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INTRODUCTION 
 

Aging accelerates multisystemic deterioration and 

increases the risk of developing metabolic diseases or 

syndromes. The ability to modulate systemic metabolite 

levels through various mechanisms, such as tubular 

secretion, glomerular filtration, and catabolism, 

represents a crucial strength of kidneys in the study of 

metabolic syndrome and aging [1]. Among aging-

related unfavorable dysregulations in various organs, 

renal aging is considered a highly complex interplay of 

genetic, epigenetic, and environmental changes; 

moreover, it is mutually correlated with the incidence of 

systemic pathophysiological changes [2]. The 

characteristics of aged kidneys include structural 
changes and subsequent functional changes, such as a 

declining glomerular filtration rate (GFR) and tubular 

dysfunction [2]. Although the mechanisms underlying 
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ABSTRACT 
 

The ability to maintain systemic metabolic homeostasis through various mechanisms represents a crucial 
strength of kidneys in the study of metabolic syndrome or aging. Moreover, age-associated kidney failure has 
been widely accepted. However, efforts to demonstrate aging-dependent renal metabolic rewiring have been 
limited. 
In the present study, we investigated aging-related renal metabolic determinants by integrating metabolomic 
and transcriptomic data sets from kidneys of young (3 months, n = 7 and 3 for respectively) and old (24 months, 
n = 8 and 3 for respectively) naive C57BL/6 male mice. Metabolite profiling analysis was conducted, followed by 
data processing via network and pathway analyses, to identify differential metabolites. In the aged group, the 
levels of glutathione and oxidized glutathione were significantly increased, but the levels of gamma-glutamyl 
amino acids, amino acids combined with the gamma-glutamyl moiety from glutathione by membrane 
transpeptidases, and circulating glutathione levels were decreased. In transcriptomic analysis, differential 
expression of metabolic enzymes is consistent with the hypothesis of aging-dependent rewiring in renal 
glutathione metabolism; pathway and network analyses further revealed the increased expression of immune-
related genes in the aged group. 
Collectively, our integrative analysis results revealed that defective renal glutathione metabolism is a signature 
of renal aging. Therefore, we hypothesize that restraining renal glutathione metabolism might alleviate or 
delay age-associated renal metabolic deterioration, and aberrant activation of the renal immune system. 
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progressive renal injury in chronic kidney diseases 

(CKDs) differ from the gradual changes observed 

during the renal aging process, renal aging decreases the 

kidney resilience, and the prevalence of CKD increases 

with age [3, 4]. 

 

Due to structural and functional changes, renal aging 

contributes to alterations in related biological processes. 

In aged kidneys, signaling pathways are rewired, and 

unhealthy mitochondria lead to the increased 

accumulation of oxidative stress [5]. It is widely 

accepted that oxidative stress contributes to tissue 

damage, thereby leading to pathological changes during 

the aging process. In both murine and human studies, 

researchers reported that aging was associated with 

increases in reactive oxygen species (ROS) generation 

and alterations in ROS removal ability [6]. Furthermore, 

renal oxidative stress is considered a major factor 

underlying the initiation of diabetic nephropathy [7]. 

Thus, an adequate glutathione (GSH) supply in the 

kidneys is critical for maintaining renal function [8]. 

The protein expression of renal Klotho, a 

transmembrane protein modulating diverse aging-

associated pathways, is known to be decreased in aged 

mice compared to young mice [9]. Decreasing Koltho 

levels further impact the suppression of FGF and the 

alteration of Wnt signaling pathways [10]. Although 

whether leukocyte-derived inflammatory activation is 

the cause or effect of aging remains unclear, increased 

glomerular macrophage infiltration was histologically 

observed in healthy aged mice [2, 11]. 

 

Despite the significant role of kidneys in aging-

associated systemic metabolic deterioration, efforts to 

comprehensively demonstrate this mechanism through 

omics-level profiling analysis have been limited in the 

study of renal aging. Thus, we herein investigated aging-

related renal metabolic determinants through the 

integration of metabolomic and transcriptomic data sets 

of mouse kidneys of different ages. We performed 

aqueous metabolite profiling analysis of 15 mouse 

kidney samples, and the acquired metabolomics data 

were processed via network and pathway analyses to 

identify differential metabolites. Transcriptomic analysis 

was also performed on 6 mouse kidney samples, 

revealing altered expression levels of residing metabolic 

enzymes related to our metabolic profiling analysis. 

