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Computational modelling of proteins has been a major catalyst in structural

biology. Bioinformatics groups have exploited the repositories of known

structures to predict high-quality structural models with high efficiency at low

cost. This article provides an overview of comparative modelling, reviews recent

developments and describes resources dedicated to large-scale comparative

modelling of genome sequences. The value of subclustering protein domain

superfamilies to guide the template-selection process is investigated. Some

recent cases in which structural modelling has aided experimental work to

determine very large macromolecular complexes are also cited.

1. Introduction

In May 2017, the Protein Data Bank (PDB; Berman et al.,

2000) celebrated a milestone release of 130 000 entries. There

is still a steady flow of new structures, with more than 100

added each week. However, there remains an ever-widening

gap between sequence and structure space, with more than

85 million protein sequences currently deposited in the

UniProtKB/TrEMBL database (The UniProt Consortium,

2017). Thanks to structural genomics initiatives (Nair et al.,

2009; Terwilliger, 2011; Schwede, 2013), which have deliber-

ately solved the structures of structurally uncharacterized

families, there are increasing numbers of sequences for which

there are homologues of known structure. Various protein

structure modelling approaches have been developed. In this

review, we focus on comparative modelling.

2. Comparative modelling

The most commonly used and most accurate protein structure

modelling method is comparative modelling, which predicts

the structure of an unknown protein using known information

from one or more homologous partners. Comparative

modelling usually involves three steps: (i) the identification of

template structures for modelling the query protein, (ii)

sequence alignment between the template and the query, and

(iii) modelling the structure of the query.

2.1. Template-selection methods

2.1.1. Sequence-based methods. Generally, all of the

template-selection methods involve searching for template
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protein structures from the PDB. Global sequence identity

between the query and templates has been used extensively

as the primary criterion in a search process using BLAST

(Altschul et al., 1990). BLAST aligns two sequences based on

a substitution matrix, the scoring scheme used to align two

amino acids. A substitution matrix captures the probability

with which a specific amino-acid residue mutates to/substitutes

for another over a long period of evolutionary time.

Comparative modelling generally produces a good three-

dimensional model if a homologous template with a global

sequence identity of �30% is used. However, once the

sequence identity falls below 30% (the ‘twilight zone’), the

model quality deteriorates rapidly (Baker & Sali, 2001).

BLAST treats the positions that tend to be conserved or

variable in a protein family with the same weight, so that the

signal becomes weak with distant homologues.

2.1.2. Profile-based methods. Sequence profiles that

manage to capture the pattern embedded in a multiple

sequence alignment of evolutionarily related relatives

improve the sequence signal for template searching and

alignment of the query with the template. Evolutionary

information from homologous proteins was originally

captured in position-specific scoring matrices (PSSMs). For

example, PSI-BLAST (Altschul et al., 1997) uses a PSSM to

score matches between query and database sequences and is

about three times more sensitive than BLAST.

Hidden Markov models (HMMs) are more advanced forms

of sequence profiles. The revolutionary feature of HMMs is

their ability to additionally capture the insertions and dele-

tions that are found in a multiple sequence alignment. In

addition, HMMs can also include predicted secondary-

structure information in the profile. HHsearch (Söding, 2005)

and HMMER (Eddy, 2011) are among two of the most popular

HMM-based methods. These approaches have the ability to

extend the sequence search into the ‘twilight zone’ and find

templates which have high structural similarity to the query

despite low global sequence identity. Robetta (Kim et al., 2004;

Ovchinnikov et al., 2017), BioSerf (Buchan et al., 2013),

SWISS-MODEL (Biasini et al., 2014), nns (Joo et al., 2016) and

MULTICOM (Li et al., 2015) are examples of robust model-

ling servers that use HMM approaches to search for structural

templates.

A more advanced form of sequence profile named condi-

tional random fields (CRF) has also been proposed (Lafferty

et al., 2001). The main advantages of using CRFs over HMMs

is the relaxation of the residue-independence assumptions that

are required by HMMs (for further explanation, see Tang et

al., 2013). CRFs have been applied to various bioinformatic

studies (Zhao et al., 2010; Tang et al., 2013; Ma & Wang, 2015;

Joo et al., 2016).

2.1.3. Other considerations during template selection.

Various studies have highlighted the importance of consid-

ering the physical and structural environment of the template

selected for modelling a particular query sequence such as pH,

temperature, space group and quaternary structure (Fiser,

2004). However, Sadowski and Jones concluded that these

factors do not significantly improve template selection for

single-domain modelling (Sadowski & Jones, 2007). If there is

more than one potential template with comparable sequence

identity, it is preferable to use the template with the best X-ray

resolution, regardless of conditions.

It is also possible to use multiple structural templates in

the modelling process, especially for multi-domain protein

modelling (Cheng, 2008; Meier & Söding, 2015). The inclusion

of additional templates can improve the model quality, parti-

cularly by extending the coverage of the query sequence

(Larsson et al., 2008) or when the templates are structurally

complementary (Chakravarty et al., 2008). Multiple templates

also provide conserved distance constraints, which are not

available to single-template protocols (Cheng, 2008).

However, if the templates are too diverse (i.e. contradictory)

this can affect the quality of the model produced (Chakravarty

et al., 2008; Tress, 2013).

2.2. Sequence–template alignment

Once a structural template has been identified, both the

template and alignment (usually obtained from the template-

searching method) can be submitted to a comparative

modelling program to predict the three-dimensional atomic

coordinates of the query protein. Overall, it is generally

agreed that profile-based alignments produce better quality

models than sequence-based alignments (Yan et al., 2013). In

addition, HMM-based alignments produced by HHsearch

tend to give higher quality models than PSSM-based align-

ments produced by PSI-BLAST (Yan et al., 2013).

