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Events in fetal life impact long-term health outcomes. The placenta is the first organ to
form and is the site of juxtaposition between the maternal and fetal circulations. Most
diseases of pregnancy are caused by, impact, or are reflected in the placenta. The
purpose of this review is to describe the main inflammatory processes in the placenta,
discuss their immunology, and relate their short- and long-term disease associations.
Acute placental inflammation (API), including maternal and fetal inflammatory responses
corresponds to the clinical diagnosis of chorioamnionitis and is associated with respiratory
and neurodevelopmental diseases. The chronic placental inflammatory pathologies (CPI),
include chronic villitis of unknown etiology, chronic deciduitis, chronic chorionitis,
eosinophilic T-cell vasculitis, and chronic histiocytic intervillositis. These diseases are
less-well studied, but have complex immunology and show mechanistic impacts on the
fetal immune system. Overall, much work remains to be done in describing the long-term
impacts of placental inflammation on offspring health.

Keywords: maternal-fetal inflammation, placenta, DOHaD, chorioamnionitis, chronic villitis, asthma,
neurodevelopmental outcomes
INTRODUCTION

The developmental origins of health and disease (DOHaD) theory, in which in utero or early life
events can have a significant impact on adult outcomes, has become the organizing principle of fetal
and perinatal biology (1–3). Extensive research has focused on maternal nutritional status and later
metabolic disease in offspring, but some of the most striking DOHaD findings come from
examination of the long term impact of exposure to inflammation. In utero exposure to the 1918
(Spanish) influenza pandemic has been associated with increased hospitalizations, heart disease, and
cancer in middle age and older survivors (4, 5). In the last decade, the placenta has become a new
focus within DOHaD research (6). A recent paper described the placenta as the “center of the
chronic disease universe” (7). While the U-shaped relationship between birthweight and risk of
heart disease has been reported across numerous studies and populations, less recognized is the
similar U-shaped relationship between the ratio of placental weight to birthweight and coronary
heart disease (8, 9). Placental inflammation is a sub-focus in the study of chronic disease risk,
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particularly within the context of the global obesity epidemic and
low-level, chronic inflammation that is present in pregnant
women with a high BMI. Rigorous characterization of
inflammation in the placenta is a longstanding component of
pathological examination, yet diagnoses are complex and poorly
understood outside of perinatal pathology (10). The purpose of
this review is to first examine the inflammatory lesions in the
placenta and describe their characteristics. For each lesion, we
then describe the associations with long-term outcomes and
relate studies relevant to potential or known mechanisms.
ACUTE PLACENTAL INFLAMMATION (API)

Acute placental inflammation (API) is the microscopic
equivalent to the clinical diagnosis of chorioamnionitis (11,
12). The term histologic chorioamnionitis has been used and is
still used as a stage of maternal inflammatory response (which is
a subcategory of API, discussed below). The difference in
terminology reflects that, while API is strongly associated with
clinical chorioamnionitis, it can be seen without symptoms and
signs of clinical chorioamnionitis (13, 14). Significantly, low-
stage API can be seen in up to 50% of uncomplicated vaginal
deliveries following uncomplicated pregnancies (15).

API, Acute Inflammation and Infection
The relationship between API and other forms of inflammation
and infection is complex, hence the retirement of prior
terminology including amniotic fluid infection (AFI),
intrauterine infection (IUI), and ascending infection (11).
Presumed pathogenic bacteria are identified in 72% (16), 89%
(17), 38% (18), 61% (14), and 4% (19) of cases, depending on the
clinical circumstances and methodology. In general, bacteria are
more frequently identified in preterm delivery and when API and
clinical chorioamnionitis are present. Distinguishing sterile API
vs. API with bacterial contaminants vs. API with bacterial
bystanders vs. API with bona fide pathogenic bacteria is
challenging and likely blurs our understanding of the
epidemiology and long-term consequences of this lesion. For
example, in a study of amniotic fluid collected before rupture of
membranes, women with elevated IL-6 were likely to deliver
preterm regardless of culture or PCR results (20). Does this
indicate that sterile inflammation is real and problematic, or that
the microbiologic results are false negatives?

