFSF that are novel 
to this animal group (4, 41, 50–54) supporting the hypothesis of 
a diversification of the TNF superfamily with the appearance of 
the adaptive immune response. Interestingly, recent studies in 
sarcopterygian fish (African lungfish) revealed a different TNFSF 
and TNFRSF gene pattern to that seen in teleost (55). African 
lungfish is an extant representative of the closest ancestral line-
age to all tetrapods that presents organized lymphoid structures 
which cannot be found in other fish species (56). Several TNFSF 
were reported in this study, but additional analyses are needed to 
further characterize their identity and functionality. In parallel, 
many TNFRSF members were identified, and although most of 
them were present in both teleost and lungfish, only the latter 
presented homologue sequences for the TNF receptors HVEM 
(TNFRSF14), 4-1BB (TNFRSF9), and OPG (TNFRSF11B) (55). 
These TNF superfamily members have been shown to regulate 
T cell homeostasis and activation, as well as development of lym-
phoid structures, such as lymph nodes (LNs) (15, 17, 25, 30, 31). 
These results suggest that an expansion of TNF molecules could 
have occurred in the African lungfish, conferring a phenotypical 
advantage that was positively selected, thus leading to the appear-
ance of organized lymphoid structures, which might play a key 
role on T cell activation. Therefore, throughout the evolution of 
vertebrates, the expansion of TNFSF and TNFRSF has led to the 
appearance of new members involved in the regulation of novel 
immune functions (4, 57), which were coopted under selective 
pressure, being this crucial for the evolution of the adaptive 
immune system (7, 41).

ROle OF TNFSF liGaNDS ON  
B Cell ReGUlaTiON

In mammals, many TNFSF ligands have been shown to play 
essential roles on the regulation of the functionality of B  cells. 
These TNFSF ligands may influence all aspects of B cell biology 
from development, maturation, survival, proliferation, activation, 
and differentiation [reviewed in Ref. (58)] (Figure 1), thus play-
ing a fundamental role on B cell-mediated immune responses.

Among TNFSF members, BAFF (TNFSF13B) and APRIL 
(TNFSF13) are probably the cytokines that seem to play a 
prevailing role on the regulation of B cell activity [reviewed in  
Ref. (59)]. These two cytokines exist as membrane-bound and 

soluble forms, being both forms biologically active (60). Both 
BAFF and APRIL bind to and signal through BCMA (TNFRSF17) 
and TACI (TNFRSF13B), whereas BAFF also binds to BAFFR 
(TNFRSF13C). These receptors are mainly expressed in B cells, 
and their specific activation leads to different outcomes of the 
B  cell response (61). BAFF-mediated survival signals through 
BAFFR are necessary for immature B  cells to become mature 
circulating B cells and for peripheral B cell survival (62). These 
signals regulate the size of the B cell compartment, especially that 
of conventional B2 cells, since the absence of BAFF does not affect 
the maturation or survival of innate-like B cells, such as marginal 
zone (MZ) or B1 cells (63). In fact, there is some evidence to 
suggest that the maintenance of the B1 B  cell compartment is 
controlled by APRIL signaling through TACI (64, 65), which is 
highly expressed on the surface MZ B cells and B1 cells (66). In 
this context, BAFF and APRIL signaling through TACI have been 
shown to induce class-switch recombination (CSR) in response to 
thymus-independent (TI) antigens (Ags) (28).

Other TNFSF members can induce CSR on B cells in response 
to thymus-dependent (TD) Ags; such as, for example, CD40L 
(TNFSF5) and OX40L (TNFSF4) (21, 22). CD40L is expressed 
mainly by activated T cells during TD responses, thus mediating 
the co-stimulation of BCR-activated B  cells, which express the 
receptor CD40 (TNFRSF5), usually within the germinal center 
(GC). As a consequence, co-stimulated B cells in the GC enhance 
their proliferation and undergo somatic hypermutation (SHM) to 
increase their affinity and CSR to switch from producing IgM to 
producing immunoglobulin isotypes with higher Ag affinity such 
as IgA, IgE, or IgG [reviewed in Ref. (21)]. In this context, part 
of these CD40L-induced proliferating B cells also differentiates 
to antibody (Ab)-secreting plasma cells (PCs), since CD40L and 
IL-21 synergistically induce the expression of B lymphocyte-
induced maturation protein-1 (67), a transcription factor which 
is the master regulator of terminal differentiation to PCs (68). 
Moreover, BAFF and APRIL signaling through BAFFR and 
TACI can contribute to enhance PC differentiation triggered by 
CD40L (69). On terminally differentiated PCs, signaling through 
BCMA is highly expressed on PCs and is needed to promote their 
survival (70). Both BAFF and APRIL can signal through BCMA, 
although it shows much higher affinity for APRIL than BAFF 
(71). Concerning OX40L, this cytokine is expressed mainly on 
activated B cells while its receptor OX40 is expressed on activated 
CD4+ T cells. Their interaction triggers a bidirectional co-stimu-
lation of both B and T cells during TD responses. Furthermore, 
cross-linking of OX40L on B cells by OX40 has been shown to 
greatly enhance B cell proliferation and Ig production (22).

