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Highlights Lay summary

� Establishment and validation of new quantitative

HDV PCR assay on a fully automated platform
(cobas6800).

� New assay allows for dynamic scaling of testing
capacity and drastically reduces hands-on time as
wells as manual steps.

� Improved reliability and reproducibility of test
results.

� Lower limit of quantification of 10 IU/ml and a
linear range from 101–108 IU/ml.

� Inclusivity for all 8 known HDV genotypes.
https://doi.org/10.1016/j.jhepr.2021.100356
The hepatitis delta virus (HDV) causes a severe form of
inflammation in the liver. We developed a tool for
molecular diagnostics, a polymerase chain reaction
HDV assay that showed great performance. It can be
used to improve diagnosis of HDV, as well as for
monitoring treatment responses. The assay allows for
quantification of the virus in the tested samples and is
performed on a fully automated platform (cobas6800),
which provides various benefits including less hands-
on time and excellent comparability of test results.
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Background & Aims: Currently available HDV PCR assays are characterized by considerable run-to-run and inter-laboratory
variability. Hence, we established a quantitative reverse transcription real-time PCR (RT-qPCR) assay on the open channel of a
fully automated PCR platform (cobas6800, Roche) offering improved consistency and reliability.
Methods: A primer/probe-set targeting a highly conserved region upstream of the HDV antigen was adapted for use on the
cobas6800. The lower limit of detection (LLOD) was determined using a dilution panel of the HDV WHO standard (n = 21/
dilution). Linearity and inclusivity were tested by preparing 10-fold dilution series of cell culture-derived virus (genotype [GT]
1-8; n = 5/dilution). Patient samples containing a variety of bloodborne viral pathogens were tested to confirm exclusivity
(n = 60).
Results: The LLOD of the HDV utility-channel (HDV_UTC) assay was determined as 3.86 IU/ml (95% CI 2.95–5.05 IU/ml) with a
linear range from 10–10

ˇ

8 IU/ml (GT1). Linear relationships were observed for all HDV GTs with slopes ranging from -3.481 to
-4.134 cycles/log and R2 from 0.918 to 0.994. Inter-run and intra-run variability were 0.3 and 0.6 Ct (3xLLOD), respectively. No
false-positive results were observed. To evaluate clinical performance, 110 serum samples of anti-HDV-Ab+ patients were
analyzed using the HDV_UTC and CE-IVD RoboGene assays. 58/110 and 49/110 samples were concordant positive or negative,
respectively (overall agreement 97.3%). Quantitative comparison demonstrated a strong correlation (R2 0.8733; 95% CI 0.8914–
0.9609; p value <0.0001).
Conclusion: The use of highly automated, sample-to-result solutions for molecular diagnostics holds many inherent benefits
over manual workflows, including improved reliability, reproducibility and dynamic scaling of testing capacity. The assay we
established showed excellent analytical and clinical performance, with inclusivity for all HDV GTs and a limit of quantification
of 10 IU/ml, making it a sensitive new tool for HDV screening and viral load monitoring.
Lay summary: The hepatitis delta virus (HDV) causes a severe form of inflammation in the liver. We developed a tool for
molecular diagnostics, a polymerase chain reaction HDV assay that showed great performance. It can be used to improve
diagnosis of HDV, as well as for monitoring treatment responses. The assay allows for quantification of the virus in the tested
samples and is performed on a fully automated platform (cobas6800), which provides various benefits including less hands-
on time and excellent comparability of test results.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Chronic HDV infection (cHDV) is considered the most severe
form of viral hepatitis. Studies have shown that high HDV viral
loads (>600,000 copies/ml) in non-cirrhotic patients are associ-
ated with a higher risk of developing cirrhosis,1 which combined
Keywords: HDV, Hepatitis delta virus; RT-qPCR, Real time reverse transcription po-
lymerase chain reaction; cobas6800; molecular diagnostics; viral hepatitis;
quantification.
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with the subsequently elevated risk of developing hepatocellular
carcinoma and liver decompensation,2,3 contributes to the high
morbidity and mortality associated with cHDV.4 Moreover,
therapeutic options for cHDV are very limited and mainly based
on PEGylated interferon alpha. Further, treatment is associated
with low response rates (17–47%)5 and relapse after therapy.6