If acute inflammation is not in response to infection, what is
the stimulus? In vitro studies suggest the forces of labor
themselves induce inflammation. Mechanical stretch induces
expression of cyclooxygenase 2 (COX2), activator protein 1
(AP1), NF-kB, and connexin 43 in amnion explants (21, 22).
Mechanical stretch of immortalized human myometrial cells
induced expression of multiple cytokines, including IL-6 and
IL-12, chemokines CXCL8 and CXCL1, and induced
transendothelial migration (23). These studies support a path
from sporadic contractions (i.e. Braxton-Hicks) or labor to acute
inflammation. Further, maternal obesity causes low-grade
Frontiers in Immunology | www.frontiersin.org 2
inflammation that may be reflected in the placenta and
associated adverse pregnancy outcomes (24, 25).

Maternal Inflammatory Response (MIR)
API is divided into the maternal inflammatory response (MIR)
and fetal inflammatory response (FIR) depending on the source
of the inflammatory response (26). MIR is staged 1 to 3, with
higher stages corresponding to a longer exposure to insult.
Histologically, MIR consists of extravasating maternal
neutrophils which approach and then cross into the chorionic
layer, move through the amnion and into the amniotic space
(Figure 1). MIR is staged as subchorionitis (Stage 1) when
neutrophils congregate at the border between the subchorionic
fibrin and chorion in the chorionic plate or between the cellular
and fibrous chorion in the extraplacental membranes.
Inflammation of the chorion (chorionitis) or chorion and
amnion (chorioamnionitis) is Stage 2 - the gap between
chorion and amnion not acting as a significant barrier to the
passage of neutrophils. MIR Stage 3, so called chorioamnionitis
with amnion necrosis, can be diagnosed on the basis of
amniocyte necrosis, but is more reliably diagnosed by the
presence of neutrophil karyorrhectic debris (11, 12). Based on
rhesus models, analogy, and expert experience, Stage 1 MIR
tends to occur 6 to 12 h after exposure to an inflammatory
stimulus, Stage 2 MIR occurs at 12 to 36 h, and Stage 3 MIR
indicates exposure of >36 h (27).

Fetal Inflammatory Response (FIR)
FIR consists of extravasating fetal neutrophils, which traverse
fetal tissues to and move toward the amniotic space (Figure 2).
FIR is at Stage 1 when neutrophils are seen crossing fetal vessels
in the chorionic plate (chorionic vasculitis) or involving the
umbilical vein (phlebitis). Inflammation of the umbilical arteries
(arteritis) indicates Stage 2, while inflammation of Wharton’s
jelly with necrosis, necrotizing funisitis is Stage 3. In contrast,
non-necrotizing funisitis is ambiguous. In the clinical literature,
funisitis is used to mean any FIR in the umbilical cord. In the
pathologic literature, funisitis is defined as neutrophilic
infiltration of Wharton’s jelly, any degree of which was
considered diagnostic of FIR stage 2. The significance of this
finding has been down-graded in the pathology literature (11).
Timing of FIR lesions is less clear than MIR, possibly reflecting
the differing maturation of the fetal immune system over the
course of gestation.

Acute Villitis
Acute villitis is an uncommon histological pattern which
involves neutrophil infiltration of the chorionic villi beneath
the trophoblastic membrane, and can occur with or without
chorioamnionitis (28) (Figure 3). Acute villitis is associated with
maternal sepsis from listeriosis, and with other infections, usually
bacterial, including Group B Streptococci, Klebsiella, Escherichia
coli, Campylobacter, Haemophilus, tuberculosis and syphilis (12).
Acute villitis is suggestive of acute fetal infection with serious
fetal consequences, including fetal sepsis and death (29).
November 2020 | Volume 11 | Article 531543
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Immunology of API
Neutrophils are themajor cell type involved inAPI (11, 30).Outside
the placenta, maternal leukocytosis is one of the criteria for clinical
chorioamnionitis, while fetal complete blood count shows
leukocytosis and neutrophilia (31, 32). Monocyte/macrophages
are increased in amniotic fluid in clinical chorioamnionitis,
indicating they also undergo migration through the placenta in
response to inflammatory stimuli (33). Bacterial products, such as
lipopolysaccharide (LPS) would be expected to induce a classical
activation pattern (termed M1) in macrophages (34). Perhaps
surprisingly resident maternal decidual macrophages, showed a
switch toward an alternatively activated (M2) polarization in API,
while fetalmacrophages resident in the terminal villi were primarily
Frontiers in Immunology | www.frontiersin.org 3
M2 at baseline, which was unaffected by clinical chorioamnionitis
(35, 36). Clinical chorioamnionitis is associated with a change
in umbilical cord monocyte histone marks, suggesting
reprogramming of the fetal immune system as well (37). M1/M2
(and M2-subtype) polarization has been more extensively studied
in animal models compared to humans (38).

