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Abstract: Beauvericin (BEA) is a cyclodepsipeptide mycotoxin, showing insecticidal, antibiotic and
antimicrobial activities, as well as inducing apoptosis of cancer cell lines. BEA can be produced
by multiple fungal species, including saprotrophs, plant, insect and human pathogens, particularly
belonging to Fusarium, Beauveria and Isaria genera. The ability of Trichoderma species to produce BEA
was until now uncertain. Biosynthesis of BEA is governed by a non-ribosomal peptide synthase
(NRPS), known as beauvericin synthase (BEAS), which appears to present considerable divergence
among different fungal species. In the present study we compared the production of beauvericin
among Fusarium and Trichoderma strains using UPLC methods. BEAS fragments were sequenced and
analyzed to examine the level of the gene’s divergence between these two genera and confirm the
presence of active BEAS copy in Trichoderma. Seventeen strains of twelve species were studied and
phylogenetic analysis showed distinctive grouping of Fusarium and Trichoderma strains. The highest
producers of beauvericin were F. proliferatum and F. nygamai. Trichoderma strains of three species
(T. atroviride, T. viride, T. koningiopsis) were minor BEA producers. The study showed beauvericin
production by Fusarium and Trichoderma species and high variance of the non-ribosomal peptide
synthase gene among fungal species from the Hypocreales order.
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1. Introduction

Beauvericin (BEA) is one of the main secondary metabolites from the cyclodepsipeptide group,
consisting of three alternating D-2-hydroxyisovaleric (D-Hiv) acids and three N-methyl-L-phenylalanine
residues (Figure 1) [1–3]. It has been proven in several research papers that BEA has many analogues,
including naturally occurring beauvericins as well as precursor-directed beauvericins, which means that
the corresponding amino acid precursor was added to the growing medium for their production [4–8].
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Figure 1. Chemical structure of beauvericin.

BEA shows a wide range of biological activities, including insecticidal, antibiotic and antimicrobial
activity against Mycobacterium tuberculosis and Plasmodium falciparum [5,9–11]. It can also be used
as a co-drug with other antifungal compounds to treat fungal infections [8,12]. By activating
calcium-sensitive cell apoptotic pathways, beauvericin induces apoptosis of cancer cell lines, hence,
it can be used as a strong cytotoxic compound [7,9,10]. Because of its structural and ionophoric
properties, this mycotoxin transports monovalent cations across the membranes and can be a free
carrier that uncouples oxidative phosphorylation [2,13].

BEA biosynthesis by Beauveria bassiana was first reported by Hamill et al. [14]. The metabolite
is also produced by other entomopathogenic fungi, such as Isaria fumosorosea, I. farinosa, I. tenuipes,
to mention just a few [4,15,16], and also by phytopathogenic fungi such as Fusarium, belonging to the
Hypocreales order [17–22]. On the other hand, Trichoderma species belong to this order, and Trichoderma
fungi were not described earlier as beauvericin producers. However, the presence of the BEAS gene in
the Trichoderma genome was reported [23].

Biosynthesis of BEA is assembled by the non-ribosomal peptide synthase (NRPS), known as
beauvericin synthase (BEAS). BEAS with a molecular mass of approximately 250 kDa was described
for the first time by Peeters et al. [24] in Beauveria bassiana. However, the beauvericin gene cluster ( bp,
from B. bassiana), including a 9570 bp gene (bbBeas), encoding a putative cyclooligomer depsipeptide
synthase (CODS), was reported by Xu et al. [11]. The molecular weight of bbBEAS (351,889 Da)
designated by Xu et al. is higher by about 100 kDa than beauvericin synthase estimated earlier by
Peeters et al. [24]. As for the Fusarium genus, a 9413 bp beauvericin synthase gene (fpBeas) was cloned
and characterized for the first time by Zhang [25] and coworkers from Fusarium proliferatum.