One of the most studied TNFSF members is TNF-α, a well-
known pro-inflammatory cytokine able to promote cell death (72). 
However, TNF-α has also been shown to play an important role on 
B cell functionality (73). TNF-α binds to two different receptors, 
TNFR1, which is ubiquitously expressed on almost all cell types, 
and TNFR2, whose expression is limited to the central nervous 
system and the immune system, especially found on T cells (15). 
TNF-α expression is rapidly and strongly upregulated in vitro or 
in  vivo in the presence of many types of Ags or inflammatory 
mediators (15). In addition, TNF-α is produced by T cells after 
TCR engagement (74) and by B cells after TI BCR cross-linking 
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FiGURe 1 | Roles of the TNFSF on B cell functions. Known interactions between ligands and receptors are indicated with solid lines, or dashed lines if the 
interactions are of weak affinity. Abbreviations: Ab, antibody; CSR, class-switch recombination; GC, germinal center; TD, thymus dependent; TI, thymus 
independent.
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and also after CD40 ligation by T cell-derived CD40L (75). In this 
context, TNF-α provides co-stimulatory signals which increase 
the proliferation and Ab production of B cells after Ag encounter, 
being very important for the polyclonal expansion needed within 
primary responses (15).

After BCR engagement, expression of CD70 (TNFSF7) is also 
induced on B cells. Ligation of CD70 with its ligand CD27 deliv-
ers signals to enhance proliferation, inhibit B cell differentiation 
to PCs, trigger SHM, and promote the generation of memory 
B cells (76). However, it has also been shown that ligation of CD70 
in the presence of co-stimulatory T cell signals such as CD40L 
can promote B cell differentiation into Ab-producing PCs (77).

Recent studies have shown that BCR cross-linking increases 
the sensitivity of B  cells to TRAIL (TNFSF10)-mediated cell 
death. It has been demonstrated that this effect can be reverted 
by ligation of CD40 on B cells, while B1 cells, which are involved 
in TI responses showed very high sensitivity to TRAIL-induced 
death. These data suggested that TRAIL is involved in B cell dif-
ferentiation and survival at the GC reaction, and in Ab affinity 

maturation (78). Another member playing a similar role is Fas 
ligand (FasL) (TNFSF6), which induces apoptosis after ligation 
of its receptor (Fas) on the surface of the target cell (79). BCR 
activation induces the expression of Fas on the surface of B cells, 
making them more susceptible of FasL-mediated apoptosis. 
During the GC reaction, CD40 ligation protects B  cells from 
Fas-induced apoptosis, thus contributing to the selection of 
B  cells bearing a high-affinity BCR (80). LTβ has also been 
demonstrated to play an important role in the formation of 
GCs and also on Ab affinity maturation (81). Finally, CD153 
(TNFSF8) also plays a role on B  cells since the binding to its 
receptor (CD30) on T cells modulates B cell differentiation and 
CSR mediated by reverse signaling induced by CD30+ activated 
T cells (82).

THe aDaPTive iMMUNe SYSTeM iN FiSH

The adaptive immune system, characterized by an Ag-specific 
combinatorial immune response (36), first appeared in jawed fish. 
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Thus, evolutionarily, cartilaginous fish (sharks, skates, and rays) 
are the first animal group in which the adaptive immune system, 
based on immunoglobulin superfamily members, namely, BCR, 
TCR and MHC, and RAG 1 and 2 genes are present (38).

Due to the anatomical differences between fish and mammals 
(i.e., humans), significant differences are found in the distribu-
tion and functionality of primary and secondary lymphoid 
organs, such as the absence of LN or bone marrow (BM) in 
fish (56, 83). The fish spleen functions as the major secondary 
lymphoid organ, as it happens in mammals, and since fish lack 
LN, the spleen has been shown as the most important tissue for 
Ag trapping (84).

Regarding hematopoiesis, fish do not have a conventional BM 
as it is described in the mammalian immune system. In cartilagi-
nous fish, the Leydig organ and the epigonal organ are believed 
to be the equivalents of mammalian BM (85). Both are reticular 
structures that contain large numbers of immature leukocytes, 
including neutrophils, eosinophils, and other granulocytes, as 
well as lymphocyte aggregates with scattered PCs. Either one or 
both of these tissues have been demonstrated to be present in all 
cartilaginous species examined (83). The expression of RAG-1 
and B-cell-specific transcription factors strongly supports a 
lymphopoietic role for these tissues (86). In the case of bony fish 
(teleost), the anterior part of the kidney (head kidney/anterior 
kidney) has no renal functions and has been shown to assume 
hematopoietic functions (87). B cell development at the anterior 
kidney has been proven by the expression of RAG-1/2 (88, 89), 
TdT (90), and the transcription factor Ikaros (91), and the pos-
terior cellular analysis defining the B cell subsets residing within 
the kidney (92). As in mammalian BM (93), anterior kidney also 
stores Ig-secreting long-lived PCs (94).

The thymus is similar to that found in mammals, composed by 
a cortex and a medulla, and is responsible for the production of 
T cells (95). TCR cell surface expression has been shown in teleost 
(96) but remains to be described in cartilaginous fish. However, 
the expression of all the TCR genes identified in mammals (α, β, 
δ, and γ) has been reported in cartilaginous fish (97).

FiSH B CellS

B cells are one of the most important elements of the adaptive 
immune response, since they are able to produce specific high-
affinity immunoglobulins against pathogens (Abs), and also 
generate memory B cells which will protect the organism against 
future infections (98). In fish, there are important differences 
concerning the isotypes of immunoglobulins produced by B cells 
in comparison to mammals.