Eosinophils are an uncommon component of the acute
inflammatory response in general, but are frequently encountered
in the fetal inflammatory response of preterm infants (39, 40). This
is presumed tobedue to the immaturity of the fetal immune system.
The significance of eosinophil predominant versus neutrophil
predominant fetal inflammatory response has been incompletely
explored. However the synergy between preterm delivery and
FIGURE 1 | Maternal inflammatory response (MIR) stages: Normal membranes (left) contain amnion (top), fibrous chorion (middle) and decidua (bottom). Maternal
inflammation is staged by the location and state of neutrophils. Neutrophils lined up at the decidua/chorion border are MIR1. Once neutrophils cross into the chorion,
MIR2 is reached. Neutrophilic debris, death of amnion cells, and thickened basement membrane are diagnostic of MIR3.
November 2020 | Volume 11 | Article 531543
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chorioamnionitis as risk factors for asthma andwheezing (explored
in more detail below) is suggestive (41).

Alterations in fetal and neonatal T-cells have been identified.
Within the umbilical cord, high stage API was associated with an
increased proportion of Foxp3+ cells coexpressing retinoic acid
receptor-related orphan receptor gamma T (RORgT) (42). Preterm
API was also associated with a shift toward the T helper 17 (Th17)
Frontiers in Immunology | www.frontiersin.org 4
phenotype, including increased numbers of progenitor and mature
Th17 cells, IL-17+ Treg cells and effector memory T-cells that
coexpressed Th17 antigens (43). Fetal tissues also showed altered
lymphocytes. In stillbirths complicated by API, splenic Foxp3+ cells
were decreased, while pulmonary CD3+ cells were increased (42).

The humoral components of clinical chorioamnionitis and
API are well-studied (26). Umbilical cord and post-delivery
FIGURE 2 | Fetal inflammatory response (FIR) stages: A normal umbilical cord (bottom left) includes two arteries (circular vessels) and one vein (larger, ovoid vessel)
surrounded by Wharton’s jelly. FIR1 consists of inflammation of the vein. Arterial inflammation is diagnostic of FIR2. Inflammation of Wharton’s jelly with necrosis is
FIR3. Candida infections produce peripheral abscesses with invasive organisms (Grocott Methenamine Silver stain).
FIGURE 3 | Acute villitis: In acute villitis, terminal villi show dense inflammation with fibrin. Gram stain demonstrates bacterial forms.
November 2020 | Volume 11 | Article 531543
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infant blood show increased levels of IL-1, IL2R, IL-6, IL-8,
TNF-a, MIP-1b, RANTES, and I-TAC (44–47). The fetus may
respond directly to bacteria that enter either through the
bloodstream (sepsis) or through inhalation of bacteria-laden
amniotic fluid (pneumonia).

Hereditary Risk of API
A genome wide association study (GWAS) of clinical
chorioamnionitis using DNA from newborn blood spots
showed no genome-wide associations. However, several exonic
variants in inflammation-associated genes showed nominal
significance, including Fc receptor like 5 (FCRL5), interleukin
23 receptor (IL23R), phospholipase A2 receptor 1 (PLA2R1),
complement C1 receptor (C1R), interleukin 10 receptor alpha
(IL10RA), DNA cross-link repair 1C (DCLRE1C), TRAF3
interacting protein 1 (TRAF3IP1), and fibroblast growth factor
3 (FGFR3) (48). Variants in TRAF3IP1 and FGFR3 have been
associated with changes in the forced expiratory volume in 1 s
over forced vital capacity ratio (FEV1/FVC), a diagnostic
feature of asthma (49, 50). Several genes show associations
with a variety of infectious and autoimmune conditions. IL23R
variants are associated with autoinflammatory conditions,
including inflammatory bowel disease, psoriatic arthritis,
and autoimmune conditions in pediatric patients (51, 52).
PLA2R1 variants are associated with autoimmune membranous
glomerulonephritis and inflammatory bowel disease (53, 54).
IL10RA variants have been associated with pneumonia in adults
(55). Interestingly, DCLRE1C variants have been associated with
response to cognitive behavioral therapy in anxiety and migraine
gesturing toward neurocognitive outcomes (56, 57).