As a whole, fungal NRPSs are large multidomain proteins (M = 347 kDa), organized in
successive functional modules [11,25]. Each subsequent module is responsible for incorporating
the proteinogenic and non-protein amino acids, along with carboxyl and hydroxyl acids, into the
growing chain of the depsipeptide, which is eventually finalized as a mature cyclodepsipeptide [25].
While beauvericin synthase preferably accepts N-methyl-L-phenylalanine, the compound can be easily
replaced by other hydrophobic amino acids such as leucine, norleucine, isoleucine, allylglycine
and 2-amino-4-methylhex-4-enoic acid. Moreover, ortho-, meta- and para-fluoro derivatives of
N-methyl-L-phenylalanine may be substituted in vitro [24].

A minimal module contains the three distinctly folded catalytic domains: (A) the adenylation
domain responsible for recognition and activation of the substrate through adenylation with ATP, (T or
PCP) thiolation or peptidyl carrier protein, which are involved in binding of the activated substrate
to a 4′-phosphopantetheine (PP) cofactor through a thioester bond and transfer the substrate to the
active sites of the last (C) condensation domain, were catalyzing the peptide bond (C-N) between
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the elongated chain and the activated amino acid is performed. Moreover, several other domains
involved in chain construction have been identified, such as (M) methyltransferase, (E) epimerase, (Cy)
heterocyclization and oxidation (Ox) domains, which modify the enzyme-bound precursors or extended
peptide intermediates at various stages of the process. The (TE) thioesterase domain is responsible for
the full-length NRPS product release by giving rise to free acids, lactones, or lactams [11,25–27].

In the present study, we compared the production of beauvericin among selected Trichoderma
and Fusarium strains, concerning the comparative analysis of their partial BEAS homolog sequences,
to gain an insight into the diversification and toxin profile associated with BEAS genes in Trichoderma
and Fusarium genera.

2. Materials and Methods

2.1. Fungal Strains, Media and Growth Conditions

All seventeen Fusarium and Trichoderma strains (Table 1) investigated in this study were
characterized earlier [28–32] and deposited in the fungal strain collection of the Institute of Plant
Genetics, Polish Academy of Sciences, Poznań, Poland. Purified mycelia of individual fungi were
cultivated on plates with potato dextrose agar medium (PDA, Oxoid, Basingstoke, UK) and after seven
days collected for genomic DNA extraction. For quantitative beauvericin analysis, fourteen-day-old
pure rice cultures of each fungal species were prepared in three replications [22].

Table 1. Characterization of studied Fusarium and Trichoderma strains.

Species Strain Source/Host References

T. atroviride AN240 decaying wood [28]

T. viride AN255 decaying wood [29]

T. koningiopsis AN251 decaying wood [28]

T. koningiopsis AN143 decaying wood [30]

T. viride AN242 decaying wood [28]

T. gamsii AN327 decaying wood [28]

T. longipile AN359 decaying wood [28]

T. viride AN421 decaying wood [28]

T. atroviride AN528 decaying wood Present study

T. paraviridescens AN494 decaying wood [28]

T. gamsii AN550 decaying wood [30]

F. proliferatum KF3566 Oryza sativa [31]

F. oxysporum KF3386 Ananas comosus [32]

F. concentricum KF3406 Ananas comosus [32]

F. polyphialidicum KF3564 Ananas comosus [32]

F. nygamai KF337 Cajanus indicus [31]

F. guttiforme KF3327 Ananas comosus [32]

2.2. DNA Extraction, Molecular Identification, PCR Primers, Cycling Profiles and DNA Sequencing

ThegenomicDNAextractionwascarriedoutusingamodifiedmethodwithhexadecyltrimethylammonium
bromide (CTAB), according to Gorczyca et al. [33]. The fungal identification was performed on the basis
of the sequence analysis of a variable fragment of the translation elongation factor 1α gene (tef -1α).
The beauvericin synthase gene (BEAS) was partially amplified using a BEA_F2/BEA_R2 degenerate
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primer pair designed on basis of a Fusarium enniatin/beauvericin synthases sequence, as well as the
more distant homologs available in the annotated genomes of Trichoderma atroviride and T. virens.
The resulting marker targeted the conserved methyltransferase domain nested between the 8th and
9th core motifs of the adenylation domain (second functional module). All primers are described in
Table 2.