Structural information has also been explored to produce a

better sequence alignment, especially for multiple template-

modelling and threading protocols (Pei et al., 2008; Di

Tommaso et al., 2011; Daniels et al., 2012). Threading protocols

work by aligning the target sequence against protein-fold

templates from known structures and evaluating how well the

query aligns with the fold. A typical protein-fold library is

compiled from protein structure databases such as CATH

(Dawson et al., 2017), SCOP (Andreeva et al., 2014) and

ECOD (Cheng et al., 2015). The scoring functions commonly

used capture secondary-structure match, residue–residue

contacts and profile–profile alignment scores. In addition,

composite scoring functions including multiple structural

features (for example solvent accessibility and torsion angles)

are also deemed to be useful (Wu & Zhang, 2008; Yang et al.,

2011). Subsequently, the best-fit alignment is usually gener-

ated with the help of dynamic programming. Some commonly

used methods are LOMETS (Wu & Zhang, 2007; Yang et al.,

2015), the THREADER suite of methods (Lobley et al., 2009;

Buchan & Jones, 2017), SPARKS-X (Yang et al., 2011) and

Raptor-X (Ma et al., 2013).

2.3. Modelling the structure

In 1993, Andrej Sali and Tom Blundell developed

MODELLER, which remains one of the most widely used

comparative modelling methods (Sali & Blundell, 1993). The

major steps in modelling the structure of a query sequence,

based on a template structure, are summarized below. For a
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more detailed account, see the recent reviews by Saxena et al.

(2013) and Tress (2013). Guided by the sequence–template

alignment, comparative modelling methods usually start by

copying the coordinates (structurally conserved regions) from

the template to assemble the basic backbone of the model.

Processing deleted residues between the query and

template sequence involves the removal of residues and

closure of the hole formed by creating the new peptide bond.

For insertions, loop modelling can be performed by searching

through high-resolution fragment libraries (either derived

from the PDB or structural domain resources such as CATH

or SCOP) to find segments that fit the specific part of the

backbone. However, these methods are limited by the fact that

the number of possible conformations increases exponentially

with the length of a loop (and become difficult when the loop

size is >7 residues). By contrast, conformational approaches

construct loops by searching through the conformational

space of possible loop conformations driven by satisfying a

specific energy function (for example stereochemical, distance

or steric constraints). In order to maximize the accuracy of

loop prediction, simulating the correct environment (energy

functions) is key. Approaches to perform this include hybrid

methods which employ both knowledge-based and physics-

based energy functions (for more details, see, for example,

Park et al., 2014), and physics-based energy functions such as

CHARMM36m (Huang et al., 2016).

The next step is side-chain modelling, which involves the

process of refining/adding side chains to the backbone built.

Strategies such as dead-end elimination, Monte Carlo

sampling and simulated annealing are usually used to sample

the most probable rotamer (side-chain conformation), based

on the local conformation of the backbone, from rotamer

libraries such as that used by SCWRL (Krivov et al., 2009).

Once the model has been produced, it is usually refined to

minimize unfavourable collisions between atoms. This is

usually performed by performing energy minimizations

following molecular-dynamics simulations using force fields.

Excessive refinement may cause the model to deviate signifi-

cantly from the original template (for some recent approaches,

see Kim & Kihara, 2016; Park et al., 2016; Lee et al., 2016; Feig,

2016).

Following the introduction of MODELLER, many other

approaches were developed for protein structure prediction.

To assess their performance and to identify which features

work best, an independent assessment initiative was estab-

lished in 1994 (Moult et al., 1995). The Critical Assessment of

Protein Structure Prediction (CASP) is a community-wide

experiment that is held biannually. Whilst CASP1 had only

three categories (comparative modelling, fold recognition

and ab initio modelling), many more categories have been

introduced since then, such as accuracy of predictions for

residue–residue contacts and disordered regions. Other cate-

gories include model-quality assessment, model refinement,

data-assisted prediction, protein complex prediction and,

recently, prediction of biological relevance. All of these

categories are important in structural modelling (Moult et al.,

2016), and we highlight a few of them in this article,

particularly those relating to recent developments in

comparative modelling.

3. Recent developments in structural modelling

Whilst it is outside the scope of this article to provide a

historical review of developments in comparative modelling,

we highlight some recent breakthroughs which have improved

performance. An exciting recent development relates to more

accurate predictions for residue–residue contacts. Residue-

contact information has been used in the past, albeit not very

successfully (i.e. with >80% of false positives; Monastyrskyy et

al., 2014), and whilst these approaches included co-evolution

methods, performance was poor because it was difficult to

separate indirect couplings from direct couplings. In addition,

very sequence-diverse multiple sequence alignments were

typically required. Recently, methods based on direct coupling

analysis have been able to disentangle direct couplings from

indirect couplings (Marks et al., 2011; Jones et al., 2012; Nugent

& Jones, 2012; Kamisetty et al., 2013). Furthermore, in some

cases the problem of obtaining a sufficient number of diverse

sequences can be solved by using metagenome data

(Ovchinnikov et al., 2017).

In addition, machine-learning approaches (recently deep

learning) that utilize features related to the residue type (i.e.

polarity etc.), structural characteristics (i.e. solvent exposure,

secondary structure etc.), sequence separation length between

the residues under consideration and pairwise information

between all of the residues involved also show promise in

contact prediction (Eickholt & Cheng, 2012; Feinauer et al.,

2014; Adhikari & Cheng, 2016).