A study on placental (fetal) genotype from API cases, also
focusing on immune-associated genes, found an association
between chorioamnionitis, a promoter variant in interleukin 6
(IL6), methylation of the IL6 promoter and IL6 gene expression
(58). Significantly IL6 variants have been associated with asthma
and childhood onset of asthma (59).

Clinical Associations With API
Neonatal Mortality and Morbidity
Maternal inflammatory response is associated with adverse
neonatal outcomes when combined with fetal inflammatory
response (60, 61) and fetal inflammatory response alone is
often associated with poor outcomes (62–65). Multiple studies
demonstrate an increased risk of neonatal death in the presence
of FIR (60, 63, 66). Early onset sepsis is associated with FIR (62,
63) as are severe retinopathy of prematurity (61) and necrotizing
enterocolitis and spontaneous intestinal perforation in the
preterm (64).

Respiratory Outcomes
Bronchopulmonary dysplasia (BPD) is the most common
respiratory disorder in preterm infants characterized by an
interruption in pulmonary vascular and alveolar development
which may originate in the antepartum, intrapartum or
postpartum period (67). The role of placental inflammation
and BPD is conflicting, with some studies finding an
association between FIRS and BPD (63, 68) and histological
Frontiers in Immunology | www.frontiersin.org 5
chorioamnionitis and BPD (69) while other studies find either no
association between placental inflammation and BPD (65) or a
decreased risk of BPD with histological chorioamnionitis with
fetal inflammatory response (70).

In preterm infants, API or MIR2 are risk factors for recurrent
wheeze (71), asthma (41, 72), and chronic lung disease (73) but
not altered lung function (71, 74). Preterm birth is an
independent risk factor for both API and respiratory disease.
(26, 75, 76). A series of studies from overlapping groups of
authors have used causal path analysis to untangle this
interdependency (73, 77, 78). In one study, MIR and FIR were
directly causative of chronic lung disease of prematurity and
indirectly causative through their influence on prematurity and
mechanical ventilation (77). A more recent study re-
demonstrated a direct effect of FIR on chronic lung disease of
prematurity, which then had a risk of progression to asthma in
childhood (73). These studies are valuable but include relatively
few patients and are sensitive to permutations in model design.

The mechanism of the inflammation-lung outcomes
association in animal chorioamnionitis models has been
suggested to be related to altered metalloproteinase activation
in the airway (79–81) and FOXP3 CNS 3 methylation, decreasing
the balance of Treg and Th17 cells (82, 83). However, these
studies used an acute endotoxin injection model which is more in
keeping with API. Stillborn fetuses and liveborn infants exposed
prenatally to API and chronic villitis both had Treg and Th17
marker co-expressing cells (42) which may suggest a shift in
Tregs to a Th17 phenotype (43, 84). Another study also showed
elevated numbers of Th17 cells in cord blood of only very
preterm neonates, with a trend to lower Tregs/Th17 ratios in
preterm infants who were exposed to chorioamnionitis. This
same study also showed a trend to higher numbers of Tregs co-
expressing the canonical IL-17 transcription factor RORgt, again
suggesting a shift to Th17 type immunity in the context of
histological chorioamnionitis (43). One reason these immune
deviation effects are seen more in preterm infants is that there is a
developmental shift to Th17 cells in preterm children (85). RNA
sequencing of cord blood from a small number of infants
suggests that there may be additional pathways such as
changes in CCR2 and other pathways involved in T cell
survival and Treg development (86). These shifts in Th17 and
Treg patterns may have implications on Th2/Th17 high
endotypes of asthma (87–89).

Neurocognitive and Developmental Outcomes
Intraventricular hemorrhage and periventricular leukomalacia are
serious complications in preterm neonates. Intraventricular
hemorrhage in preterm is the most common cause of
hydrocephalus and increases the risk for poor neurodevelopment
outcomes (90). Periventricular leukomalacia is a type of preterm
brain injury associated with adverse neurodevelopment (90),
including cerebral palsy (91, 92). Both intraventricular
hemorrhage and periventricular leukomalacia are associated with
FIRS (62, 63, 65).