Cartilaginous fish B  cells produce three types of immuno-
globulins IgM, IgW, and IgNAR (immunoglobulin new antigen 
receptor) (38). In these species, IgM is orthologous to mammalian 
IgM, while IgW has been postulated as the orthologous of mam-
malian IgD (99), although its function is still unknown. IgNAR is a 
shark-specific heavy chain (H) homodimer which does not associ-
ate with light chains (L) (100). IgNAR is produced by a different 
B cell subset than that expressing IgM and although the specific 
function for IgNAR remains unclear, IgNAR responses have been 
shown to be TD and show high specificity for the Ag (101).

Teleost fish species produce three types of Igs, namely, IgM, 
IgD, and IgT/Z (102). The latter was first described in 2005 in 
both rainbow trout (Oncorhynchus mykiss) (designated as IgT 
for teleost) (103) and in zebrafish (Danio rerio) where it was 
designated as IgZ (104). Since then, it has been described in most 
teleost species (105, 106), while it seems absent in others such as 
channel catfish (Ictalurus punctatus) and medaka fish (Oryzias 
latipes) (107). While the most abundant B cell type in the main 
lymphoid organs in teleost is IgD+IgM+, as it has been described 
for mammalian naïve mature B cells (108), IgT+ B cells constitute 
a different lineage in teleost, which do not co-express any other 
surface Ig (109). These cells are more abundant in mucosal 
surfaces than in the main lymphoid organs and consequently 
IgT-expressing B cells have been cataloged as B cells specialized 
in mucosal responses (109–111). Despite this, IgT responses 
have also been reported outside the mucosal compartments, 
thus the function of IgT in teleost immune responses is still 
largely unknown. In addition, IgD+IgM− (IgD single) cells have 
been identified in rainbow trout gills (112) and channel catfish 
blood (113) although their function is still unknown. Moreover, 
IgD−IgM+ (IgM single) cells exhibiting an antibody-secreting cell 
(ASC) phenotype have been shown to inhabit in the peritoneal 
cavity of vaccinated rainbow trout (114). These observations sug-
gest that the B cell compartment in fish is composed by different 
cell subsets which most probably differ in functionality and/or 
cytokine-mediated regulation.

Interestingly, teleost B cells have been shown to possess strong 
phagocytic and microbicidal activities (115). It was later shown 
that is ability is preserved in mammalian innate B1 cells from 
the peritoneal cavity of mice (116) strongly suggesting that 
fish B  cells are less evolved than mammalian B2 cells and still 
retain features of the innate immune system, which could be 
consistent with a posterior appearance of specific B1 and B2 B cell 
lineages throughout evolution. Further evidence supporting this 
hypothesis has been collected from studies showing the capacity 
of fish B cells to respond to pro-inflammatory stimuli (117), the 
expression of innate B  cell markers CD9 and CD63 (118) and 
toll-like receptors (TLRs) (119) or the synthesis of antimicrobial 
peptides (117).

TNFSF liGaNDS iN FiSH: aT THe DawN 
OF aCQUiReD iMMUNiTY?

As mentioned earlier, Collette et al. proposed that the divergence 
of the TNFSF and TNFRSF families parallels the emergence of 
the adaptive immune system, after performing a detailed analysis 
of the phylogenetic relations between the TNFSF and TNFRSF 
members of invertebrate and vertebrate species (7). As the 
identification of TNFSF orthologs and paralogs in fish has been 
rapidly increasing in the recent years, as can be inferred from 
the work undertaken by Glenney and Wiens (4, 41), studying the 
function of these cytokines and their receptors in fish is becoming 
a fascinating research topic to better understand the evolution 
and regulation of the adaptive immune system. In this review, we 
illustrate the information available regarding the effect of TNFSF 
ligands in fish, focusing specifically on those with a presumed 
role on fish B cells.
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B Cell-aCTivaTiNG FaCTOR OF THe 
TNF FaMilY

The homologue sequences to mammalian BAFF have been 
reported in many teleost fish species including rainbow trout (41),  
zebrafish (120), mefugu (Takifugu obscurus) (121), Japanese sea 
perch (Lateolabrax japonicus) (122), grass carp (Ctenopharyngodon 
idella) (123), yellow grouper (Epinephelus awoara) (124), miiuy 
croaker (Miichthys miiuy) (125), tongue sole (Cynoglossus 
semilaevis) (126), Nile tilapia (Oreochromis niloticus) (127), rock 
bream (Oplegnathus fasciatus) (128), and also in cartilaginous 
fish such as white-spotted catshark (Chiloscyllium plagiosum) 
(129), spiny dogfish (Squalus acanthias) (130), and small-spotted 
catshark (Scyliorhinus canicula) (131) (summarized in Table 3). 
Interestingly, some studies have revealed that many cartilaginous 
and bony fish species have more than one BAFF gene (51, 54), rep-
resenting two distinct groups. In mammals, BAFF is considered 
the master regulator of B cell development and function. Besides 
having been identified in many cartilaginous and bony fish spe-
cies, it has been found in all vertebrate groups including birds, 
amphibians and reptiles (132), suggesting that BAFF has been 
essential throughout evolution for the development of peripheral 
mature B cells.