The best residue-contact predictor in CASP11 (Monas-

tyrskyy et al., 2016) was MetaPSICOV (Jones et al., 2015;

Kosciolek & Jones, 2016), which integrates both co-evolution

and machine-learning methods. Since then, many more

structural groups have started to employ residue contacts

using integrative methods (Skwark et al., 2014; He et al., 2017)

or deep-learning methods (Wang et al., 2017), ultimately using

these data to guide three-dimensional structure modelling. In

the template-free category of CASP11, an accurate structural

model of a 256-residue protein was successfully generated by

incorporating contact information (Monastyrskyy et al., 2016).

In addition, residue-contact data can be used for model

ranking, selection, evaluation and refinement (Adhikari &

Cheng, 2016; Park et al., 2016).

Other recent developments are the application of different

profile-based methods in template identification and sequence

alignment [Markov random fields (Ma et al., 2014) and

conditional random forests (Joo et al., 2016)], the use of

integrated template-based and ab initio approaches (Yang et

al., 2016), and better methods for protein model refinement

with improved energy functions and MD simulations (Kim &

Kihara, 2016; Park et al., 2016; Lee et al., 2016; Della Corte et

al., 2016; Feig, 2016).

Below, we describe some recent developments in the

methods from two structural modelling groups (the Lee group

and the Zhang group) that performed consistently well in the
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template-based modelling category (based on the sum of

Z-scores of different scoring measures) over the last few

rounds of CASPs (CASP9, CASP10, CASP11 and CASP12;

Mariani et al., 2011; Huang et al., 2014; Modi et al., 2016).

The Lee group (Joo et al., 2014, 2016; Joung et al., 2016)

follow the usual comparative modelling procedures. The

modelling pipeline (nns) uses FOLDFINDER, an in-house

method which utilizes profile–profile alignment and predicted

secondary structures, CRFpred, another in-house conditional

random-fields method, and HHsearch to search for structural

templates. The sequence alignments are generated using

CRFalign (Joo et al., 2016), which is based on conditional

random fields. MODELLER (main chain) is employed for

the comparative modelling process. Side-chain modelling is

performed by combining SCWRL4 (Krivov et al., 2009) and

an in-house residue-specific rotamer library. There is also a

refinement step of the models using molecular-dynamics

simulations.

In CASP12, the Lee group employed the new model-quality

assessment method SVMQA to help with template selection

and the model-quality assessment process (Manavalan & Lee,

2017). In addition, a new predicted residue–residue contact-

based energy function (from MetaPSICOV) was added in the

chain-modelling step. The success of the Lee group in CASP is

largely owing to the use of an efficient global optimization

method (finding the global minimum energy conformation for

polypeptides) that is applied at different stages of modelling:

sequence alignment, three-dimensional main-chain modelling

and side-chain remodelling.

The Zhang group has also been a top contender in

template-based modelling for the last few CASP rounds.

The structural modelling of the Zhang group is based on

I-TASSER (Yang et al., 2015), an iterative fragment-based

pipeline (threading). The LOMETS threading method is used

to identify different structural fragments that are similar to the

query structures (Wu & Zhang, 2007). The different fragments

are then reassembled into full-length models using replica-

exchange Monte Carlo simulations. Side-chain modelling is

performed using REMO (Li & Zhang, 2009), which utilizes the

SCWRL library (Krivov et al., 2009). After this, the models are

refined based on the free-energy states and at an atomic level

using fragment-guided molecular-dynamics simulations

(Zhang et al., 2011). Finally, multiple model-quality assess-

ment methods are used to select the best model.

A recent development is the implementation of QUARK

(an in-house ab initio-based approach using small fragments

of less than 20 residues; Xu et al., 2012) into the I-TASSER

pipeline. This new implementation was benchmarked in

CASP11 (‘Zhang’ and ‘Zhang-Server’) and was shown to

improve the overall quality of the models built compared with

the I-TASSER pipeline without using QUARK. In CASP12,

the Zhang group introduced NN-BAYES, a neural network

and naı̈ve Bayes classifier-based residue-contact predictor,

into the QUARK protocol (He et al., 2017). NN-BAYES

collates the data from three machine-learning programs, three

co-evolution programs and two metaservers: MetaPSICOV

(Jones et al., 2015) and STRUCTH (Sun et al., 2015).

Although these two servers are among the top contenders

in structural modelling, there are other highly ranked servers

from CASP11 and CASP12 which the reader is advised to

investigate (see CASP11 and CASP12 for access details; Modi

et al., 2016; http://predictioncenter.org/casp12/zscores_final.cgi).

Reviewing all of these is outside the scope of this article. Most

of the methods and servers assessed in CASP have been

established to cope with individual queries or limited sets of

sequences to be modelled, and none are dedicated to large-

scale comparative modelling of genome sequences. In x4.1, we

review some established resources and a more recent resource

established to provide models for large numbers of genome

sequences.

4. Model-quality assessment methods

A good-quality protein model should resemble a native

protein. Native proteins usually have compact, well packed

three-dimensional structures. The spatial features of the resi-

dues should comply with empirically characterized constraints

on torsional angles captured in Ramachandran plots (Rama-

chandran et al., 1963). Hydrophobic side chains of the protein

are buried to reduce unfavourable contacts with water mole-

cules. Hydrogen bonds, disulfide bridges, salt bridges and

covalent bonds should be present, as these facilitate the

folding and packing of the polypeptide chain.