Polymerase chain reactions (PCRs) were carried out using Phire II HotStart Taq DNA polymerase
(Thermo Scientific, Espoo, Finland). The conditions for PCR amplification were described earlier by
Tomczyk et al. [34].

For sequence analysis, PCR-amplified DNA fragments were purified with exonuclease I (Thermo
Scientific, Espoo, Finland) and FastAP shrimp alkaline phosphatase (Thermo Scientific, Espoo, Finland);
afterwards they were labeled using forward primer and the BigDyeTerminator 3.1 kit (Applied
Biosystems, Foster City, CA, USA) and subsequently precipitated with 96% ethanol. according to
Kozłowska et al. [35].

Table 2. PCR primers used in this study.

Marker 5′ > 3′ Sequence Temperature of
Annealing (◦C)

Amplicon Size
(bp) Reference

Ef728M
TefR1

CATCGAGAAGTTCGAGAAGG
GCCATCCTTGGAGATACCAGC 63 600 [36,37]

BEA_F2
BEA_R2

TGGACDTCHATGTAYGAYGG
GGCTCRACRAGMARYTCYTC 61 570 Present study

2.3. Sequence Analyses and Phylogeny Reconstruction

PCR amplicons were sequenced on Applied Biosystems 3130 apparatus. In order to validate
amplicon correctness, the sequences were checked against the reference GenBank sequences of
Hypocreales fungi (BLASTN with default settings).

CLUSTALW was used to align the sequences [38], and subsequently all gap-containing positions
were curated and phylogeny reconstructed using MEGA7 software [39] (maximum parsimony approach,
enabled closest neighbor interchange heuristics with default settings, 1000 bootstrap iterations).

2.4. Mycotoxin Analyses

2.4.1. Chemicals

A Mili-Q system (Milipore, Bedford, MA, USA) was used to supply water for experiments;
all required chemicals for LC-MS analysis were obtained from Sigma-Aldrich (St. Louis, MO, USA)
including the beauvericin mass standard (>99%).

2.4.2. Extraction, Purification and Liquid Chromatography Mass Spectrometry Analyses

Beauvericin from pure rice cultures (15 g) of each fungal species was extracted and purified
according to previous research conducted by Stępień and Waśkiewicz [31]. The final methanolic
solution (2 mL) was filtered using a 0.20 µm Waters HV membrane filter before injection into the
UPLC-triple quadrupole mass spectrometer (TQD) system for quantitative analysis. An LC–HRMS/MS
spectrum from higher collision dissociation of the [M + Na]+ ion and LC-HRMS chromatogram
(±5 ppm) of the [M + NH4]+ ion of beauvericin were presented in previous work [4,40]. Moreover,
the fragmentation of the sodiated molecular ion (MS/MS) from beauvericin was performed in full-scan
mode (m/z 150–1200), according to Urbaniak et al. [4,40].
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The analytical system consisted of the Aquity UPLC chromatograph (Waters, Manchester, MA,
USA), electrospray ionization triple quadrupole mass spectrometer (TQD) (Waters, Manchester,
MA, USA) in positive mode and chromatographic column Waters Aquity UPLC HSS T3—1.8 µm,
100 × 2.1 mm/ID (Waters, Manchester, MA, USA). Mobile phase compositions were methanol with
0.1% formic acid (line A) and water contained 0.1% formic acid and 2 mM ammonium formate (line B),
with the following gradient: from 10 to 90% A in 8 min, then 90% A for 2 min, and return to initial
conditions in 2 min. The flow rate was 0.4 mL/min at room temperature, with an injection volume of
3 µL. BEA was identified by comparing the retention time and m/z value obtained by MS and MS2 with
the mass spectra of the corresponding standard tested under the same conditions (Table 3). For data
processing EmpowerTM 2 software was used (Waters, Manchester, UK).

Table 3. Parent and daughter ions, collision energy and limit of detection (LOD) and quantification
(LOQ) (ng/g) for beauvericin.

