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Abstract

Recent advances in single-cell RNA-sequencing technology have enabled us to characterize a variety of different cell types in each

brain region. However, the evolutionary differences among these cell types remain unclear. Here, we analyzed single-cell RNA-seq

data of >280,000 cells and developmental transcriptomes of bulk brain tissues. At the single-cell level, we found that the evolu-

tionary constraints on the cell types of different organs significantly overlap with each other and the transcriptome of neuron cells is

one of the most restricted evolutionarily. In addition, mature neurons are under more constraints than neuron stem cells as well as

nascentneurons and the orderof theconstraintsof various cell typesof the brain is largely conserved in different subregions. We also

found that although functionally similar brain regions have comparable evolutionary constraints, the early fetal brain is the least

constrained and this pattern is conserved in the mouse, macaque, and humans. These results demonstrate the importance of

maintaining the plasticity of early brain development during evolution. The delineation of evolutionary differences between brain

cell types has great potential for an improved understanding of the pathogenesis of neurological diseases and drug development

efforts aimed at the manipulation of molecular activities at the single-cell level.
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Introduction

The brain is the most complex organ known. Its complexity is

not only due to the variety of behaviors originating from dif-

ferent neural circuits but also the complex interactions among

these circuits. The brain regions involved in complex neural

circuits are very distinct at the molecular level (Kang et al.

2011; Hawrylycz et al. 2012, 2015). At the cellular level, the

latest single-cell sequencing technology has enabled research-

ers to reveal the complexity of cell types within a single brain

region. Recent studies have found that tens of different cell

types can be classified within one brain area, enabling a func-

tional investigation of each cell type (Zeisel et al. 2015, 2018;

Tasic et al. 2016).

The functional diversity in different brain regions indicates

that the brain endures significant constraints during evolution,

because any accumulation of deleterious mutations may

cause abnormalities in brain function (Wang et al. 2006;

Somel et al. 2013; Brainstorm et al. 2018; Gandal et al.

2018). In fact, the evolutionary rate of brain tissue preferred

genes is relatively low (Khaitovich et al. 2005; Wang et al.

2006) and gene expression differences between human and

chimpanzee are the smallest in brain compared with other

organs (Khaitovich et al. 2005). As biological structure is the

basis of their function and brain regions are composed of

different cell types, the evolutionary constraints of these cell

types might be different from each other as well.

High-expressed genes usually evolve slowly resulting in a

negative correlation between expression level and evolution-

ary rate of a gene at the tissue level (E–R anticorrelation)

(Drummond et al. 2006; Liao et al. 2006; Zhang and Yang

2015; Gandal et al. 2018). Several hypotheses have been pro-

posed to explain this phenomenon. Both empirical data and

theoretical simulations have provided a large amount of evi-

dence that selection reduces errors in several molecular pro-

cesses including protein translation, mRNA folding, or

protein–protein interactions explain E–R anticorrelation

(Zhang and Yang 2015). Therefore, highly expressed genes

are more harmful than lowly expressed genes due to these

errors (Zhang and Yang 2015). “Evolutionary constraint”

refers to the extent that harmful mutations are removed

from the population, as it causes molecular errors and re-

duced fitness. There are considerable variations of E–R
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anticorrelation among different brain regions and cortical

brain regions are subject to more constraints than subcortical

brain regions (Tuller et al. 2008). These findings suggest that

E–R anticorrelation can be used as a reliable and robust index

for assessing the strength of evolutionary constraints at the

transcriptome level.

Does E–R anticorrelation exist at the single-cell level? Do

different cell types exhibit different E–R anticorrelation levels?

Are they under different evolutionary constrains to avoid bi-

ological errors? To answer these questions, we first examined

the E–R anticorrelation with various single-cell transcriptome

data sets and then compared the distribution of this param-

eter among >700 cell types. Finally, we validated this param-

eter in ten brain regions as well as during brain development.

Materials and Methods

Tissue Level RNA-Seq Data

Tissue level RNA-seq data from adult human brains were

downloaded from the Gene Expression Omnibus (GEO)

data set with accession number GSE58604 (Wang et al.