Recombinant BAFF proteins have been generated in some 
of these fish species, such as, for example, the cartilaginous fish 
white-spotted catshark (129), and the teleost zebrafish (120), 
fugu (121), Japanese sea perch (122), yellow grouper (124), 
tongue sole (126), rock bream (128), or tilapia (127), to carry 
out functional studies. These studies have proven an increase 
on the number of leukocytes mediated by BAFF, although the 
authors did not clarify whether this was due to a promotion of 
cell survival or an increase on cell proliferation, and they did 
not demonstrate if the surviving/proliferating fish leukocytes 
were in fact B cells. In some of these studies, the authors tested 
the effect of recombinant BAFF on mouse splenic B  cells co-
stimulated with anti-IgM (120, 121, 124, 127, 129). In all these 
experiments, fish recombinant BAFF promoted the survival of 
mouse B  cells, which indicates that the molecular mechanism 
underlying BAFF-mediated B cell survival is preserved through-
out species, from cartilaginous fish to mammals. However, 
specific studies on the impact of BAFF on B  cells from lower 
vertebrates are needed to reveal new aspects about the evolution 
of B  cell homeostasis and activation. Recent studies from our 
group showed the role of BAFF on teleost B cells, using rainbow 
trout as a model (53, 159). In these studies, we determined that 
teleost BAFF recapitulated mammalian BAFF regulatory aspects 
on B  cells. Teleost BAFF promoted the survival of B  cells but 
did not induced significant proliferation, and also increased the 
levels of ASCs which consequently increased IgM secretion and 
upregulated the expression of surface MHC II, in a similar trend 
to that seen in mammals (132). The similarity between teleost 
and mammalian BAFF functions strengthens the hypothesis of 
BAFF as a key master regulator of B cell functionality throughout 
evolution. In mammals, BAFF is produced by macrophages, DCs, 
stimulated neutrophils, and at low levels by T cells, but is never 
produced by resting B cells (60, 160, 161). Strikingly, one of our 
findings was that not only myeloid cells produced BAFF but also 

that specific subsets of splenic and peritoneal B cells were able to 
produce BAFF in rainbow trout (53, 159). Interestingly, in mam-
mals, B cells from B-cell chronic lymphocytic leukemia (162) or 
non-Hodgkin’s lymphoma (163), as well as B cells from patients 
with autoimmune disorders, namely, rheumatoid arthritis (164), 
systemic lupus erythematosus (165), and primary Sjogren’s 
syndrome (166) also express BAFF, which rescues them from 
apoptosis in an autocrine loop. Thus, our studies seemed to have 
revealed a primitive mechanism through which B  cells would 
produce BAFF at the steady-state to regulate their homeostasis 
and function in teleost. It seems that this regulatory mechanism 
throughout evolution was later assumed by other immune 
myeloid cells, probably after the appearance of lymphoid follicles, 
although in mammals, it can reemerge in various B cell disorders 
such as autoimmune diseases (ADs) or B cell malignancies. In 
a parallel study, we were also able to report for the first time an 
upregulation of BAFF transcription in peritoneal IgM+ B  cells 
from fish immunized intra-peritoneally (i.p.) with viral hemor-
rhagic septicemia virus (VHSV) (114). In addition, it has been 
very recently shown that in  vivo transgenic overexpression of 
BAFF induced an increased production of IgD, IgM, and IgZ in 
zebrafish (167). This implies that BAFF is not only involved on 
the homeostasis of peripheral B cell compartments but also plays 
an important role on the activation of different B  cell subsets 
present in teleost.

a PROliFeRaTiON-iNDUCiNG liGaND

Although APRIL is probably the most important B cell-regulat-
ing TNFSF together with BAFF, very little is known about fish 
APRIL. In fact, although BAFF homologs have been identified 
in many cartilaginous and bony fish (summarized in Table 3), 
only a few APRIL homologue sequences have been found in 
teleost, specifically in zebrafish, channel catfish, Atlantic salmon, 
rainbow trout (41), and grass carp (134) (Table 3). In addition, 
while BAFF is present in all vertebrates, APRIL is missing in 
cartilaginous fish, birds, and several bony fish (168). This has 
encouraged evolutionary immunologists to hypothesize that 
since BAFF and APRIL have structural and functional similari-
ties and share receptors, the absence of APRIL on cartilaginous 
fish or the loss of APRIL in avian species could have been 
functionally compensated by BAFF. From the functional point 
of view, teleost APRIL has been shown to be mostly expressed in 
lymphoid tissues (spleen, head kidney) as well as in some mucosal 
tissues (skin, intestine) but at very low levels (41, 114, 134).  
After a bacterial or a viral challenge, the transcription of APRIL 
was quickly upregulated in immune tissues of grass carp (134), 
and recombinant APRIL promoted the survival of total spleno-
cytes in zebrafish (169), indicating that this TNF ligand plays 
some role on the activation of the immune response. In addition, 
a study by our group showed that APRIL promoted the survival 
of peritoneal IgM+ B cells in rainbow trout (114). Since APRIL 
signaling through BCMA is key for the survival of PCs (70), it 
is tempting to hypothesize that those teleost species in which 
APRIL is found to have obtained a phenotypical advantage, the 
long-term survival of peripheral subsets of Ab-secreting PCs, 
that would have been positively selected.
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TaBle 3 | B cell-regulating TNFSF ligand members identified to date in fish.