Compound
Parent Ion

(m/z)
[M+NH4]+

Primary
Daughter
Ion (m/z)

Secondary
Daughter
Ion (m/z)

Collision
Energy (eV) LOD a (ng/g) LOQ b (ng/g)

BEA 801.2 784.0 244.1 * 28 1 3

* Transitions used for quantification. a Limit of detection (LOD). b Limit of quantification (LOQ).

3. Results and Discussion

3.1. Fungal Species Identification

Strains representing six different fusarial species, as well as six Trichoderma genus members
(17 isolates in total) were identified and subject to further analysis. Fusarium strains were isolated as
plant pathogens from three different host species, and Trichoderma strains as saprotrophs from decaying
wood (the entire set is summarized in Table 1). Fungi from Fusarium genus are cosmopolitan pathogens
and possess the ability to colonize a wide range of hosts (e.g., wheat, maize, garlic, asparagus, pineapple)
and cause devastating diseases among the plant kingdom [17,22,32,33,41–44]. In the agricultural context,
the most known Fusarium diseases are Fusarium head blight (FHB), Fusarium ear rot, and Fusarium wilt,
which are difficult to control and generate significant losses in plant production [21,45–48]. Moreover,
fusaria are known to produce numerous, different secondary metabolites, such as the mycotoxins:
deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN), beauvericin (BEA), enniatins (ENNs),
fumonisins B (FBs) and moniliformin (MON). Those toxic compounds are harmful to animals and
humans even in low concentrations, may accumulate in plant crops and, thus, are introduced into the
food chain in a cascading way [21,49–52].

In our study, all investigated Trichoderma strains were isolated from decaying wood. Most
Trichoderma spp. are saprotrophic and can colonize a variety of niches, which is greatly facilitated by
the synthesis of various lytic enzymes, like cellulases and xylanases [28,53–55]. Because of their ability
to colonize the rhizosphere and to penetrate the roots, fungi from Trichoderma genus as opportunistic
symbionts may exert positive effects on plant growth, nutrient assimilation, and systemic resistance
through the control of numerous plant-pathogenic fungi, (including Fusaria) [56–59]. They also show
antimicrobial or mycoparasitic activities and, to facilitate these activities, produce various active
secondary metabolites of potential use as antibiotics or anti-cancer drugs [60,61].

Species identification was based on the partial tef -1α gene sequences, positioned against
the reference sequences deposited in the NCBI GenBank database. All species were identified in
agreement with the initial morphological assessment. A sequence from Beauveria bassiana (GenBank
Acc. KX911207.1) was added to the subsequent phylogenetic analysis as an outgroup (Figure 2).
The molecular identification based on the partial tef -1α gene has been extensively used in past
phylogenetic studies of Fusarium and Trichoderma species [30,57,62–65]. Nevertheless, the biosynthetic
genes from secondary metabolite gene clusters are receiving attention as reliable, contextual
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phylogenetic markers e.g., within the producing species complexes [66]. The maximum parsimony
reconstruction allowed for the discrimination of the fungal species boundaries and has shown two
divided groups of fungi on the dendrogram. In this reconstruction, representative isolates from
Fusarium genus appear more closely related than strains from Trichoderma genus, possible due to
different ecological niches/lifestyle preferences covered by the analyzed part of the IPG PAS collection
(Figure 2). While the first group is represented by phytopathogenic Fusarium strains, the saprotrophic
Trichoderma strains represented the second group.J. Fungi 2020, 6, x FOR PEER REVIEW 6 of 15 
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Figure 2. The most parsimonious tree for 6 Fusarium and 11 Trichoderma strains used in the study, based
on the translation elongation factor 1α (tef -1α) sequences. F. concentricum (GenBank Acc. MT010992.1),
F. nygamai (GenBank Acc. MT011009.1), F. oxysporum (GenBank Acc. MN386738.1), F. guttiforme
(GenBank Acc. AF160297), F. polyphialidicum (GenBank Acc. GQ425229.1), F. proliferatum (GenBank Acc.
JF740779.1), T. atroviride (GenBank Acc. MN520053.1), T. viride (GenBank Acc. KJ665771.1), T. gamsii
(GenBank Acc. JN715613.1), T. longipile (GenBank Acc. KJ665558.1), T. koningiopsis (GenBank Acc.
JQ040440.1), T. paraviridescens (GenBank Acc. MF782846.1) and B. bassiana (GenBank Acc. KX911207.1)
sequences were included as the reference, as well as for outgrouping. The maximum parsimony
approach and bootstrap test (1000 replicates) were applied.