2015), previously released by us. Human and macaque brain

development and maturation data including 480 and 366

samples, respectively, were downloaded from the

PsychENCODE website via the following link: http://develop-

ment.psychencode.org/ (Li et al. 2018; Zhu et al. 2018).

Mouse brain (hypothalamus) development data including 48

samples were obtained from GEO data set GSE21278

(Shimogori et al. 2010). To study the E–R anticorrelation

changes during mammalian brain development, we down-

loaded human–macaque and human–mouse orthologous

genes from Ensembl database (through BioMart). We only

consider those genes expressed in all three species. This

resulted in 10,858 gene sets that were used for further tran-

scriptomic analysis.

Single-Cell Level RNA-Seq Data Sources

Single-cell RNA-seq data form for mouse primary visual cor-

tex, somatosensory cortex, and hippocampus were down-

loaded from GEO data set, accession numbers GSE71585

and GSE60361 (Zeisel et al. 2015; Tasic et al. 2016). Single-

cell RNA-seq data for human and macaque brain develop-

ment were downloaded from http://development.psychen-

code.org/ (Zhu et al. 2018). Single-cell RNA-seq data for

mouse cell atlas were obtained from GEO, accession number

GSE108097 (Han et al. 2018) and for human LGN and MTG

brain cells were downloaded from Allen Brain Atlas via the

following link: http://celltypes.brain-map.org/rnaseq. All genes

expressed in those data sets were included in the analysis.

Single-cell RNA-seq data for dorsal root ganglion (Hu et al.

2016) were downloaded from GEO, accession number

GSE71453. The single-cell prefrontal cortex development

data were downloaded from GSE104276 (Zhong et al. 2018)

and were used to examine the dynamic expression of neu-

rological disease-related genes (supplementary fig. S9,

Supplementary Material online).

Detailed information on all the scRNA-seq data analyzed

can be found in supplementary table S1, Supplementary

Material online.

Computation of E–R Anticorrelation

We retrieved dN and dS (Ka and Ks) of mouse–rat, human–

chimpanzee, and human–macaque ortholog genes from

European Bioinformatics Institute (https://www.ensembl.org/

biomart/martview, last accessed December 10, 2019). Genes

with dS equal 0 or dN/dS >2 were not considered for further

analysis. For genes with multiple dN or dS values, averaged dN

or dS values were used. For analyzing evolutionary con-

straints, genes expressed in at least one cell were retained

and cells with <200 expressed genes were removed. The

Spearman correlation between expression values and the cor-

responding dN and dN/dS ratio of each gene were calculated.

Permutation Test Experiment

For each permutation test, the mean expression levels of each

genes for each cell subtypes were resampled. Then, we recal-

culated their correlation coefficients with dN and dN/dS.

About 10,000 experiments were performed in a total of

4,684 cells from both Tasic et al. (2016) and Zeisel et al.

(2015) data sets.

Mouse Cell Atlas Data Analysis and Computation of
Corrected E–R Anticorrelation

A total of 242,533 single cells from 38 tissues were included

in the initial data set. Then, we removed the cells with <200

expressed genes, leaving 226,456 cells for further analysis.

We used the R package “Seurat” for dimension reduction

and clustering, following the tutorial at https://satijalab.org/

seurat/mca.html. To compare the evolutionary constraints

among different tissues and cell types, cells with nonsignifi-

cant E–R anticorrelation (adjusted P> 0.05) were removed. To

get rid of the effect of detected gene numbers, the residues

from the linear regression between E–R anticorrelation and

detected gene numbers were used (corrected E–R

anticorrelation).

Gene Dating

The human and mouse gene age data were obtained as

reported previously (Zhang et al. 2010). Briefly, the origins

of Ensemble v51 protein coding genes were dated by deter-

mining the presence and absence of their orthologs along the

vertebrate phylogenetic tree. “Young genes” were defined as

primate-specific genes (phylogenetic branch �8, 1,828

genes) in human- and rodent-specific genes (phylogenetic

branch �8, 3,111 genes) in mouse, respectively. The
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remaining genes which originate prior to the primate and

rodent split were defined as “old genes.”