TNFSF ligand Species (common name) Gene name Reference

BAFF (TNFSF13b) Oncorhynchus mykiss (rainbow trout) OmBAFF (41)
Tetraodon nigroviridis (spotted green pufferfish) Tn_BAFF (41)
Danio rerio (zebarfish) zBAFF (120)
Takifugu obscurus (mefugu) fBAFF (121)
Chiloscyllium plagiosum (white-spotted catshark) CpBAFF (129)

Lateolabrax japonicus (Japanese sea perch) LjBAFF (122)
Squalus acanthias (spinny dogfish) SaBAFF (130)
Ctenopharyngodon idella (grass carp) gcBAFF (123)
Epinephelus awoara (yellow grouper) EaBAFF (124)
Miichthys miiuy (miiuy croaker) MmBAFF (125)
Takifugu rubripes (Japanese pufferfish) FuguBAFF1

FuguBAFF2
(133)

Scyliorhinus canicula (small-spotted catshark) ScBAFF (131)
Cynoglossus semilaevis (tongue sole) CsBAFF (126)
Oreochromis niloticus (Nile tilapia) tBAFF (127)
Oplegnathus fasciatus (rock bream) RbBAFF (128)

APRIL (TNFSF13) O. mykiss (rainbow trout) Om_APRIL (41)
Salmo salar (Atlantic salmon) Ss_APRIL (41)
Ictalurus punctatus (channel catfish) Ip_APRIL (41)
D. rerio (zebrafish) Cr_APRIL (41)
C. idella (grass carp) gcAPRIL (134)

BAFF- and APRIL-like molecule O. mykiss (rainbow trout) Om_BALM (41)
T. nigroviridis (spotted green pufferfish) Tn_BALM (41)
T. rubripes (Japanese pufferfish) Fr_BALM (41)
Gasterosteus aculeatus (three spine stickleback) Ga_BALM (41)

CD40L (TNFSF5) O. mykiss (rainbow trout) Om_CD40L (41)
S. salar (Atlantic salmon) Ss_CD40L (41)
D. rerio (zebrafish) Cr_CD40L (41)

T. nigroviridis (spotted green pufferfish) Tn_CD40L (41)
T. rubripes (Japanese pufferfish) Fr_CD40L (41)
G. aculeatus (three spine stickleback) Ga_CD40L (41)
S. canicula (small-spotted catshark) ScCD40L (131)

OX40L (TNFSF4) N/A

TNF-α (TNFSF2) Paralichthys olivaceus (Japanese flounder) Japanese flounder TNF (135)
O. mykiss (rainbow trout) OmTNF1

OmTNF2
TNFα3

(136–138)

Sparus aurata (gilthead seabream) Seabream TNF-α (139)
I. punctatus (channel catfish) Catfish TNF-α (140)
Cyprinus carpio (common carp) Carp TNF-1α

Carp TNF-2α
Carp TNF-3α

(141, 142)

Psetta maxima (turbot) Turbot_TNF-α (143)
Dicentrarchus labrax (sea bass) sb TNF-α (144)
Siniperca chuatsi (mandarin fish) Mandarin fish TNF-α (145)
S. salar (Atlantic salmon) TNF-α1

TNF-α2
(146)

Carassius auratus (goldfish) TNF-α1
TNF-α2

(147)

Latris lineata (striped trumpeter) Striped trumpeter TNF-alpha (148)
Thunnus orientalis (bluefin tuna) TNF1

TNF2
(149)

C. semilaevis (tongue sole) CsTNF1 (150)

CD70 (TNFSF7) N/A

CD153 (TNFSF8) N/A

LTβ (TNFSF3) D. rerio (zebrafish) TNF-N (142)
T. rubripes (Japanese pufferfish) TNF-N (142)
O. mykiss (rainbow trout) Trout LT-β1

Trout LT-β2
(50)

Oryzias latipes (medaka) Tnf-n (151)

(Continued)
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BaFF- aND aPRil-liKe MOleCUle 
(BalM)

Searching through the rainbow trout EST databases, Glenney 
and Wiens reported in 2007 the identification of an additional 
sequence with high similarity values with BAFF but containing 
a D–E loop characteristic of APRIL, which was subsequently 
designated BALM. This new TNFSF ligand was also found in fugu 
and three spined stickleback (41). This study also determined that 
BALM gene was mainly expressed in lymphoid tissues. In a more 
recent study, BALM orthologs have been found in cartilaginous 
fish (168) (Table 3), in addition to a BAFF-like sequence show-
ing homology to BAFF, APRIL and BALM present in lampreys 
(168). In this study, the authors described that BALM is absent 
in all tetrapods, and there is a selective deletion of this gene in 
zebrafish. These data point to BALM as an ancestral BAFF-like 
ligand, which appeared early in evolution and was then lost when 
BAFF and APRIL acquired divergent functions. However, the 
presence of an ancient BAFF-like homolog in lampreys indicates 
that further research is needed to classify these closely related 
TNFSF members, and clarify their evolution and biological 
functions. From the functional point of view, it has been shown 
that teleost BALM can promote B cell survival and proliferation 
in rainbow trout kidney (170). Moreover, its transcription is 
upregulated on peritoneal lymphocytes after i.p. administration 
of VHSV (114), and it has also been demonstrated that there is 
a significant correlation between the expression of BALM and 
the progress of the proliferative kidney disease in rainbow trout 
(170). Although very little is yet known about this ligand, these 
data indicate that it plays a very important role in the activation 
of B cells on the responses against different types of pathogens in 
lower vertebrates.