3.2. Non-Ribosomal Peptide Synthase Genes Divergence

The sequenced PCR-amplified fragments represented one region of the beauvericin synthase
gene and were supplemented by a number of reference cyclic peptide synthase. The entire set
was then aligned using the ClustalW algorithm (within MEGA 7 software). The aligned sequences,
including partial reference sequences (11 representing Beauveria, Fusarium and Trichoderma genera),
trimmed to the amplified region are attached as supplementary material to this work (Figure S1).



J. Fungi 2020, 6, 288 7 of 15

A maximum parsimony dendrogram was then calculated for the beauvericin synthase (BEAS) gene
fragments obtained with the BEA_F2/BEA_R2 primers in the different isolates representing both
beauvericin-producing and non-producer groups amongst analyzed isolates (Figure 3). While the
analysis based on a partial sequence, is by necessity limited, the context of available full length reference
sequences (in particular Trichoderma sp. exemplars) as well as positioning in the functionally crucial
inner fragment of the sequence and the degree of support for the resulting topology is sufficient to
support several conclusions.J. Fungi 2020, 6, x FOR PEER REVIEW 8 of 15 
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Figure 3. The most parsimonious tree created for a partial beauvericin synthase (BEAS) gene sequence
obtained with BEA_F2 andBEA_R2 primers from 17 strains of Fusarium and Trichoderma species. B. bassiana
(GenBank Acc. EU886196.1; JQ617289.1), F. proliferatum (GenBank Acc. JF826561.1— G. intermedia),
F. scirpi (GenBank Acc. CAA79245.2), F. venenatum (GenBank Acc. JX975482.1), F. verticillioides (GenBank
Acc. XM018905944.1), F. oxysporum (GenBank Acc. KP000028.1; GU294760.1; EGU75688.1), T. atroviride
(JGI ID: Triat1.e_gw1.1.2949.1) and T. viride (JGI ID: Trive1.e_gw1.16.170.1) sequences were included as
the reference, as well as for outgrouping. The maximum parsimony approach and bootstrap test were
applied (1000 replicates). “P” producer or “NP” non-producer of beauvericin.

Three divided groups can be observed, the first one consisting of Trichoderma isolates, the second
encompassing most fusarial strains and the third comprised of B. bassiana and F. polyphialidicum
(KF3564) strains. The sequences of Trichoderma spp. show high nucleotide similarities, between 91%
and 100%. In two cases, the obtained sequence fragments suggest that pseudogenisation of synthase
has already occurred (frameshift mutations in the amplicons from non-producing isolates—AN 421
and AN 359) The sequences of Fusarium spp. show some variance, however the amplicons obtained
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from F. proliferatum (KF3566) and F. concentricum (KF3406) strains showed high similarity at about 99%
of identical bases. The Genbank-derived sequence of BEAS from F. oxysporum (GU294760.1) showed
considerable divergence, grouping with the reference enniatin synthetases from Fusarium equiseti and
F. oxysporum f. cucumerinum (Figure 3). This would suggest that not only are there distinguishable
alleles of BEAS and ESYN but also that both variants can be found in the strains of the same species.
Additionally, based on the phylogeny, in some cases, the earlier similarity-based annotations of synthase
products referenced in sequence databases, might need a revision.

The hypothesis of coexisting ENNS/BEAS presence is in line with the findings described in the
previous work of Stępien and Waśkiewicz [31]. In that study, Esyn1/Esyn2 and beas_1/beas_2 primers
were used to obtain sequences of two different regions of the enniatin synthase gene (Esyn1) in various
genotypes of Fusarium fungi. The phylogenetic analysis clearly showed the divided groups on enniatin
and beauvericin producers and revealed that the majority of the strains produced a mixture of BEA
and ENNs. In this study, we designed a novel marker based on the availability of Trichoderma genome
sequences, including beauvericin synthase homologs. We selected the nested methyltransferase
domain present in the adenylation domain, in view of its position in the conserved core of the coding
sequence as well as mechanical differences between enniatin and beauvericin synthases. In enniatin
synthase the A2 domains activate and load branched-chain amino acids onto the twin T2 domains
within module 2, while BEAS is specific for phenylalanine and closely integrates with the nested
N-methyltransferase domain in question [11]. Notably, similar studies were previously performed
by Liuzzi et al. [67], where structural determinants in two segments of A1 and A2 domains were
investigated to discriminate ESYN1 homologs related to the production of enniatins and beauvericin.