Neurological Disease Genes

We manually obtained 427 Mendelian disease genes from

Mendelian Inheritance in Man (OMIM) database (Blekhman

et al. 2008). These genes are annotated with 17 different

neurological disease phenotypes, including mental retarda-

tion, schizophrenia, autism spectrum disease, Alzheimer’s dis-

ease, Parkinson’s disease, neurodegeneration, amyotrophic

lateral sclerosis, dementia, epilepsy, learning disability, intel-

lectual disability, intellectual development disorder, cognitive

impairment, depression, alcohol abuse, sleep disorder, and

neurodevelopment disorder. We refer to these genes as neu-

rological disease genes in the main text.

Statistical Analyses

The Wilcoxon signed ranks test (Wilcoxon test) and Kruskal–

Wallis test were used to compare the evolutionary constraints

of different tissues/cell types. One-tailed Wilcoxon test was

used to calculate the upregulated genes in neuronal cell types.

We defined neuronal upregulated genes with fold change>2

and adjusted P< 0.05 compared with nonneuronal types. A

total of 2,532 and 7,725 neuronal upregulated genes were

detected in Tasic et al. (2016) and Zeisel et al. (supplementary

table S4, Supplementary Material online). All codes are freely

available upon request to the corresponding author.

Results

E–R Anticorrelations Widely Exist at the Single-Cell Level

Firstly, we examined whether E–R anticorrelation exists at the

single-cell level. A total of 44,000 single cells, which were

from 4 different types of human and mouse tissues (tumor,

blood, brain, and stem cells), were collected (supplementary

table S1, Supplementary Material online). Despite the fact

that different sequencing platforms, library preparation pro-

tocols, and sequencing depths were used, we observed E–R

anticorrelation for the majority of cell types (supplementary

fig. S1, Supplementary Material online). We also found that

the number of genes detected in a sample due to differences

in sequencing depth can influence this index (fig. 1B and C

and supplementary fig. S1, Supplementary Material online).

When the number of detected genes increases, a stronger E–

R anticorrelation is seen for each cell type. Thus, we regressed

out the effect of detected gene numbers in the following

analysis and refer to this value as E–R anticorrelation (or cor-

rected E–R anticorrelation, see Materials and Methods). Since

vertebrate immune cells are under positive selection and

FIG. 1.—E–R anticorrelation is prevalent in human brain cells. (A) Evolutionary rates (dN/dS) versus mRNA expression for four representative human LGN

cells. mRNA expression level (unique mapped reads) in each single brain cell is presented on the x axis (log scaled) and the ratio of dN and dS (mouse–rat) on

the y axis (log scaled). rho, Spearman correlation coefficient. (B and C) E–R anticorrelation decreases as the detected gene numbers increase in both human

LGN and MTG brain regions. cor, Pearson correlation coefficient.
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accelerating evolutionarily (Hughes and Yeager 1997), we

speculate that this might lead to a positive E–R correlation.

However, this conjecture could not be confirmed by our

results (supplementary fig. S1, Supplementary Material on-

line). Thus, the negative correlation between evolutionary

rate and gene expression (E–R anticorrelation) is prevalent at

the single-cell level.

Neuronal Cells Show the Strongest Selective Constraints
among Somatic Cells

Next, to directly compare the evolutionary constraints of var-

ious organs on single-cell level, a recently released mouse

single-cell atlas was explored (Han et al. 2018). A total of

226,456 cells from 38 organs were included in the final anal-

ysis (supplementary fig. S2A, Supplementary Material online).

After controlling for detected gene number, we found that

the brain transcriptome have stronger E–R anticorrelation

than other organs (fig. 2A and supplementary fig. S3A,

Supplementary Material online) (one-sided Wilcoxon test:

P< 2.20� 10�16). We then calculated the E–R anticorrelation

for each cell type (760 cell types in total) of the 38 organs. We

found that significant variations exist in the evolutionary con-

straints among them, and a great overlap of E–R anticorrela-

tion exists among different cell types of each organ (fig. 2B

and supplementary figs. S2B and S3B, Supplementary

Material online). For instance, all organs contain the cell types

that fall in the corrected E–R anticorrelation with an interval of

FIG. 2.—Evolutionary constraints on transcriptome vary among different tissues and cell types. (A) t-SNE was used to perform nonlinear dimensionality

reduction on 22K mouse cell atlas transcriptome data, whose position coordinates show the distribution of single cells from 38 tissues. In order to

comprehensively study evolutionary constraint levels among single cells from different mouse tissues, E–R anticorrelation was mapped for each cell.