The association between API and neurocognitive outcomes has
been extensively examined with mixed results. As with asthma, the
three-way association between prematurity, API, and adverse
November 2020 | Volume 11 | Article 531543
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outcomes raises issues of causation. Using data from the
Collaborative Perinatal Project (1959–1976), Liu et al. showed
an association between FIR and low IQ scores (93). Specifically,
FIR in early preterm infants (20–34 weeks) was associated with an
increased risk of low IQ (<70) at 4 years, but not 7 years. FIR in
term infants was associated with an increased risk of low
Performance IQ (vs. Verbal IQ or Full Spectrum IQ) at 7 years,
but not 4 years. These findings are compelling, but the use of
multiple subgroups and measures, and the lack of consistency
between ages 4 and 7 years complicate interpretation. In a recent
meta-analysis of studies using the Bayley II developmental scale,
MIR was associated with a lower mental development index, but a
nonsignificant increase in the motor development index (94). In a
case-control study of 254 children, API was associated with an
increased risk of autism spectrum disorder, with a further elevated
risk in FIR (95). Further complicating matters is the possible
interaction of histological chorioamnionitis and clinical
chorioamnionitis. An observational study of the Eunice Kennedy
Shriver National Institute of Child Health and Human
Development National Research Network with 2,390 extremely
preterm infants found that histological chorioamnionitis alone
when adjusted for gestational age was associated with lower odds
of poor neurodevelopment outcomes whereas histological
combined with clinical chorioamnionitis resulted in an increased
risk of cognitive impairment at 18 to 22 months when compared
to no chorioamnionitis (96).

Many studies have challenged this association. A study of 86
infants born prematurely in Orlando, Florida showed no
difference in Bayley scale at 1 year when infants were matched
for gestational age, birth weight, respiratory distress syndrome,
and intraventricular hemorrhage grade (97). In a study from
Western Australia, MIR2 in preterm infants born <30 weeks
gestation was not associated with decreased Bayley III
developmental scores at 2 years (98). At three years, a study of
2,201 children born <34 weeks gestation from Japan showed no
difference in cerebral palsy, risk of developmental quotient <70,
or neurodevelopmental impairment between pregnancies with
and without MIR2 (99). A matched-case control study of
extremely preterm infants with CP examined the role of
placental pathology and found no association between
histological chorioamnionitis or funisitis and CP (100).

The mechanism by which API may cause neurologic
impairment is unclear. In rodents, maternal injection with
lipopolysaccharide, a Gram-negative bacterial component,
induces neurocognitive and behavioral abnormalities without
fetal infection (101). In a small case-control study, severe FIR and
severe MIR were associated with cerebral palsy (CP) in very low
birthweight infants (<1,500 g) (102). However, the relationships
were indirect. Using a series of logistic regressions, severe FIR
was associated with CP via its association with thrombi in fetal
vessels, while severe MIR was associated with CP via its
association with villous edema. Thromboemboli (from FIR) or
under perfusion (from MIR) would then be the immediate cause
of CP. A study from Sweden using Bayley-III scales and
developmental outcomes at an adjusted 2.5 years of age to
diagnose CP in extremely preterm children suggests placental
Frontiers in Immunology | www.frontiersin.org 6
infarction as a contributor to CP but did not find associations
with other placental pathology outcomes (103).

API Associated With Candida
Infection by Candida albicans results in a distinct pathologic
appearance, most characteristically punctate abscesses on the
periphery of the umbilical cord (peripheral funisitis,) (30, 104).
In preterm infants, Candida is associated with cutaneous
candidiasis, sepsis, pneumonia and a high rate of perinatal
death, while at term it is more often an incidental finding (104–
106). Foreign bodies, such as retained intrauterine device or
uterine cerclage are risk factors for Candida (104, 107). Candida
glabrata and Candida lusitania are associated with in vitro
fertilization and are associated with high risk of adverse
outcomes. API due to Candida is relatively rare. The
immunologic features and long-term consequences are unknown.
CHRONIC PLACENTAL INFLAMMATION
(CPI)

The chronic inflammatory lesions of the placenta are a group of
frequently co-occurring lymphocytic, histiocytic, and
plasmacytic processes distinguished by the cells present and
their location in the placenta (108) (Figure 4). Diseases with
high rates of maternal-fetal transfer, including Toxoplasma,
Treponema, rubella, cytomegalovirus (CMV), herpesvirus
(HSV1 and HSV2), human immunodeficiency virus (HIV1,
“TORCH” infections), are the most commonly identified in
CPI (109). The effect of congenital TORCH infections has been
extensively reviewed elsewhere. Therefore, this review will focus
on the >95% of cases in which no etiology is identified (110).
Two competing theories have arisen to explain these cases 1)
That CPI results from failure of maternal tolerance to fetal
antigens or 2) That unknown or untested-for infectious agents
in the placenta induce a maternal response, akin to transplant
rejection (111). Evidence for the alloimmune theory includes the
increased frequency of CPI in egg donor pregnancies, where the
fetus is fully allogeneic, rather than ½ self and ½ allogeneic (112,
113). Conversely, interbreeding of inbred mouse strains is
associated with immune activation and resorption, the degree
of which is strain dependent (114). Activation of the maternal
immune system by lipopolysaccharide (LPS), a Gram negative
bacterial component, or polyinosine:cytosine (poly-IC), a viral
mimetic, increases the rate of resorption, prompting a model of
immune activation in an allogeneic background (115, 116).