CD40l aND OX40l

CD40L homologue sequences have been identified in several 
teleost species, such as rainbow trout, Atlantic salmon, zebrafish, 
fugu, and spotted green pufferfish (41) and more recently in one 
cartilaginous fish, the small-spotted catshark (131) (summarized 
in Table 3). In teleost, CD40L is mainly expressed in spleen, head 
kidney, and gills from resting animals (41, 171, 172). Furthermore, 
T cell mitogens such as PHA and ConA upregulated the transcrip-
tion of CD40L on the spleen, head kidney, and gills of Atlantic 
salmon suggesting these may be special locations for T-B  cell 
cooperation during TD immune responses (172). Interestingly, 
the production of CD40L by T cells was significantly increased 
in zebrafish immunized with TD Ags, and the upregulation of 
CD40L in vivo increased the levels of serum IgM on those animals 
(171). This last set of data by Yong-Feng Gong et  al. elegantly 
demonstrated that the interaction between T and B cells through 
ligation of CD40 elicits TD immune responses in fish. Studies 
on the small-spotted catshark paralleled these results, showing 
that CD40L was mainly expressed in the spleen, as well as in the 
mucosal tissues, such as gills and gut (131). The transcription of 
CD40L was significantly upregulated after the addition of T cell 
polyclonal activators to cultures of PBL in vitro. Altogether, these 
data suggest that CD40L produced by T cells plays a very impor-
tant role on TD immune responses. Since fish lack LNs and do not 
form lymphoid follicles, it would be of great interest to study how 
and where T–B cell interactions take place to better understand 
the evolutionary origins of TD immune responses.

To date, only one sequence with certain homology to OX40L 
has been reported in zebrafish (41), designated as Dr_TNF-New. 
This sequence was most similar to human OX40L and to Xenopus 
TNF-α. However, to the light of these results, it cannot be stated 

TNFSF ligand Species (common name) Gene name Reference

FasL (TNFSF6) D. rerio (zebrafish) zFasL (152)
O. mykiss (rainbow trout) Om_FasL (41)
T. rubripes (Japanese pufferfish) Fr_FasL (41)
T. nigroviridis (spotted green pufferfish) Tn_FasL (41)
P. olivaceus (Japanese flounder) FasL (153)
O. niloticus (Nile tilapia) tFasL (154)
O. fasciatus (rock bream) FasL (155)

TRAIL (TNFSF10) Eptatretus burgeri (inshore hagfish) hgTRAIL (156)
C. idella (grass carp) GC-TRAIL (157)
D. rerio (zebrafish) Dr_TRAIL-like v1

Dr_TRAIL-like v2
Dr_TRAIL-like v3
Dr_TRAIL-like v4

(152)

O. mykiss (rainbow trout) Om_TRAIL-like (41)
T. nigroviridis (spotted green pufferfish) Tn_TRAIL-like v1

Tn_TRAIL-like v2
(41)

Siniperca chuatsi (mandarin fish) SCTRAIL (158)
T. rubripes (Japanese pufferfish) TRAIL-1

TRAIL-2
TRAIL-3

(133)

The species and the name for each species gene are underlined text refers to cartilaginous fish species. References are also annotated.
N/A, non-available.

TaBle 3 | Continued
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that true OX40L homologs exist in fish, and further studies are 
required its existence. In mammals, cross-linking of OX40L on 
B cells by OX40 expressed on activated CD4+ T cells promotes 
B cell proliferation (22). Since fish B cells seem to maintain many 
functions of innate B1 cells, and B–T cell interaction might be less 
abundant than that seen in mammals, it is tempting to hypoth-
esize that the absence of OX40L in fish may be compensated by 
CD40L on the development of TD immune responses.

TNF-α
TNF-α is probably the most studied TNFSF ligand, due to its 
potential roles in development, cell proliferation, apoptosis, 
inflammation, and immunity [reviewed in Ref. (173)]. Hirono 
et  al. first described a fish homolog of TNF-α in the Japanese 
flounder (135). Since then, TNF-α homologs have been identified 
in a plethora of teleost species (summarized in Table 3), such as 
Japanese flounder (135), sea bream (139), channel catfish (140), 
turbot (143), sea bass (144), mandarin fish (145), striped trum-
peter (148), tongue sole (150), Atlantic salmon (146), goldfish 
(147), bluefin tuna (149), common carp (141, 142), and rainbow 
trout (136–138).

Interestingly, several teleost species present multiple isoforms 
of TNF-α. Two copies were initially found in rainbow trout (137) 
and four within the common carp (141, 142). Given that both 
species are tetraploid, the presence of multiple TNF-α isoforms 
was not surprising. However, with the discovery of at least two 
TNF-α genes within non-tetraploid fish species, such as bluefin 
tuna (149), orange-spotted grouper (174), zebrafish, and medaka 
(151), it has become clear that teleost have two different groups 
of TNF-α genes. Furthermore, the analysis of the zebrafish and 
medaka genomes (151) showed that members from the two dif-
ferent groups of TNF-α genes were found on different chromo-
somes, with conserved genes around them, thus indicating that 
the presence of these two groups is a consequence of a duplication 
event that occurred within bony fish.

Although both groups of TNF-α molecules can be found in 
various fish genomes, the role played by them in the immune 
response remains to be determined. On those species contain-
ing a single copy, it has been shown that TNF-α is ubiquitously 
expressed in all tissues analyzed from unstimulated fish such as 
Japanese flounder, sea bream, or mandarin fish (135, 139, 145). 
Results regarding the activation of TNF-α expression after treat-
ment with lipopolysaccharide (LPS) were consistent between 
species; as its expression on the head kidney was significantly 
upregulated after treatment with LPS both in vitro and in vivo. 
Although TNF-α expression was also upregulated in response 
to viral or bacterial infections, some differences between spe-
cies have been observed. For example, in turbot, virus induced 
higher TNF-α expression than bacteria in kidney cells (although 
the response was shorter in time) (143), while a very recent 
study showed the opposite result in tongue sole kidney, spleen, 
and blood cells from virus or bacteria immunized virus (150). 
In any case, macrophage-driven inflammation was activated in 
both studies. This suggests that although TNF regulation seems 
to be very similar among fish species, the interaction between 
host and pathogen might shift the spatiotemporal expression of 

TNF-α, to adapt the response to each specific pathogen. A nice 
example of this can be seen in the three striped trumpeter, which 
in response to the infection with the ectoparasite Chondracanthus 
goldsmidi significantly upregulates the expression of TNF-α not 
only in the head kidney but also in the gills, the attachment site of 
the parasite (148), thus demonstrating the adaptation of the host 
response to different pathogens.