Different colors represent the E–R anticorrelation. Orange: low; gray: high. (B) The range of corrected E–R anticorrelation among different mouse tissues.

(C) Boxplot showing the variation of corrected E–R anticorrelation among 760 cell subtypes. Neuronal cells from the central nervous system (CNS) and

peripheral nervous system (PNS), oligodendrocyte cells, stem cells, and testis cells are highlighted.
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�0.055 to 0.173. Even more interesting is the fact that the

neuron cell transcriptomes, including neurons from the cen-

tral nervous system (CNS) and peripheral nervous system

(PNS), are under the strongest evolutionary pressure com-

pared with other cell types (fig. 2C and supplementary fig.

S3C and table S2, Supplementary Material online, one-sided

Wilcoxon test, PCNS neuron <2.20� 10�16, PPNS neuron

<2.20� 10�16). We also observed a relatively strong E–R

anticorrelation in stem cells, indicating that rapidly differenti-

ated cells are sensitive to mutations (fig. 2C and supplemen-

tary figs. S2B and S3C, Supplementary Material online, one-

sided Wilcoxon test, Pstem cells < 2.20� 10�16). Therefore, we

further analyzed E–R anticorrelation levels in data sets from

neuron cells at different stages of maturation (Li et al. 2018).

These analyses suggest that mature neurons have a stronger

evolutionary constraint than nascent neurons and neuron

stem cells while rapidly evolving genes tend to be expressed

in the earlier stages of maturation (supplementary fig. S4C,

Supplementary Material online). These results emphasize the

importance of investigating the evolutionary differences of

organs based on their cell types.

The Strength of Evolutionary Constraints in Different Cell
Types Is Conserved

To better distinguish the evolutionary constraints of different

cell types within neuronal tissue, two data sets with high-se-

quencing quality were employed (Zeisel et al. 2015; Tasic et al.

2016). In both data sets, significant differences of E–R anti-

correlation among cell types were observed (fig. 3A and B).

Interestingly, excitatory and inhibitory neurons show stronger

E–R anticorrelation than nonneuronal cells, even after control-

ling for the detected gene number (fig. 3A and B and sup-

plementary table S3, Supplementary Material online). E–R

anticorrelation is stronger in excitatory neurons than in inhib-

itory neurons, implicating stronger evolutionary constraints on

FIG. 3.—Different evolutionary constraints in distinct brain cell types. (A and B) The comparison of E–R anticorrelations among different brain cell types

for Tasic et al. (2016) and Zeisel et al. data sets. P values from pairwise comparisons are labeled. (C) Schematic diagram showing the conservative order of

different evolutionary constraints in distinct cell types in the two brain regions.
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the transcriptome of excitatory neurons. We further noticed

that the strength of evolutionary constraints rank for different

cell types by and large is conserved between these two data

sets (excitatory neuron > inhibitory neuron > oligodendro-

cyte and astrocyte > microglia) implying that the selective

pressure acting on different cell types is relatively stable in

different brain regions (fig. 3C, one-tailed Wilcoxon test,

P< 0.0001 in all the comparison). This ranking order was

further validated by the RNA-sequencing transcriptome data

which were from fluorescence-activated cell sorting purified

brain cells with higher read depth (Zhang et al. 2014) (sup-

plementary fig. S5, Supplementary Material online), implying

the robustness of our analysis. As both excitatory and inhib-

itory neurons can be classified into tens of subtypes, more

investigations are required to further clarify whether the tran-

scriptome of certain subclasses of inhibitory neurons is more

constrained than that of excitatory neurons at some specific

developmental periods or in some specific brain regions.