However, only in 2020, a synthetic polypeptide derived from
the envelope protein of HBV (bulevirtide) was approved as a new
treatment option by the European Medicines Agency. The drug
inhibits the HBV/HDV entry receptor and was shown to induce a
decrease of HDV RNA and normalization of alanine amino-
transferase levels7 opening new therapeutic avenues, but also
increasing the clinical need for tools to monitor HDV viral loads
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and hence treatment responses. On the molecular level, HDV is a
negative strand, circular RNA virus with strong self-base-pairing
and high genomic diversity between the different genotypes
(GT).8,9 Both of these features pose a considerable challenge for
the diagnostic workflow. Further, many available reverse tran-
scription real-time PCR (RT-qPCR) assays are characterized by
considerable run-to-run and inter-laboratory variability. Herein,
we describe the establishment of a quantitative RT-qPCR assay
on the open channel of a fully automated PCR-platform
(cobas6800, Roche).
Materials and methods
A primer/probe-set targeting a highly conserved region up-
stream of the HDV antigen coding region10 was selected and
adapted for use on the cobas6800. Primers were modified with
2’-O-methyl bases in their penultimate base to prevent forma-
tion of primer dimers and the probe was conjugated to a minor
groove binder at the 3’end in order to increase melting tem-
perature and binding stability. Primers and probes were ordered
from IDT DNA Technologies (Coralville, USA) and biomers.net
GmbH (Ulm, Germany), respectively. Forward primer (5’-
CTCCCTTWGCCATCCmGAG -3’; 208 ll; 1000 nM), reverse primer
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Fig. 1. Probit analysis and linearity for HDV genotype 1 and test results of the
(A) A Probit analysis was computed based on the results of a 2-fold dilution pa
calculated LOD of 3.86 IU/ml (dotted green line) and the corresponding 95% CI 2.9
95% CI: light dashed green lines). The observed hit rates are marked by violet dots.
standard (GT1; n = 5 repeats/dilution). The dashed green line shows the linear reg
results (violet dots) of the HDV_UCT and the CE-IVD assays demonstrated a stro
regression line is plotted as a dashed green line (95% CI: light green dashed lin
transformed test result (violet dots) in IU/ml of the HDV_UCT and the CE-IVD
-1.291). Only 3 data points were detected lying outside of the margins of ± 1.96 SD
LLOD, lower limit of detection; WHO, world health organization.
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(5’-CTCTTCGGGTCGGCATmGG-3’; 208 ll; 1000 nM), probe (5’-
ATGCCCAGGTCGGACCRC5-3’; 10.4 ll; 50 nM) and Utility Channel
Master Mix Reagent 2 (UC MMX-R2, 5573.6 ll; Roche) were
combined and transferred to a reagent cassette (96 reactions/
cassette). Sequence-specific forward and reverse primers allow
for selective amplification of the internal control (included in the
UC MMX-R2). The temperature profile and Utility Channel soft-
ware settings included a predefined uracil-DNA N-glycosylase
incubation step, a pre-PCR step (1 cycle: 55�C for 120 s, 60�C for
360 s, 65�C for 240 s), 5 cycles of 95�C for 5 s and 55�C for 30 s
(1st measurement at the end of each cycle) followed by 45 cycles
of 91�C for 5 s and 58�C for 25 s (2nd measurement at the end of
each cycle) and finished with a predefined cooling step. The
minimum of the relative fluorescence increase was set at 1.25.

The lower limit of detection (LLOD) was determined using a
2-fold dilution panel of the HDV world health organization
(WHO) standard (PEI-code: 7657/12; n = 21/dilution,11), which
included 10 different concentrations, with the highest and
lowest concentrations being 1,000 IU/ml and 1.95 IU/ml,
respectively, and a set of 21 negative samples. Linearity and in-
clusivity were tested by preparing 10-fold dilution series of cell
culture-derived virus (GT1-8; n = 5/dilution). To determine inter-
and intra-run variability, the dilution panel used to assess LOD
0 1 2 3 4
0

10

20

30

40

50

HDV concentration (Log10 IU/ml)

C
t v

al
ue

Slope: -3.422
R2: 0.998

0 1 2 43 5 6 7 8
-3

-2

-1

0

1

2

3

Average
(HDV_UCT and CE -IVD)

D
iff

er
en

ce
(H

D
V_

U
C

T 
m

in
us

 C
E-

IV
D

) 

+1.96 SD

-1.96 SD

Mean

0.6914

-0.2997

-1.291

new HDV_UCT assay compared to the CE-trademarked IVD RoboGene assay.
nel of the WHO standard (n = 21 repeats/dilution). The plot is displaying the
5–5.05 (dotted light green line) as well as the Probit curve (green dashed line;
(B) Displayed are the results (violet dots) of a 10-fold dilution panel of the WHO
ression line with a slope of -3.422 (R2 0.998). (C) Comparison between the test
ng correlation (R2 0.8733; 95% CI 0.8914–0.9609; p value <0.0001). The linear
es). Values are log-transformed. (D) Bland-Altman analysis based on the log-
assays. The mean of the bias was calculated as -0.2997 (95% CI 0.6914 to
. CE-IVD, CE-marked in vitro diagnostics assay; HDV_UCT, HDV utility-channel;

2vol. 3 j 100356



was split into groups of 7 samples/dilution and tested in different
runs. Bloodborne viral pathogens for assessing exclusivity
included HBV, HCV, EBV, HIV, BKV and CMV (n = 10 each).