Nowadays, multiple partial sequences of the enniatin synthase gene from different fungal species
have been published, however, only a few reports are available on the structure of the divergent
beauvericin synthase genes [1,31,40,67–70]. Beauvericin-producing species have been identified by
cloning and characterization of the respective biosynthetic genes in B. bassiana [11,24], F. venenatum [71]
and F. proliferatum [25]. For Trichoderma, an earlier research paper has been published, where authors
described the reference sequence as “similar to the BEAS gene” based on the pan-genomic analysis
(Triat1.e_gw1.1.2949.1, Trive1.e_gw1.16.170.1, utilized in our analyses) [23]. Nevertheless, there is a
constant lack of studies involving multiple Trichoderma species with respect to this biosynthetic cluster,
and there are no reports on beauvericin synthesis by Trichoderma sp. available, in conjunction with
analysis of the presence of putative synthase homologs. Therefore, the studies on the beauvericin
synthase gene cluster are, in our opinion, still informative and worth consideration even in the
post-genomic era.

3.3. In Vitro BEA Biosynthesis

Fusarium fungi are cosmopolitan pathogens and possess the ability to colonize a wide range of
crop plants. Moreover, they produce a large number of mycotoxins, including beauvericin, which can
contaminate cereal grains, as well as whole plants [21,44,72–74]. Therefore, it is essential to study the
abilities of these phytopathogens for secondary metabolites production. On the other hand, fungi from
the Trichoderma genus also appear to produce BEA, despite the fact that they are not phytopathogenic,
displaying saprotrophic or endophytic types of growth [75,76]. Amounts of beauvericin produced by
investigated fungal strains were measured using the UPLC method, and the results were summarized
in Table 4, along with standard deviations calculated for the results obtained for three replicates of
each fungal culture. Moreover, the LC–HRMS/MS spectrum from higher collision dissociation of the
[M + Na]+ ion of beauvericin was added to the supplementary data (Figure S2).
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Table 4. Mean concentrations with standard deviations of beauvericin (µg/g) produced in vitro by
studied Fusarium and Trichoderma strains.