 

RESULTS 
 

Profiling of aqueous metabolites revealed 

differential glutathione levels in the kidneys of young 

and old mice 

 

To explore the aging-dependent metabolic signature, we 

performed LC-MS-based nontargeted aqueous 

metabolic profiling analysis followed by in silico 

identification. Mouse kidney tissue samples were 

obtained from young (n = 7) and old (n = 8) mice. PCA 

and PLS-DA analysis revealed strong separation 

between two groups based on spectral data obtained in 

positive and negative modes. Since QC samples 

clustered as a group, we confirmed the reproducibility 

of our LC-MS-based analytical platform 

(Supplementary Figure 1). Q2 discrimination rates of 

84.2% and 86.2% were obtained for the spectral data 

obtained in the positive and negative modes, 

respectively (Supplementary Figure 1). The heatmap 

illustrates the levels of all the identified metabolites and 

the pathway-specific patterns (Figure 1). While GSH 

and oxidized GSH were higher by 2.37- and 2.98-fold, 

respectively, in the old group compared with the 

counterpart, GSH-related metabolites such as gamma-

glutamyl dipeptides were lower in the old group 

compared with the young group (Supplementary  

Table 1). Lipids such as acyl-carnitines, Lyso 

phosphatidylcholines (PCs) and Lyso 

phosphatidylethanolamines (PEs) were higher in the 

kidney tissues of old mice compared to their 

counterparts. Interestingly, our transcriptomic data 

showed that a known lipid synthesis driver of skeletal 

muscle, Acsl6 [12], was significantly overexpressed in 

the old group compared to the young group. Two other 

Acsl isotypes that mainly play roles in energy 

expenditure and lipid oxidation, Acsl1 and Acsl5, were 

not different (Supplementary Figure 2). Most 

nucleosides, nucleotides and their analogs were slightly 

lower in the old group compared to the young group. 

Intriguingly, we observed higher levels of CoA 

synthesis metabolism intermediates, such as dephospho-

CoA, pantothenic acid and pantotheine 4-phosphate, in 

old mouse kidneys compared to their counterparts. 

 

Network analysis revealed significant alterations in 

kidney glutathione levels 

 

To identify the metabolic determinants in aged mouse 

kidney tissue, we performed correlation coefficient-

based network analysis (Figure 2). The relative 

abundances of aqueous metabolites from the young 

(Figure 2A), old (Figure 2B), and mixed groups (Figure 

2C) are represented as nodes in the network graph. 

Here, only the metabolites with HMDB identifiers were 

included in the analysis. The presence of edges, whether 

two nodes are connected in a network, is often 

determined based on the correlation coefficient of two 

variables. In our research, the presence of edges was 

determined according to the resampling strategy-based 

PCLR algorithm [13] followed by the differential 
network analysis. Interestingly, GSH and oxidized GSH 

were differentially associated with other metabolites 

between the young and old groups as determined by 
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network differential connectivity analysis (Table 1). In 

the network built from the metabolomics data obtained 

from young mouse kidney tissue, GSH and oxidized 

GSH were associated in a more complex manner 

(Figure 2A), whereas they were unassociated in the 

network built by the metabolomics data from old mouse 

kidney tissue (Figure 2B). Furthermore, we built a 

correlation-based network using both groups to 

elucidate the relationship between aging-dependent 

changes in metabolites. To address the key metabolites 

in the results, we calculated the stress measurement, 

which is the number of passing shortest pathways and a 

proxy of the importance in the network [14]. Based on 

the stress measurements, GSH and oxidized GSH were 

again determined to be differentially connected (Figure 

2C). Therefore, our concordant results from the network 

differential connectivity and stress measurement 

analyses demonstrated that GSH and oxidized GSH are 

key differential metabolites and simultaneously 

representative features in a mouse aging kidney model. 

Differences in riboflavin, nicotinamide, and purine 

metabolism in aged mouse kidneys identified by 

differential metabolic pathway analysis 

 

To further understand the differential metabolism in 

aged mouse kidney tissue, pathway analysis of 

metabolomics profiling data was performed. False 

discovery rate (FDR) values from 9 metabolic pathways 

were less than 0.05; simultaneously, at least two 

residing metabolites were identified from profiling 

analysis (Supplementary Table 2). Among these 

selected pathways, 4 metabolic pathways (riboflavin, 

nicotinate and nicotinamide, GSH, and purine) had 

impact values greater than 0.2. Flavin adenine 

dinucleotide (FAD) (p-value = 0.0237) in riboflavin 

metabolism (Figure 3A) and nicotinamide adenosine 

dinucleotide (NAD) (p-value < 0.0001) and 

nicotinamide (p-value < 0.0001) in nicotinate and 

nicotinamide metabolism (Figure 3B) were significantly 

lower in the old group compared to their counterparts. 