Evaluation of the performance of the HDV utility-channel
(HDV_UCT) assay included 20 samples of an external quality
assessment (EQA) panel for HDV (INSTAND, Düsseldorf, Ger-
many) and serum samples from HDV RNA-positive patients
(n = 4) collected at different timepoints. To further assess assay
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performance and whether HDV PCR-positive patients have been
missed due to a lack of sensitivity of the testing method
currently in use, the clinical records of admitted patients at our
center from 2008 until July of 2020 were screened for anti-HDV-
antibody status. In total, 170 HDV patients were identified of
whom 60 had to be excluded due to a lack of sample material. Of
the remaining 110 patients, 1 serum sample each was included in
this study. According to the records, 52.7% (58/110) of patients
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were HDV PCR positive at the time of blood sampling. Serum
samples were stored at or below -18� Celsius until use. Samples
containing less than 2,000 ll were diluted using negative human
plasma (quantitative HBsAg dilution reagent, Abbott) to a total
volume of 2,000 ll. All 110 samples were subjected to the new
HDV_UCT assay and an already established CE-marked in vitro
diagnostics (CE-IVD) assay (Analytik Jena, Jena, Germany). For
the HDV_UCT assays, 500 ll of the sample was used. For the CE-
IVD assay, 400 ll were utilized using the INSTANT Virus RNA/
DNA Kit (Analytik Jena, Jena, Germany) to extract RNA before
administering 5 ll of the eluate following the manufacturer’s
recommendations. The nucleic acid extraction and RT-qPCR were
carried out according to the manufacturer’s instructions and the
latter was performed on a LightCycler 480 II (Roche, Rotkreuz,
Switzerland).

The study was approved by the local ethics committee
(PV5626). GraphPad Prism version 8 (San Diego, California, USA)
was used for statistical analysis. To determine the LLOD a Probit
analysis was computed.12 The graphical abstract was created
with BioRender.com.

Results
The LLOD of the HDV_UCT assay was determined as 3.86 IU/ml
(95% CI 2.95–5.05 IU/ml) at a 95% detection probability with a
linear range from 101–108IU/ml (GT1; Fig. 1A,B and Fig. S1). A
linear relationship was observed for all 8 HDV GTs, with slopes
ranging from -3.481 to -4.134 cycles/log and an R2 range from
0.918–0.994 (Fig. 2). Inter-run and intra-run variability were 0.3
and 0.6 Ct (3xLLOD), respectively, demonstrating a high assay
reproducibility. No cross reactivity in patient serum samples
containing a variety of bloodborne viral pathogens (n = 60) was
observed. All samples of the qualitative EQA panel were identi-
fied correctly (16/16 positive, 4/4 negative). Viral loads in
quantitative EQA panel samples available from 2020 (n = 4) were
within the expected range (Fig. S1A). Comparison between re-
sults of the HDV_UCT and the CE-IVD assays showed that 58/110
and 49/110 samples were concordant positive or negative,
respectively (Fig.1E). Three samples (all Ct: >35.6) only tested
positive on the HDV_UCT assay (overall-agreement: 97.3%).
JHEP Reports 2021
Quantitative comparison demonstrated a strong correlation be-
tween assays (R2 0.873; 95% CI 0.891–0.961; p value <0.0001;
Fig. 1C). The Bland-Altman analysis revealed a mean of the bias of
-0.2997 (95% CI 0.6914–1.291). Three datapoints appeared
outside of the margins of ± 1.96 standard deviations of the mean
(Fig. 1D). For HDV RNA-positive patient serum samples collected
at different time points, both assays demonstrated similar viral
load kinetics (Fig. S1B-D).

Discussion
To improve the options for clinical HDV RNA monitoring, we
established a new quantitative HDV RT-qPCR assay with excel-
lent analytical performance and built-in full process control on
the cobas6800 system. The use of highly automated, sample-to-
result solutions for molecular diagnostics holds many inherent
benefits over manual workflows, including improved reliability
and reproducibility, as well as dynamic scaling of testing ca-
pacity. Moreover, the interpretation of test results is less error-
prone since internal controls are included in every run and the
quantitative test results are calculated using the Ct value by the
laboratory information software based on the corresponding
standard curve. Studies on assay performance on the cobas6800
already demonstrated high reliability for other viruses, including
HBV, HCV and HIV13 and showed excellent comparability be-
tween testing sites.14 In line with previous studies,15 consider-
ably less hands-on time (n = 24; HDV_UCT 20 min; CE-IVD 180
min) and manual steps (HDV_UCT 2; CE-IVD 36, without pre-
paring reagents and data management) are required as nucleic
acid extraction, purification, amplification, detection and data
transfer to the laboratory information system are fully auto-
mated, hence minimizing the potential for errors.

The HDV_UCT assay showed excellent analytical and clinical
performance. However, these promising results need to be
further validated by examining a larger patient cohort. The new
assay demonstrated an inclusivity for all 8 currently known GTs
and a low limit of quantification of 10 IU/ml. Combined with the
excellent comparability of the PCR results, the new assay will be
advantageous for HDV screening and viral load monitoring dur-
ing HDV treatment or clinical therapeutic trials.
Abbreviations
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