The methods typically used by structural biologists to check

whether their crystal structures are well determined include

PROCHECK (Laskowski et al., 1993) and MolProbity (Chen

et al., 2010), which determine whether a protein structure has

native-like features. These methods use various approaches

to rule out unlikely protein structures with unfavourable

stereochemical properties such as Ramachandran outliers,

steric clashes, incorrect hydrogen bonds and distorted bond

angles.

From a thermodynamic perspective, native proteins are

always folded in the lowest energy state (Rangwala & Karypis,

2010). Many energy-based programs have been developed to

select the most native-like model, with the lowest energy state,

from decoy sets. Statistical potential energy-based functions

are derived from statistical analysis of the growing numbers of

experimental protein structures. In contrast, physics-based

energy functions use molecular-mechanics force fields of

molecules that take into account bond lengths, torsion angles,

van der Waals forces and electrostatic interactions (Brooks et

al., 1983; Weiner et al., 1984; Scott et al., 1999).

In addition, the quality of protein models can also be

assessed by checking the compatibility of the models produced

with the conservation of the sequence pattern. The core of the

proteins is usually composed of conserved residues. In

contrast, protein surface residues tend to be less conserved,

with more variability (Branden & Tooze, 1999).

The current state-of-the-art model-quality assessment

methods can be divided into two main types: single-model

methods and clustering methods.
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4.1. Single-model methods

Single-model methods use evolutionary information

(Kalman & Ben-Tal, 2010), statistical potentials, physics-based

potentials and combinations of different features (Benkert et

al., 2011; Cao & Cheng, 2016; Singh et al., 2016; Liu et al., 2016)

obtained from only one model to evaluate the model quality

(Wallner & Elofsson, 2003).

The most commonly used statistical potential-based model-

quality assessment method is MODELLER’s DOPE score

(Shen & Sali, 2006). DOPE is an atomic distance-dependent

statistical potential based on a physical reference state that

accounts for the finite size and spherical shape of proteins.

Other statistical potential methods are also available. They

differ in the sample set of known protein structures used, the

protein representation (e.g. all atoms, C� atoms), the spatial

features (e.g. angles, distances, solvent accessibility, inter-

atomic contact areas) and the definition of the reference state

(Dong et al., 2013). Recently, new methods such as GOAP

(Zhou & Skolnick, 2011), SOAP (Dong et al., 2013), DOOP

(Chae et al., 2015) and VoroMQA (Olechnovič & Venclovas,

2017) have been introduced and all have claimed to be more

reliable than their counterparts.

Model-quality assessment methods exploiting machine-

learning (ML) methods are also becoming popular. The major

advantage of ML methods is their ability to take a large

number of features into account simultaneously, often

capturing the hidden relationships among them, which are

hard to deduce using energy-term measures alone. ProQ2

combines evolutionary information, multiple sequence align-

ment data and structural features from the model using a

support vector machine (SVM) to assess the quality (Ray et al.,

2012). The recent ProQ3 uses a deep-learning method to

combine ProQ2 with Rosetta energy terms (Leaver-Fay et al.,

2011) and has been shown to be superior to ProQ2 (Uziela et

al., 2016, 2017). DeepQA is another deep-learning method that

combines physiochemical properties (i.e. secondary-structure

similarity and solvent accessibility) and statistical potential

energy terms (Cao et al., 2016). MQAPRank is a machine-

learning-to-rank method that extracts features from statistical

potentials and the scores obtained from a few model-quality

assessment methods (Jing et al., 2016). SVMQA is an SVM

method that combines eight statistical potential energy terms

and 11 consistency-based terms (between the predicted values

from the sequence of the query protein and the calculated

values from the model built; Manavalan & Lee, 2017).

Besides assessing the model from a global perspective, local

quality assessments of protein models are also available. It is

possible to discriminate between good/bad modelled regions

of a whole protein chain using software such as QMEAN

(Benkert et al., 2008), ProQ2 (Ray et al., 2012) and ModFOLD

(Maghrabi & McGuffin, 2017).

4.2. Clustering methods

In contrast to single-model methods, clustering methods are

based on the structural comparison of multiple models

generated for a single target. All-against-all structural

comparisons are first carried out and the resulting scores are

used to generate an N-dimensional distance matrix based on

the structural distances between each model.

These approaches assume that the best model is the model

structure with the lowest average distance to the rest of the

data set (Konopka et al., 2012). Therefore, after clustering the

models these approaches select the centroid for each cluster.

The best model of the whole decoy data set usually lies within

the largest structurally conserved cluster. A model-quality

score for the model is calculated by averaging the structural

comparison scores obtained from all pairwise comparisons

(model versus model) within the cluster and is usually

followed by normalization of the score. Recent methods that

use clustering approaches include PconsD (Skwark &

Elofsson, 2013), MULTICOM-CONSTRUCT (Cao et al.,

2014) and ModFOLD6_rank/ModFOLD6_cor (Maghrabi &

McGuffin, 2017).

4.3. Recent developments in model-quality assessment

Model-quality assessment by clustering has typically been

superior to other quality-assessment methods. However, these

approaches fail to identify good-quality models if the majority

of the models are of bad quality and are structurally similar to

each other. The other problem with clustering methods is their

high computational cost.

Furthermore, there have recently been many single-model

methods that can achieve better performance than clustering

methods, for example in the CASP category that selects good-

quality models from decoys (http://predictioncenter.org/

casp12/qa_diff2best.cgi). This is probably owing to the rise of

machine-learning methods. SVMQA is an SVM method that is

based on the combination of two independent predictors

trained on the TM score or GDT_TS score (Manavalan & Lee,

2017). Other methods exploit deep learning and machine-

learning-to-rank, which seem to be superior to SVMs (Uziela

et al., 2016, 2017; Cao et al., 2016; Jing et al., 2016).