Regarding the species that present two copies of TNF-α, some 
differences were found for such isoforms on each species. Both 
TNF-α1 and TNF-α2 were constitutively expressed in a number 
of tissues of healthy Atlantic salmon (146). However, incubation 
of head kidney leukocytes with bacteria upregulated the expres-
sion of TNF-α2 but not TNF-α1, suggesting different activation 
pathways for each TNF molecule. In goldfish, TNF-α2 showed 
higher expression levels than TNF-α1, and TNF-α2 was also able 
to activate primary macrophages (147). Something similar was 
observed in bluefin tuna, where TNF-α2 mRNA was significantly 
higher than TNF-α1 in blood leukocytes (149). In addition, the 
expression of TNF-α2 was increased by stimulation with B cell, 
T cell, or macrophage activators, while the expression of TNF-α1 
was not affected. These observations led the authors to propose 
that while TNF-α1 is a ubiquitous cytokine involved in cell 
survival and apoptosis, TNF-α2 is an inducible form which may 
be a key regulator of the innate immune response. In mammals, 
TNFR1 and TNFR2 exert different functions, being the former 
involved in cell death and the latter in the regulation of the 
immune response (15). Little is known about TNFR in fish, so it 
would be of great interest to study whether the different TNF-α 
isoforms found in fish signal through different receptors.

Of special interest is the case of the rainbow trout where an 
additional TNF-α isoform was found (138): TNF-α1 and TNF-
α2 are expressed constitutively in some tissues, such as head 
kidney, and gills, and they induced a pro-inflammatory response 
on a rainbow trout macrophage cell line (137). By contrast, LPS 
induced a much faster, stronger, and longer upregulation of TNF-
α2 expression when compared with TNF-α1, pointing to the fact 
that TNF-α1 could be involved in cell survival and apoptosis, 
while TNF-α2 is an inducible form involved in the activation 
of the immune response. Moreover, the third form (TNF-α3) 
identified, showed low identity with the two forms previously 
described (138). Its basal expression was the lowest among the 
three molecules, but it was the most responsive of them against 
different stimuli, showing a strong upregulation of its expression 
at very early time points after stimulation of primary leukocytes 
with LPS or T cell mitogens. In addition, TNF-α3 induced the 
expression of many pro-inflammatory mediators and immune 
regulators (138). This suggests that TNF-α3 might be in fact 
a strong amplifier of the early inflammatory and immune 
responses.

In mammals, TNF-α has been proven as an important co-
stimulator of B cells for their polyclonal expansion on primary 
immune responses (15). Fish B cells retain many innate immune 
features, such as phagocytic capacities (115) and expression of 
multiple TLRs (119), and their responses are likely to be TI since 
no GCs are observed. Thus, fish B cells responses seem to be based 
in polyclonal activation of Ag-reactive pools of cells (175). Since 
the direct effect of recombinant TNF-α has not been tested on fish 
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B cells, we think it is paramount to study if this TNFSF ligand can 
improve B cell-mediated Ab responses.

lTβ
Initially, homologous sequences of mammalian LTβ were found 
in zebrafish and fugu (142), designated as TNF-new (TNF-N). 
Posterior investigations identified homologs of this gene in 
medaka and zebrafish (151). Phylogenetic analysis of these 
sequences with known vertebrate sequences showed a closer 
relationship of these sequences to TNFSF3 (LTβ) than to TNFSF1 
and TNFSF2. This was further supported with the inclusion of 
Xenopus sequences, which are available for all TNFSF1, 2, and 
3 (50). Interestingly, in rainbow trout, two different isoforms 
were isolated, and named LT-β1 and LT-β2 (50) (Table 3). The 
authors hypothesized that the presence of two isoforms was a 
result of the additional genome duplication event that took place 
in salmonids around 400 million years ago (176, 177). LT-β1 was 
expressed in the spleen, head kidney, intestine, and gills, while 
LT-β2 was expressed only in the gills of rainbow trout (50). This 
might indicate a different role for each LTβ in the homeostasis 
of B and T  cells. In mammals, LTβ has been involved in the 
formation of LN, organization of lymphoid structures, and the 
formation of GCs (81). The absence of LN or GC reactions in 
fish may explain why LTβ has not yet been identified in other 
cartilaginous or bony fish species. Nevertheless, immunological 
assays are required to clarify whether this cytokine is needed in 
fish, as well as its potential role in central and peripheral immune 
tissues in rainbow trout, the only fish in which the presence of 
LTβ has been shown to date (50).