Chronic Villitis (VUE)
Chronic villitis of unknown etiology (VUE) is a process involving
infiltration of placental villi by lymphocytes, histiocytes, and rarely
plasma cells (117). VUE most commonly affects terminal villi, the
sites of gas and nutrient exchange, closest to the maternal surface
(“basal villitis”), however it frequently is present in other sites and,
more rarely, is diffuse (12). In addition to lymphocytic infiltration,
VUE is characterized by aggregation of terminal villi, destruction
of villous capillaries (resulting in “avascular villi”) and stem villous
November 2020 | Volume 11 | Article 531543

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Goldstein et al. Placental Inflammation, Origins of Disease
vessels (“stem villous obliteration”). The antigen is unclear,
however the destruction of endothelium and sparing of
syncytiotrophoblast is suggestive. The prevalence of VUE in
studies is estimated at 5% to 15% of placentas submitted for
pathologic examination (118). However, the diagnosis is
frequently missed by inexperienced or nonspecialized
pathologists, doubtless impairing research (119, 120). The
lymphocytes in chronic villitis are maternal in origin based on
human leukocyte antigen (HLA) mismatch (121). The
lymphocytes are primarily CD8, but include T-regulatory (Treg)
cells and retinoic acid receptor-related orphan receptor gamma
(RORgT) cells (42, 122). The mechanism by which T-cells pass the
maternal-fetal barrier is unknown. Lymphocytes and histiocytes in
VUE express inflammatory cell adhesion molecule ICAM1,
supporting a model similar to typical leukocyte extravasation
(108). Alternatively, maternal inflammatory cells may pass
through disruption of the trophoblastic barrier. Lymphocytes
and histiocytes also show expression of nuclear factor kappa B
(NFkB) (108). Histiocytes express HLA-DR and histiocytes and
syncytiotrophoblast show phosphorylated Signal Transducer and
Activator of Transcription 1 (STAT1), indicating activation of the
JAK-STAT pathway.

Chronic villitis is associated with increased maternal and fetal
plasma chemokines CXCL9, CXCL10, and CXCL11 (123).
Within the placenta, there is increased expression of
chemokine mRNAs for CXCL9, CXCL10, CXCL11, CXCL13,
CCL4, and CCL5 and chemokine receptor mRNA for CXCR3
and CCR5 (123). Chronic villitis is also associated with
Frontiers in Immunology | www.frontiersin.org 7
deposition of the complement component C4d on villous
surfaces or fetal vascular endothelium, indicating a potential
role for complement-mediated processes (124).

It is unclear whether maternal cells in VUE fully cross from the
placenta to seed the developing fetal immune system. T-cells of
presumed maternal origin have been identified in cord blood,
children and adults based on XY fluorescence in-situ hybridization
(FISH) or HLA testing (125, 126). In cord blood, the rate of this
maternal microchimerism has been reported at 23% (127). The
significance of these maternal cells and their interaction with
autoimmune conditions is complicated (125). For example,
maternal T-cells are more common in blood from patients with
juvenile dermatomyositis (an autoimmune condition) than those
with muscular dystrophy (a genetic condition) (128). However, in
biopsies of injured muscle, the situation is reversed and there are
more maternal T-cells in muscular dystrophy (129).
Unfortunately, studies on T-cells of maternal origin have not
cross-referenced examination of the placenta.