5. Resources dedicated to large-scale comparative
modelling of genome sequences

As mentioned above, there have been several recent devel-

opments in comparative modelling, and many excellent

servers are now available for biologists wishing to model

the structure of a query protein [for more information on

the servers that are currently highly ranked, see Modi et al.

(2016) or http://predictioncenter.org/casp12/zscores_final.cgi].

Therefore, for the remainder of this article, since the focus in

our group is more related to providing libraries of structural

templates and a library of structural models, we consider

resources providing large repositories of pre-calculated three-

dimensional models. The methods used to generate these

repositories have either not been regularly assessed by CASP

or do not currently rank top in CASP [although some, for

example Phyre2 (Kelley et al., 2015) and pGenThreader

(Lobley et al., 2009) have had overall good rankings for over

20 years]. However, they have been applied to generate large
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or very large libraries of models and can therefore be useful

for larger-scale requests from biologists.

In particular, we focus on four resources that provide pre-

calculated three-dimensional structural models for over

100 000 UniProt sequences (for multiple model organisms)

and for each we describe how the structural models are built.

These resources provide easy access to three-dimensional

structure data, visualize these structures using state-of-the-art

visualization platforms and also provide functional annota-

tions, where available, for example inherited binding-site

information and other information valuable for life-science

researchers.

5.1. ModBase

ModBase (Pieper et al., 2014) was developed by the Sali

group in 1998 and currently contains more than 36 000 000

protein models (5 956 279 unique sequences) from at least 66

species (as of April 2017). �82% of the 170 418 human

transcripts in the database are annotated with structural

models. ModBase uses ModPipe (Eswar et al., 2003), an

automated pipeline, to produce the models. ModPipe utilizes

a whole range of template-selection methods (sequence–

sequence, sequence–profile, profile–profile), including PSI-

BLAST and HHsearch. The alignment obtained from the

template-selection method is then fed into MODELLER for

the modelling process. MODELLER is based on the satis-

faction of spatial restraints theory inspired by NMR spectro-

scopy. These restraints include homology-derived restraints

obtained from the alignment of query sequences and template

structures, stereochemical restraints extracted from the

CHARMM22 molecular force field (Brooks et al., 1983) and

statistical restraints compiled from a list of known protein

structures. Based on the alignment between the query and the

model, a set of spatial restraints are derived, which include

bond distances, bond angles, dihedral angles and van der

Waals repulsions. These are expressed as probability density

functions, which are combined into an objective function used

to calculate the location of each atom in the protein (Sali &

Blundell, 1993). For each model ModBase provides five

different quality-assessment criteria [sequence identity,

GA341 (Melo et al., 2002), normalized DOPE score (Shen &

Sali, 2006), ModPipe Quality Score and TSVMod score

(Eramian et al., 2008)].

In addition to the model quality, the target–template

alignment and sequence identity are also provided. In addi-

tion, some of the entries contain information about putative

ligand-binding sites, SNP annotation and protein–protein

interactions.

5.2. The SWISS-MODEL repository

SWISS-MODEL (Bienert et al., 2017) is another compre-

hensive repository providing three-dimensional structural

models for the 12 most accessed genomes in UniProtKB. It

houses more than 900 000 models for UniProt sequences. Of

the 21 042 human sequences, �75% are annotated with at

least one structural model. The SWISS-MODEL repository

also provides structural models for homo-oligomeric

complexes. All of the homology models were created using the

in-house modelling platform PROMOD3 (Bienert et al.,

2017), which uses BLAST and HHsearch for template

searching. In order to facilitate oligomeric complex modelling,

structural templates in the database are also organized as

quaternary-structure assemblies. The database is updated

weekly and contains more than �81 000 unique sequences in

�180 000 assemblies. QMEAN (Benkert et al., 2008) is used to

assess the quality of the models. As well as model quality, all

models are provided with the target–template alignment and

sequence identity. Some of the entries contain InterPro

functional annotations (Finn et al., 2017). SWISS-MODEL

plans to model more homo-oligomeric complexes, even for

distant relatives, and to possibly include hetero-oligomeric

complexes.

5.3. The Protein Model Portal

The Protein Model Portal is a database which collects both

experimental structures and structural models. As well as

structural models found in the ModBase and SWISS-MODEL

repositories, models generated by some of the NIH-funded

Protein Structure Initiative (PSI) centres are also included.

Based on UniProt release 2017_1, the portal comprises

5 388 221 unique sequences covered by at least one model. By

combining models from different resources, the suppliers of

the Protein Model Portal can apply the same model-quality

assessment and validation criteria to them. Again, each model

is provided with the sequence–template alignment and

sequence identity. The user can also request further assess-

ment of model quality, as the portal provides a submission

interface to other quality-assessment servers such as ModEval

(Eramian et al., 2008), QMEAN (Benkert et al., 2009) and

ModFOLD (Maghrabi & McGuffin, 2017). Furthermore, the

models provided by different resources can be structurally

superposed to analyse the variability amongst them. For any

queries with no currently available structural model, the portal

provides a submission interface to modelling servers such as

I-TASSER (Yang et al., 2016) and Phyre2 (Kelley et al., 2015).