Further, we found that the correlation between E–R anticor-

relation and mean expression level in Tasic et al. (2016) data

set is not significant (r¼ 0.054, P¼ 0.82, supplementary fig.

S6A, Supplementary Material online). And, in the data set of

Zeisel et al. (2015), after controlling for the effect of detected

gene number, there is no significant correlation between

mean expression and E–R anticorrelation as well (r ¼
�0.0079, P¼ 0.66, supplementary fig. S6B, Supplementary

Material online). Therefore, our results cannot be explained by

the difference of mean expression levels in different cell types.

We next checked the E–R anticorrelation patterns among

different sensory neuronal types of dorsal root ganglion and

observed significantly weaker constraints in nociceptors neu-

rons compared with other two neuronal cell types (supplemen-

tary fig. S7, Supplementary Material online). We conclude that

the evolutionary constraints are diverse among different cell

types in both central nervous cells and peripheral nervous cells.

Evolutionary Constraints of Single Cells Are Stronger Than
Expected

Are the evolutionary constraints of each cell type in the ner-

vous tissue stronger than expected by chance? To answer this

question, 10,000 randomization experiments were pre-

formed, where the expression of each gene was shuffled

and their E–R anticorrelations were recalculated. We found

that the E–R anticorrelation of each cell type is much stronger

than in the permutation experiments (supplementary fig. S8,

Supplementary Material online, one-tailed Wilcoxon test,

P< 0.05 for all the 12 comparisons).

Both Neuronal Upregulated Genes and Neurological
Disease-Related Genes Contribute to the Strong
Evolutionary Constraints of Neurons

We next estimated the effect of neuronal upregulated genes

on the high evolutionary constraints of neurons from Tasic

et al. (2016) data set and found that the evolutionary rate

of those genes (dN and dN/dS) is lower than other expressed

genes in neurons (for dN, P¼ 7.25� 10�17; for dN/dS,

P¼ 9.20� 10�15, one-tailed Wilcoxon test). After removing

those genes, the E–R anticorrelation of neuronal cells is de-

creased (supplementary table S4, Supplementary Material on-

line, for dN-Exp, P¼ 3.67� 10�27; for dN/dS-Exp,

P¼ 1.26� 10�39, one-tailed Wilcoxon test). This effect also

exists for neurological disease genes (for dN-Exp,

P¼ 7.78� 10�6; for dN/dS-Exp, P¼ 3.92� 10�7, one-tailed

Wilcoxon test) and similar results were found using the data

set from Zeisel et al. (2015). This indicates that both neuronal

upregulated genes and neurological disease genes are under

higher selective pressure and contribute to the greater con-

straints of neuronal cells in evolution.

We also found that there are more genes expressed in

adult brain (525.346 258.30) than fetal brain

(453.006 147.10) (P¼ 2.40� 10�9, one-tailed Wilcoxon

test) and neurological disease genes have higher expression

levels in the adult brain than in the fetal brain

(P¼ 2.25� 10�25, one-tailed Wilcoxon test) (supplementary

fig. S9A, Supplementary Material online). Thus, the adult

brain is generally more susceptible to neurological diseases.

Finally, the expression of these pathogenic genes is slightly

increased during the development of prefrontal cortex (sup-

plementary fig. S9B, Supplementary Material online).

Early Brain Development Exhibits the Least Evolutionary
Constraints

In order to further study the evolutionary constraint of brain

neurons on the tissue level and temporal scale, we next cal-

culated E–R anticorrelation in the previously reported ten lan-

guage-related Brodmann areas (Wang et al. 2015), which are

all from healthy adult samples. As shown in supplementary

fig. S10, Supplementary Material online, there are no signif-

icant differences in E–R anticorrelations among these ten

brain regions (Kruskal–Wallis v2 ¼ 3.69, P¼ 0.93), indicating

that evolutionary constraints are very similar in functionally

similar brain regions. This result is not in contradiction with

a previous report as more distinct brain regions were used

before (Tuller et al. 2008). We then studied how evolutionary

constraints change during brain development by analyzing

the recently published PsychENCODE data, which profiled

the transcriptome of distinct human brain regions from dif-

ferent developmental stages (Li et al. 2018; Zhu et al. 2018).