Chronic Deciduitis With Plasma Cells
(CDPC)
This lesion is characterized by a lymphocyte and plasma cell
infiltrate in the decidua (12, 130). CDPC is histologically similar
to chronic endometritis - plasmacytic inflammation of the uterus in
the absence of pregnancy (110). The antigen is unknown, but major
histocompatibility complex/human leukocyte antigen mismatch
appears to play a role (131). Maternal immunoglobulin gamma
(IgG) is actively transported across the placenta, representing a
FIGURE 4 | Chronic placental inflammation (CPI): In chronic villitis of unknown etiology (VUE), CD3-positive T-cells infiltrate fetal villi. Chronic intervillositis of unknown
etiology (CIUE) is characterized by intense histiocytic inflammation filling the intervillous space. Chronic deciduitis with plasma cells (CDPC) shows plasmacytic
inflammation in the decidua. Chronic chorionitis (CCA) consists of maternal T-cells in the chorion. In eosinophilic T-cell vasculitis (ETCV), fetal T-cells and eosinophils
inflame fetal vessels.
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straightforward mechanism for effects on the fetus (132, 133).
Transplacental passage of IgG is the mechanism for hemolytic
disease of the newborn, neonatal alloimmune thrombocytopenia,
and congenital heart block among others (134–136). However,
these diseases are not characterized by CDPC, raising the question
of whether the plasma cells in CDPC are acting in a
paracrine fashion.

Chronic Chorionitis/Chronic
Chorioamnionitis (CCA)
Chronic chorionitis (CCA) is defined by lymphocytic or
lymphoplasmacytic infiltration of the chorion or chorion and
amnion (117). CCA is frequently associated with VUE (137, 138).
The lymphocytes are primarily CD8 T-cells, with few CD4; B-cells
and NK-cells are uncommon (138). Amniotic fluid concentrations
of the chemokines CXCL9 and CXCL10, along with their receptor,
CXCR3, are elevated in CCA (139). CXCL9, -10, and -11 mRNA
are upregulated in placental membranes with CCA (137).

Chronic Intervillositis of Unknown Etiology
(CIUE)
Chronic intervillositis is an uncommon condition in which
maternal histiocytes and to a lesser extent lymphocytes fill the
intervillous space (140, 141). As in other CPI conditions, it can
be seen in association with infectious causes particularly malaria
and cytomegalovirus, however this review will focus on the
idiopathic chronic intervillositis of unknown etiology (CIUE)
(142, 143). CIUE may occur in association with chronic villitis,
or as a purely isolated finding. Controlled trials have not been
performed, but the successful treatments support an alloimmune
or prothrombotic mechanism for CIUE (144).

In CIUE, the intervillous histiocytes are M2-polarized with
overexpression of complement receptor 4 (CD11c/CD18) and toll-
like receptor 1 (TLR1) (142, 143, 145, 146). Unlike VUE, the T-cells
in CIUE are a mixture of CD4 and CD8-cells, with admixed
Tregs (147).

Eosinophilic T-Cell Vasculitis (ETCV)
Eosinophilic T-cell vasculitis (ETCV) is an uncommon chronic
inflammatory condition first described in 2002 with an incidence
of 0.2 to 0.7% of pregnancies (111). It consists of fetal eosinophils,
histiocytes, and T-cells present in the wall and lumen of large fetal
vessels (111, 148). It most commonly presents with involvement of
a single chorionic plate vessel, often with an associated thrombus
(149). ETCV occurs more often than chance with VUE of
thrombotic conditions (149, 150). However, ETCV is frequently
an isolated finding, reinforcing its place as an independent
diagnosis. ETCV is differentiated from API by the absence of
maternal inflammation, orientation of inflammatory cells toward
the placental disc rather than toward the amnion, and the different
inflammatory populations.

The infiltrate in ETCV is poorly characterized, however some
facts are known. In contrast to VUE, the T-cells of ETCV are of
fetal origin (148). The T-cells are a mixture of CD25+, FOXP3+
Tregs and other T cells (150). Long term outcomes have not been
well described, likely related to the low incidence, recent
description, and frequent co-occurrence of other pathologies.
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Clinical Associations With CPI
Relative to API, fewer studies have examined CPI. Outcomes
sometimes associated with CPI include: pregnancy loss; preterm
delivery; growth restriction; a possible association with neonatal
alloimmune thrombocytopenia; and neurocognitive and
developmental outcomes. Additionally, the risk of recurrence is
high with many chronic inflammatory lesions.