5.4. The Genome3D initiative

Genome3D (Lewis et al., 2015) is a UK-based collaborative

project to annotate genome sequences with structural infor-

mation. The participating partners includes Gene3D (Lam et

al., 2016), SUPERFAMILY (Wilson et al., 2009), Phyre2

(Kelley et al., 2015), VIVACE (Ochoa-Montaño et al., 2015),

pDomTHREADER (Lobley et al., 2009) and BioSerf (Buchan

et al., 2013). Each resource provides models based on either

SCOP or CATH domain structures. Therefore, to facilitate

the comparison of predicted models, Genome3D identifies

matching CATH and SCOP superfamily pairs. Genome3D

uses both homology-based approaches (Gene3D, SUPER-

FAMILY and Phyre2) and threading-based approaches

(FUGUE, pDomTHREADER and Phyre2) to provide struc-

tural annotations for UniProt sequences. Genome3D anno-

tates 94.6% of the 20 195 human sequences with at least one

topical reviews

Acta Cryst. (2017). D73, 628–640 Lam et al. � Large-scale modelling of genome sequences 633



structural domain annotation. In addition to this, 88% of

the 20 195 human sequences are annotated with three-

dimensional structural models. Structural models in the

resource were built by the following comparative modelling

and threading methods.

BioSerf (Buchan et al., 2013) is a fully automated pipeline

that combines comparative modelling, protein threading

and ab initio approaches. BioSerf searches for a suitable

homologous template using PSI-BLAST and HHsearch.

MODELLER is then used to build the model. Protein

threading is performed using the in-house threading methods

pGenTHREADER (Lobley et al., 2009) and pDom-

THREADER (Lobley et al., 2009) guided by the protein

secondary-structure prediction method PSIPRED (Jones,

1999). The FRAGFOLD algorithm is used, where appropriate,

to create ab initio models. FRAGFOLD uses known protein

super-secondary-structural fragments and uses a simulated-

annealing algorithm to assemble the most probable three-

dimensional protein structure (Kleywegt & Jones, 1997).

Recently, the Jones group introduced EigenTHREADER, a

novel fold-recognition method which combines standard

threading methods with their in-house MetaPSICOV contact-

prediction constraints method (Buchan & Jones, 2017).

Phyre2 (Kelley et al., 2015) relies on HHsearch searches.

Once templates have been identified, MODELLER is then

used to predict the most probable model. Amino-acid side

chains are added to the final model using SCRWL (Krivov et

al., 2009). In addition to the comparative modelling pipeline,

Phyre2 also provides multiple-template and ab initio

approaches to model the query. Recently, Phyre2 introduced

PhyrePower, which models queries with distant homology

using contact threading, i.e. pairwise alignment of eigen-

decomposed contact maps (https://hub.docker.com/r/filippis/

phyrepower-docker/). VIVACE (Ochoa-Montaño et al., 2015)

uses the FUGUE environment-specific substitution table and

structure-dependent gap-penalty homology-detection method

(Shi et al., 2001) to search for structural templates from the

TOCCATA library (B. Ochoa-Montaño, R. Bickerton & T. L.

Blundell; http://structure.bioc.cam.ac.uk/toccata). If several

structural templates are matched, they are aligned using

BATON (a streamlined version of COMPARER; Sali &

Blundell, 1990). VIVACE uses the sequence-alignment

module (which uses information from multiple sequences and

structures) implemented in FUGUE (for further details, see

Shi et al., 2001) to align the query with the template. Subse-

quently, the alignment is fed into MODELLER to generate a

model. Both SUPERFAMILY and Gene3D use HMMer3

(Eddy, 2011) to search their template libraries (based on

SCOP and CATH, respectively). Structural models are

created by using the HMM alignment of the sequence to the

best superfamily and are then resolved using MODELLER.

6. Improvements in template selection obtained by
subclustering protein domain superfamilies

As mentioned in x2.1, several approaches are used to identify

a close relative with known structure for use as a template for

comparative modelling. Where very close homologues are

available (�40% sequence identity), it is possible to detect

the closest template using the results returned by BLAST.

However, when only remote homologues are available it is

best to scan against sequence profiles or HMMs constructed

from closely related sets of homologues, for example within a

SCOP or CATH superfamily. The Orengo group recently

developed a subclassification of CATH protein domain

superfamilies that clusters relatives that are likely to have very

similar structures and functions.

Functional families (FunFams) were introduced as a

subclassification of superfamilies inside CATH-Gene3D, a

resource which provides evolutionary classification of struc-

tures and sequences for known protein domains (Lam et al.,

2016; Dawson et al., 2017). When FunFams were used to select

templates for building models of structurally uncharacterized

relatives in 11 large, structurally and functionally diverse

superfamilies in the Structure Function Linkage Database

(SFLD; Akiva et al., 2014), the structural coverage of models

was up to five times greater, for some superfamilies, compared

with selecting targets using a 30% sequence-identity cutoff.

Furthermore, despite the fact that many remote homologues

needed to be used as templates, these models were found to be

of similar quality to those built using close sequence homo-

logues (�30% sequence identity) as parents (Lee et al., 2010).

A recent, more accurate FunFam identification protocol

(FunFHMMer; Das et al., 2015) uses similarities in sequence

patterns, reflecting highly conserved positions and specificity-

determining positions, to guide subclustering and family

detection. Highly conserved positions are generally important

for the stability, folding or function of the protein domain.

Specificity-determining positions are positions that are

conserved within and unique to a particular cluster, sharing a

specific function and usually involved in functional divergence

from other clusters (Abhiman & Sonnhammer, 2005; Rausell

et al., 2010).