Our results suggest that the evolutionary constraints are the

weakest in the early infancy brain and then increase during

development (fig. 4A). This pattern is consistent for different

subregions of the human brain (supplementary fig. S11,

Supplementary Material online) and is conserved in both mon-

key and mouse (fig. 4C and E), which indicates that the early

development of the mammalian brain requires more plasticity

and thus fewer constraints during evolution. Additionally,
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FIG. 4.—Early fetal brain is the least constrained during development. (A, C, and E) Dynamic changes of evolutionary constraints in human, macaque,

and mouse cortex during development. Red dash line represents “birth.” (B, D, and F) Expression levels of “young genes” and “old genes” in mammalian

brains at different developmental periods. P values from pairwise comparisons are indicated.
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consistent with a previous report (Zhang et al. 2011), we

found that the young genes are upregulated in the fetal brain

of humans and monkeys, but not in those of the mouse

(fig. 4B, D, and F).

Discussion

By using single-cell sequencing data from>280,000 cells, we

showed that E–R anticorrelation is well established for all cell

types. At the cellular level, the selection constraints in different

cell types vary with differentiated cells being under more con-

straints. Thus, there is no direct relationship between the se-

lective constraints and the physical distance of the cells and

adjacent cell types may have great variations in terms of their

evolutionary constraints. We further found that the evolution-

ary constraints of neuronal cells are nearly always the stron-

gest among different somatic cell types. At last, we analyzed

the evolutionary constraints of brain at different developmen-

tal stages on tissue level. Although functionally similar brain

regions have similar constraints, the early fetal brain exhibited

the weakest evolutionary constraints and this pattern is con-

served across three species.

The development of single-cell RNA-sequencing technol-

ogy has allowed us to isolate and compare neuronal cells

between species on a large scale. A recent comparison of

different cell types between the cortex of two reptilian species

and those of the mouse/human has suggested that novel ex-

citatory neurons are generated while inhibitory neurons are

mostly conserved during the evolution of amniotes (Tosches

et al. 2018), which has highlighted different evolutionary

pathways of excitatory and inhibitory neurons. In this study,

our results demonstrate that neuronal cells have stronger evo-

lutionary constraints than nonneuronal cells, implicating that

more functional divergence of neuronal cells exists compared

with nonneuronal cells in the nervous systems. The stronger

constraints in neurons are partly due to upregulated neuronal

genes and neurological disease-related genes that evolve

more slowly than other genes in the cell. Our results are con-

sistent with the recent finding that oligodendrocytes have

undergone an accelerated evolution compared with neurons

in the human lineage (Berto et al. 2019). Interestingly, the

study by Berto et al. (2019) observed that human-specific

genes in oligodendrocytes tend to be related to neuropsychi-

atric disorders, highlighting the importance of myelination

and oligodendrocytes for the pathobiology of these disorders

(Berto et al. 2019).

We found that early mammalian brain evolution was highly

plastic compared with later life span stages. Consistent with

an earlier study (Zhang et al. 2011), the human and monkey

brains have more “young” genes upregulated than the

mouse brain, demonstrating accelerated evolution of the pri-

mate infant brain. Additionally, a recent study has shown that

the most considerable transcriptomic divergences between

the human and macaque brains occur during the early stages

of development (Zhu et al. 2018), which is consistent with our

results. In summary, we have shown that the transcriptional

plasticity of the early brain may be one of the key factors

determining the direction of mammalian brain evolution.

Finally, more detailed evolutionary differences between cell

types of different organs are revealed with single-cell se-

quencing technology. Since even within the same organ var-

ious selective constraints among different cell types exist and

those constraints can overlap, it may be of particular impor-

tance to classify and investigate the transcriptional differences

of distinct cell types across multiple organs rather than within

a specific organ. Thus, understanding the evolutionary differ-

ences between cell types has great potential for shedding light

on the pathogenesis of neurological diseases and contributing

to the development of drugs based on the molecular activities

at the single-cell level.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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