FaS liGaND

Fas ligand is a well-known TNFSF ligand that controls the extrin-
sic apoptosis pathway (178). In fish, homologue sequences of 
FasL have been reported in some teleost, namely, zebrafish (152), 
rainbow trout (41), Japanese flounder (153), Nile tilapia (154), 
rock bream (155), and Japanese pufferfish (Takifugu rubripes) 
(133) (Table 3). Homologue sequences have also been identified 
in cartilaginous fish (52). In all the species studied, FasL was highly 
expressed on spleen and head kidney, which are secondary lymphoid 
tissues in fish. In some species, such as rainbow trout and tilapia, 
it was also expressed on the gills and gut mucosal tissues (41, 
154). Functional studies have determined that the T cell mitogen 
PHA was able to upregulate the expression of FasL in PHA-bound 
lymphocytes from Japanese flounder (153) while LPS was not able 
to do so, thus showing that activated T cells are responsible for 
production of FasL. In line with this, mammalian FasL has been 
widely reported to be expressed in Ag-activated CD8+ and CD4+ 
T cells and natural killer cells (80). A similar upregulation of FasL 
has been observed in rock bream after a viral challenge, suggest-
ing that FasL may also play a role on the regulation of antiviral 
immune responses (155). On the other hand, Fas is expressed at 
low levels on resting B cells but is upregulated after Ag activa-
tion (79), making these cells more susceptible to FasL-mediated 
cell death. Thus, it has been proposed that FasL–Fas interaction 
controls the size of the B cell compartment in homeostasis, while 

during the immune response it seems to be responsible for the 
elimination of activated B cells after the generation of ASCs and 
memory B cells, and the subsequent clearance of the pathogen 
(179). Recombinant tilapia FasL has been shown to induce 
apoptosis on Fas-expressing HeLa cell lines (154), demonstrating 
its functionality. Unfortunately, the effect of FasL on fish B cells 
has not yet been addressed, so further investigations are needed 
to understand the impact of FasL on the B cell compartment in 
physiological or pathological conditions.

TNF-RelaTeD aPOPTOSiS-iNDUCiNG 
liGaND

TNF-related apoptosis-inducing ligand sequences have been 
characterized in several teleost fish, such as grass carp (157), 
zebrafish (152), rainbow trout (41), pufferfish (41), and mandarin 
fish (158) (summarized in Table 3). In humans, there is only a 
single TRAIL gene while two genes have been reported in avian 
species (41). Eimon et al. identified four TRAIL genes in zebrafish 
(41, 152). Hence, the authors proposed that the ancestral gene was 
duplicated before the divergence of ray-finned and lobe-finned 
fishes (around 400 million years ago) (152). In line with this, 
three genes with homology to TRAIL have been identified in fugu 
(133). This study also showed that each of these homologs pre-
sented a very different gene organization forming distinct groups 
(133). In a thorough study based on the search of immune genes 
in leukocytes from jawless fish, a sequence showing homology to 
TRAIL was identified in the inshore hagfish (Eptatretus burgeri) 
(156), pointing to a conserved role of this cytokine throughout 
evolution. In all the teleost fish analyzed, TRAIL was expressed 
mainly in spleen and kidney but also in mucosal tissues, such 
as gills, skin, and/or intestine, depending on the species. In zebrafish, 
overexpression of TRAIL has been reported to induce cell death 
by activation of the extrinsic apoptosis pathway machinery (152). 
In parallel, mandarin fish recombinant TRAIL-induced apoptosis 
of HeLa cells (158) although it was previously reported that the 
extracellular domain of the death receptors (DR) for TRAIL 
in zebrafish differs from those in human DR4 and DR5 (152), 
suggesting that cross-reactivity with mammalian DRs could 
only be achieved with certain fish TRAIL proteins. In mammals, 
TRAIL is involved in B cell differentiation at the GC reaction, 
and although fish lack secondary lymphoid structures and do not 
form GCs, it would be of great interest to investigate what is the 
role of TRAIL on B cells from lower vertebrates.

CONClUDiNG ReMaRKS

A plethora of studies in mammals have revealed that TNF ligand–
receptor interactions elicit complex and divergent functions 
during the immune response. TNFSF ligands have the ability 
to induce both cell death or cell activation/co-stimulation and 
although some of these molecular mechanisms have been eluci-
dated, the origin of these complex interactions and their multiple 
functionalities are not yet fully understood. TNFSF ligands play 
a key role in the immune response, and many researchers have 
taken advantage of this to develop new therapeutic strategies 
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based on the modulation of TNF ligands. In fact, several anti-
TNF neutralizing Abs are already available or under clinical trials 
for the treatment of inflammatory and ADs. Moreover, many 
immunologists are considering the option of using engineered 
TNFSF ligands as vaccine adjuvants. For instance, DNA vectors 
encoding for CD40L multi-trimers are being tested as adjuvants 
for a HIV vaccine, based on their positive effects on B cell co-
stimulation during the vaccination process, thus generating 
high-affinity Abs against the virus. Hence, this is a fascinating 
research topic that is becoming of great importance within the 
field of immunotherapy. Most of the questions that have not 
been answered yet could be explained through the analysis of the 
evolution of the TNF superfamily of ligands and receptors. From 
an evolutionary point of view, it is widely accepted that acquired 
immunity first appeared in fish. This animal taxon possesses 
unique immune features, and recent evidences suggest that we 
can learn much about the evolution and functionality of TNF 
ligands in fish. For instance, they retain a unique TNF cytokine, 
BALM, which has become extinct in tetrapods, and although 
its function is still unknown, many evidences point to the fact 
that this molecule could be key to understand the molecular 

and functional divergence of BAFF and APRIL. On the other 
hand, fish express several isotypes of some TNF ligands (i.e., 
TNF-α) while mammals only express one. In fish, these ligand 
isotypes show different expression patterns, activation profiles, 
and immune functions. Thus, analyzing these isotypes could 
provide us with vital information about their original function, 
or about how and why some members of the TNF family were lost 
or acquired throughout evolution. Moreover, this analysis could 
also help to elucidate the convergence or divergence of some 
immune functions played by TNF ligands.
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