Functional purity of the new FunFams was demonstrated

in a number of ways: by validating against experimentally

determined Enzyme Commission (Webb, 1992) and SFLD

(Akiva et al., 2014) annotations and also by checking whether

known functional sites coincide with highly conserved residues

in the multiple sequence alignments of FunFams (Das et al.,

2015). Functional predictions based on FunFams were ranked

amongst the top five methods for the ‘Molecular Function’

category and the ‘Biological Process’ category in the Second

CAFA International Function Prediction experiment (Jiang et

al., 2016). It can also be seen from Fig. 1 that relatives within

FunFams tend to be much more structurally conserved than

relatives across the whole superfamily. To generate this plot,

we clustered all structural domains for each FunFam into

sequence-identity 90% (S90) clusters. A representative was

selected with a length that was closest to the average length of

domains in the cluster and with the best X-ray resolution.

Pairwise structural comparisons between representatives were

performed using the SSAP structure-comparison algorithm

(Taylor & Orengo, 1989). We also compared across super-

families, comparing representatives from 35% sequence
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identity (S35) clusters, selecting representatives in the same

way, again using SSAP to compare them. We took the mean of

normalized r.m.s.d. (n.r.m.s.d.) and SSAP score for the

comparisons. The r.m.s.d. values were normalized based on the

larger of the two domains being compared.

Most pairs of FunFam domains have an n.r.m.s.d. difference

between 0 and 5 Å and an SSAP score between 80 and 100

(the range is 0–100). By contrast, for pairs of superfamily

domains the n.r.m.s.d. values have a wider spread from 0 to

10 Å and the SSAP score differences are between 70 and 90.

The SSAP score and n.r.m.s.d. differences between the groups

were statistically significant (p-value < 2.2 � 10�16; Mann–

Whitney U test), demonstrating greater structural conserva-

tion within FunFams.

6.1. Assessment of CATH FunFams in template selection

The significant structural coherence of the FunFams

suggested that FunFams might be a reasonable classification

level for selecting templates for comparative modelling. To

test their value in template selection, we compared their

performance against the well established template-selection

method HHsearch employed by most of the successful struc-

tural modelling groups in recent CASPs, such as Robetta (Kim

et al., 2004; Ovchinnikov et al., 2017), MULTICOM (Li et al.,

2015) and nns (Joo et al., 2016).

HHsearch scans query sequences against a library of HMMs

(built using HHsuite) and outputs a list of structural matches

and corresponding query–template matches. Our FunFams

pipeline first assigns a query sequence to a FunFam using

HMMer3 (Eddy, 2011) and then selects the best template from

the FunFam based on the sequence identity (the E-value

should be <0.01) and X-ray resolution. For the HHsearch

pipeline, we used HHsearch to scan for the best template,

which was selected using the program’s built-in statistical

measures (E-value and probability of being a true positive).

After this, for both modelling strategies we employed

HHsearch to generate the query–template alignments, and

MODELLER v.9.15 was then used to predict ten models for

each query target for each template-selection method. The

best model was selected based on MODELLER’s built-in

statistical potential: the DOPE score. The quality of the

selected final three-dimensional models was assessed using the

sequence-dependent structural superposition program

TMscore (Zhang & Skolnick, 2004; Xu & Zhang, 2010), which

superposed the three-dimensional model against the native

protein structure. A benchmark data set of 8633 non-

redundant CATH close-homologue targets (query targets that

have sequence relatives with �30% global sequence identity)

and 602 remote-homologue targets (query targets that have

sequence relatives with <30% global sequence identity) were

used.

Overall, FunFams gave higher percentages of good models

compared with HHsearch for both close homologues

[96.4% (HHsearch) versus 98.2% (FunFams)] and remote

homologues [76.6% (HHsearch) versus 93.8% (FunFams),

p-value < 1� 10�19; Mann–Whitney U test]. The results of our

assessment suggest that it is helpful to subclassify homologues

according to likely structural and functional similarity prior to

performing template selection. A comparative modelling

platform that uses both the FunFam and HHsearch template-

searching algorithms has been developed to provide three-

dimensional models for Gene3D and Genome3D. Structural

models have been built for the human (at least one domain for

72% of the sequences) and fly (at least one domain for 70% of

the sequences) genomes. These are currently available from

the Gene3D resource (Lam et al., 2016).

6.2. Assessment of CATH FunFams in template selection
(modelling binary protein–protein interactions)

Since large-scale functional genomics data are accumulating

and suggest the value of systems-based approaches for
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understanding the biological role of a protein, we also

explored the performance of FunFams in modelling binary

protein–protein interactions (i.e. complexes) using

MODELLER. To perform this, we used query sequences from

a publicly available benchmark data set of structures used by

the Interactome3D resource to provide complexes for their

November 2011 release (Mosca et al., 2013), which could be

mapped to CATH. This allowed us to compare our results with

those reported in Mosca et al. (2013), who used BLAST to

select templates, followed by MODELLER to model

complexes, for the same data set. We also built models for a

publicly available benchmark sequence set in the May 2015

release of Interactome3D, which could be mapped to CATH

domains. The BLAST-based protocol reported in Mosca et al.

(2013) only builds models if there is a structural template from

a close homologue with a minimum global sequence identity

of 40%. We selected protein–protein interactions (PPIs) for

which the query PPIs had been classified in CATH and a

structural template could be found for both chains. The PPI

sequence subset modelled by FunFams was slightly more

difficult overall than the set modelled by the BLAST protocol,

as a quarter of the query targets share a sequence identity of

<40% with the closest template.