Pregnancy Loss
Villitis of unknown etiology is associated with fetal death and
recurrent loss (110, 117, 151). In one study focused on stillbirth,
placentas with VUE were analyzed and it was found that a Th1-
type immune response predominated (151). Fetal demise is seen
in chronic deciduitis with plasma cells though fewer studies have
evaluated this pathology (151). Chronic chorioamnionitis is also
associated with fetal death (117, 152). Chronic intervillositis of
unknown etiology is a strongly associated with miscarriage,
intrauterine fetal demise and a very high risk of recurrence
(141, 153–155). Women with a history of recurrent CIUE have
gone on to successful live birth after treatment with aspirin and
low molecular weight heparin (LMWH), aspirin and
corticosteroids, aspirin, LMWH, and steroids, or aspirin,
prednisone, LMWH and hydroxychloroquine (147, 156, 157).

Preterm Delivery
Although VUE is sometimes associated with preterm labor (117),
chronic chorioamnionitis is most frequently associated with late
spontaneous preterm birth (117, 158). A study of 1206 preterm
births found that chronic chorioamnionitis was most frequently
associated with late preterm birth designated as 34 to 37 weeks
while acute chorioamnionitis was most commonly associated
with very early preterm birth designated as less than 28 weeks
(158). Chronic deciduitis with plasma cells is also associated with
preterm labor, but has not been established as an independent
risk factor for long-term outcomes (158, 159).

Growth Restriction
Villitis of unknown etiology is associated with fetal growth
restriction, low birth weight and small for gestational age (110,
117, 160). Chronic intervillositis of unknown etiology is the other
chronic inflammatory pathology frequently associated with
disorders of fetal growth (155, 161–163). Multiple studies
demonstrate outcomes of fetal growth restriction with rates of
70% or higher when CIUE is present (155, 161, 162).

Neonatal Alloimmune Thrombocytopenia
Neonatal alloimmune thrombocytopenia (NAIT) is a rare
pregnancy complication characterized by otherwise
unexplained severe thrombocytopenia in a neonate (164).
Analogous with immune hydrops, NAIT is caused by maternal
alloimmunization against fetal antigens. An association between
VUE and neonatal alloimmune thrombocytopenia (NAIT) has
been reported (165). This study examined histopathology from
14 placentas of pregnancies affected by NAIT and found that
chronic villitis was observed in untreated pregnancies compared
with intravenous immunoglobulin treated pregnancies. This one
small study links the histological observation of VUE to
November 2020 | Volume 11 | Article 531543
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placentas affected by NAIT. As NAIT is driven by
alloimmunization, the association with VUE provides further
evidence that VUE is an alloimmune process.

Neurocognitive and Developmental Outcomes
Among patients with intrauterine growth restriction, VUE was
associated with an increased risk of low developmental index at 2
years of age (166). In another study, VUE with stem villous
obliteration was associated with an increased risk of cerebral
palsy or other abnormal neurodevelopmental findings in term
infants (167). The limitation to VUE with stem villous obliteration
in this work was for comparison to other conditions causing stem
villous anomalies and there is no evidence to suggest VUE without
stem villous obliteration will have a different impact. Another
study with term infants with hypoxic-ischemic encephalopathy
found that chronic villitis was associated with injury in the basal
ganglia and thalamus (168). Chronic chorioamnionitis has
also been associated with white matter injury in newborns, but
this increased risk was seen in newborns with chronic
chorioamnionitis and funisitis while neither condition alone was
associated with white matter injury (169). This study suggests that
the interaction of insults rather than one clear etiology may be
responsible for initial neurocognitive insults.
NULL ASSOCIATIONS

Many studies examining associations between inflammatory
lesions and specific short- and long-term outcomes have not
found meaningful relationships. Long term outcomes of isolated
CCA have not been described. n a systematic review of
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associations with stillbirth, neonatal morbidity, and neurologic
outcomes, null findings formed the bulk of those reported (159).
CONCLUSION

Maternal-fetal inflammation frequently involves the placenta,
broadly grouped into API and CPI. Each has numerous subtypes
and degrees of inflammation. Both present an inflammatory
shock to the fetus, driven by maladaptation in the placenta and
have been associated with long-term adverse outcomes,
including asthma, cerebral palsy, abnormal neurodevelopment,
and autism spectrum disorder (Figure 5). Other than the
classical API response to presumed ascending infection, the
long-term outcomes of these diseases are poorly studied and
additional associations are likely to be identified with focused
research. Potential differences in outcomes by placental/fetal sex
are also needed. While the NIH Human Placenta Project was
established to drive discoveries in real-time placental function in
utero, there has been an overall recognition of how little we know
about the placenta’s relationship to the health of humans.
Additional studies of placental pathology, particularly
inflammatory lesions, could contribute greatly to the
DOHaD field.
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