Species Strain Concentration of
Beauvericin [µg/g] References

T. atroviride AN240 8.78 ± 0.92 Present study

T. viride AN255 3.02 ± 0.41 Present study

T. koningiopsis AN251 3.85 ± 2.77 Present study

T. koningiopsis AN143 4.22 ± 0.39 Present study

T. viride AN242 2.74 ± 0.35 Present study

T. gamsii AN327 ND Present study

T. longipile AN359 ND Present study

T. viride AN421 ND Present study

T. atroviride AN528 5.54 ± 0.46 Present study

T. paraviridescens AN494 ND Present study

T. gamsii AN550 ND Present study

F. proliferatum KF 3566 90.85 ± 10.21 [31]

F. oxysporum KF 3386 ND [32]

F. concentricum KF 3406 0.51 ± 0.06 [32]

F. polyphialidicum KF 3564 ND [32]

F. nygamai KF 337 22.86 ± 2.66 [31]

F. guttiforme KF 3327 7.70 ± 1.15 [32]

The most efficient producers of beauvericin were found among the Fusarium species, which was
not surprising because of their pathogenic abilities. Two Fusarium strains synthesized beauvericin
in the highest amounts—F. proliferatum/KF3566 (90 µg/g) and F. nygamai/KF337 (22.86 µg/g). In rice
culture samples of F. oxysporum and F. polyphialidicum BEA was not detected. This result can be
explained by the fact that both F. oxysporum and F. polyphialidicum can change the niches between plant
and soil to become non-pathogenic fungi [77–80]. Only six out of eleven investigated Trichoderma
strains produced beauvericin in minor amounts on this particular substrate: T. atroviride/AN240
(8.78 µg/g), T. viride/AN255 (3.02 µg/g), T. koningiopsis/AN251 (3.85 µg/g), T. koningiopsis/AN143
(4.22 µg/g), T. viride/AN242 (2.74 µg/g) and T. atroviride/AN528 (5.54 µg/g). The results of low BEA
production by Trichoderma spp. can suggest that these fungi are characterized by the opportunistic
and non-pathogenic style of life [81,82]. It has been shown that Trichoderma fungi possess the ability to
form mutualistic endophytic relationships with plants, and in this case the production of threatening
mycotoxin is not needed and may even be suppressed.

Fungi from the Trichoderma genus have been investigated as promising biocontrol agents against
Fusarium species. Trichoderma may suppress Fusarium growth in the plant and affect mycotoxin
production by these phytopathogenic fungi [57,83,84]. Błaszczyk et al. [57] noticed that three different
Trichoderma strains (T. atroviride, T. koningiopsis and T. viride) decreased beauvericin production by
F. temperatum. On the other hand, Rojo et al. [84] did not detect significant differences in BEA production
between the control culture—the F. proliferatum strain alone and when T. harzianum or T. longibrachiatum
strains were added as antagonists. This contrast in observations can be explained by the complexity of
factors that may have an influence on beauvericin biosynthesis. Fungicides, weather, and the type
of substrate or growing conditions used can have an impact on BEA production [20,72]. Epigenetic
or genetic changes such as pseudogenization of a silent cluster can occur gradually or rapidly
(e.g., via the putative frameshift mutations observed during our analysis), which in future work can be
investigated via profiling of transcript and protein product expression. In the context of plant disease
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it is worth noting that while beauvericin is known to be a virulence factor in entomopathogenicity
and not phytopathogenicity, the ubiquity of certain fusaria as endophytes (e.g., [85]) and possibility of
opportunistic entomopathogenicity ([86]) in the genus suggests that the production of beauvericin could
allow for successful competition with other organisms (insects, fungi and bacteria) in a plant-associated
context in the absence of toxicity to host plants.

Additionally, it is important to note that the amount of beauvericin in the substrate may
depend on its composition. BEA is easily dissolved in water and degraded by fungal enzymes,
with likely resistance in producers/former producers. Moreover, it can be modified towards various
derivative/similar compounds due to the enzyme’s low substrate specificity towards branched-chain
amino acids and the relative abundance of the enzyme’s substrates in the cellular pool [87]. Nowadays,
over 17 various beauvericin analogs have been described differing in chain composition [4,40].
Beauvericin analogs may form naturally or by adding the amino acid precursor to the medium.
The possibility of biotransformation by an unrelated pathway is likewise to be considered [4–8,40].
Although environmental, biological, and chemical factors are important in the regulation of beauvericin
synthesis, genetic determinants play a critical role. Not only are primary genes encoding the enzymes
participating in beauvericin formation necessary, but accessory genes are also essential to deliver the
precursors to the main process, thus, affecting the final composition of the product [67].

4. Conclusions

This study showed the differences in beauvericin production by a number of distant relatives—
fungal species belonging to Fusarium and Trichoderma genera. We also highlighted the high variance
of the non-ribosomal peptide synthase gene sequence among individual fungal species from the
Hypocreales order and possible pseudogenization of core synthase gene in some non-producers. Further
studies are required to explore the basis of the differences in BEA synthesis inside the Trichoderma genus
in order to explain if the ability to synthesize beauvericin is essential for these saprotrophic fungi.

Supplementary Materials: The following are available online at http://www.mdpi.com/2309-608X/6/4/288/s1,
Figure S1: The 17 aligned sequences of investigated Fusarium and Trichoderma strains with partial reference
sequences, trimmed to the amplified region. Figure S2: LC–HRMS/MS spectrum from higher collision dissociation
of the [M + Na]+ ion of beauvericin.
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