We found a significant improvement in model quality using

templates selected by the FunFam protocol compared with a

BLAST strategy (see Fig. 2). For the FunFam protocol, 89%

and 84% of the fly and human binary PPIs are associated with

medium- or high-quality models. In contrast, the top-ranked

models produced by the BLAST strategy were medium to

high quality for only 55% and 52% of the fly and human

interactions, respectively. The FunFam protocol managed to

produce 30% more medium/high-quality models than a

protocol based on BLAST. Furthermore, a higher proportion

of the models produced by the FunFam protocol (66%
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Figure 2
Comparison of the quality of the top-ranked models produced by modelling protocols using functional families (FunFams) and a BLAST-based strategy.
The models were assessed by perfoming a structural comparison with the known protein complexes. We used the assessment criteria adopted by the
Critical Assessment of Prediction of Interactions (CAPRI) to classify the models into different categories based on the interface r.m.s.d. (i.r.m.s.d.) and
fraction of native residue–residue contacts (Fnat) (Méndez et al., 2003).



compared with 28%) are of high quality, again suggesting that

it may also be valuable to use a functional family-based

protocol to guide template selection in binary protein–protein

interaction modelling.

7. Uses of structural modelling in experimental studies

Below, we highlight a few selected examples of recent devel-

opments in techniques that exploit comparative models to

improve the structural determination or structural coverage of

large-scale macromolecular assemblies.

7.1. Facilitation of cryo-EM density map fitting with
homology models

New developments in cryo-electron microscopy (cryo-EM)

have meant that this approach is increasingly used for the

protein structure determination of large macromolecular

complexes and assemblies. One major problem with cryo-EM

is the low resolution of the density maps that are produced. To

help with the interpretation of these density maps, they are

usually fitted onto experimentally solved structures. However,

owing to the low number of solved structures, it can sometimes

be hard to find a suitable template. In 2005, the Topf group

demonstrated that it is feasible to use comparative models for

the fitting process. They subsequently developed a web server

named CHOYCE (Rawi et al., 2010) which performs

homology modelling (MODELLER) and fitting into cryo-EM

maps. The server allows the user to select the most accurate

models (based on the DOPE score).

For those adventurous users who prefer to perform the

modelling manually, Allen and Stokes exemplified the steps

involved from building the structural models to the fitting of

models to the density map using an integral membrane

protein, CopA. In addition to this, they also illustrated how to

dock additional components into the models using a compu-

tational approach (Allen & Stokes, 2013).

Gorgon (Baker et al., 2016) can model not only a protein

structure but entire macromolecular assemblies. For example,

the C� backbone model for every protein component in the

ribosome (from an �4.5 Å resolution cryo-EM map) was

automatically built in less than a day. Gorgon uses ab initio

modelling, feature extraction and rigid-body and flexible

fitting for model building. It also includes the use of statistical

measures to evaluate the fit of an atomic model to the cryo-

EM density map.

7.2. Integrative structural biology

Integrative structural biology is a new field which tries to

determine the three-dimensional structures of proteins by

using the ensembles produced by experimental methods and

computational approaches (Ward et al., 2013). This is espe-

cially useful for proteins that are not crystallizable, are in-

soluble, are too large or too small or are conformationally

heterogeneous (Sali et al., 2015).

Shi and coworkers used a refined integrative method that

combines information generated from electron microscopy,

X-ray crystallography and comparative structure modelling to

provide a clear structural view of the Nup84 nucleoporin

complex. This complex is a stable heteroheptameric (seven

nucleoporins) protein complex of �600 kDa from budding

yeast (Shi et al., 2014).

Another interesting example is the structure of human

prolactin receptor solved by Bugge and coworkers in 2016.

This was the first ever full view of a class I cytokine receptor.

Class I cytokine receptors are generally considered to be key

drug targets. The comparative modelling tool MODELLER

was employed to integrate structural data from NMR spec-

troscopy, small-angle X-ray scattering and native mass spec-

trometry to generate a structural model of the receptor. The

structural model was generated by assembling all of the

individual domains of the structure as overlapping segments

(Bugge et al., 2016).

8. Concluding remarks

The last few years have been an exciting era for the protein

structural modelling community. There have been substantial

improvements in residue-contact prediction thanks to the use

of direct coupling analysis, better statistical machine learning

and the huge amount of new sequence data that is being

provided by metagenome analyses. Many groups are now

employing residue-contact prediction to enhance the perfor-

mance of their methods. Better profile methods such as

conditional random forest and Markov random fields have

improved the accuracy of the template-selection process. In

addition, we have demonstrated the value of organizing

domain superfamilies into functional families (CATH

FunFams) for template selection. CATH FunFams group

relatives that are highly likely to be of similar structure and

function. They are generated using a new functional sub-

classification in CATH-Gene3D, which constrains clustering of

relatives by ensuring that any new relatives joining a particular

cluster match the highly conserved functional determinants

for that cluster (for example likely specificity-determining

residues that influence the type of compounds bound or

protein interactions). The improvement in accuracy for

template selection relative to the HMM-based strategy used

by HHsearch is therefore likely to be owing to the fact that the

FunFam template-selection process only allows very remote

relatives to be selected if they share the same or highly similar

residues at key functional sites. Although HHsearch uses a

powerful search strategy for remote homologues, there is no

explicit constraint to ensure that equivalent functional resi-

dues are matched.

As well as improvements in residue-contact prediction,

there have also been improvements in the structural refine-

ment category, with improved energy functions and MD

simulations (for a recent review on structural refinement, see

Feig, 2017). There are also promising recent developments in

template-free modelling (for a review, see Kc, 2016). Finally,

there has been an increase in the performance of single model-

based model-quality assessment methods, thanks to the use of
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integrated approaches and promising new approaches using

deep learning.
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