 

 
 

Figure 1. Heat map of metabolites in the kidney tissues of young (n = 7) and old (n = 8) mice in vivo. The metabolites were 
plotted and further curated according to their residing KEGG pathways. The heat map was color-coded according to the log 2 transformed 
fold change in the measured relative intensities of each sample. 
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Hypoxanthine (p-value = 0.0002) in purine metabolism 

was higher in the old group compared to its counterpart, 

whereas 5-aminoimidazol (p-value = 0.0001) was 

significantly lower in the old mice compared to the 

young mice (Figure 3D). Intriguingly, GSH (p-value < 

0.0001) and oxidized GSH (p-value = 0.0027) were 

significantly higher in the old group (Figure 3C), and 

GSH metabolism was selected as a differential aging-

dependent pathways; however, γ-glutamyl amino acids 

without HMDB identifiers were not included in the 

current pathway analysis. 

 

To determine whether the metabolite levels potentially 

differ due to transcriptomic alteration, transcriptomic 

 

 
 

Figure 2. Correlation coefficient-based network analysis results. Network visualization of the correlation-based relationships 

among profiled aqueous metabolites was performed for young (A, n = 7), old (B, n = 8) and mixed (C, n = 15) groups. Oxidized glutathione 
and glutathione are highlighted in yellow for (A) and (B). The width and height of the nodes were scaled using the stress centrality 
measurements for (C). 
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Table 1. Network differential connectivity analysis. 

Metabolite pval_corr pval_mi 

Glutathione 0.06 0.02 

1-Methyladenosine 0.14 0.04 

Hippuric acid 0.02 0.06 

Dephospho-CoA 0.02 0.06 

Atractyloside B 0.04 0.16 

Oxidized glutathione 0.04 0.24 

Pantothenic acid 0.04 0.36 

L-Malic acid 0.04 0.56 

2′-O-methylaenosine monophosphate 0.02 0.86 

Network differential connectivity analysis results of two networks built by the metabolomic data from young (A, n = 7) and 
old (B, n = 8) mouse kidney tissues. P-values were calculated based on the permutation in the algorithm. Correlation and 
mutual information were implemented for the analysis as previously described [47], and the p-values from each method 
using either correlation coefficient or mutual information referred to as pval_corr and pval_mi. Only the metabolites with 
p-values below 0.05 determined via any method are shown above. 

 

data for genes annotated within these four pathways 

were used for the descriptive analysis based on the 

KEGG database. For each pathway, 8 (riboflavin), 40 

(nicotinate and nicotinamide), 53 (GSH), and 135 

(purine) genes were annotated. To answer if the 

expression levels of genes residing in certain pathways 

are specifically up or down-regulated by aging, we 

compared the distributions of log2 fold changes in RNA 

expression by aging between each pathway and the 

whole transcriptome (Figure 3E). Additionally, since 

the metabolic pathway could be rewired by significant 

and non-monotonous changes of genes, we also 

explored if these four pathways are more rewired 

compared to the whole transcriptome. To this end, the 

distribution of the p-values from the t-test between 

young and old groups was presented (Figure 3F). 

Although the fold change distributions were not 

monotonously skewed toward one direction, the 

p-values from nicotinate and nicotinamide metabolism 

and purine metabolism were significantly smaller than 

those from the system-level transcriptome (p-values: 

0.0113 and 0.0171, respectively). Notably, the p-value 

estimate from the Wilcoxon rank-sum test obtained by 

comparing the p-value distribution of genes in the GSH 

pathway from the t-test to that in the whole 

transcriptome was 0.0648; however, the estimate was 

not statistically significant at the 0.05 level. 

 

In accordance with our observed lower levels of 

nicotinamide metabolism intermediates in aged mice, 

previous studies revealed that the NAD+ and NAMPT 

levels were decreased in multiple organs during aging 

[15]. In mice with aging-induced diabetes, nicotinamide 

mononucleotide (NMN), a key NAD+ intermediate, 

also ameliorated glucose intolerance via the restoration 

of NAD+ levels [16]. 

Rewiring of glutathione metabolism in aged mouse 

kidneys 

 

To further elucidate the aging-related differences of 

GSH metabolism in our mouse kidney experiments, we 

comprehensively explored GSH metabolism via 

transcriptomic data. The expression levels of residing 

metabolic genes were significantly varied as follows. 

Gamma-glutamyl cyclotransferase (Ggct), GSH 

synthetase (Gss), and cation transport regulator 2 

(Chac2) were expressed at lower levels in the old group 

than in the young group (adjusted p-values: <0.0001, 

0.0609, and 0.0957, respectively), and 5-oxoprolinase 

(Oplah) was expressed at higher levels in the old group 

(adjusted p-value: 0.0407) than in the young group 

(Figure 4A, Supplementary Table 3). While GSH and 

oxidized GSH levels were significantly enriched in the 

old group, the gamma-glutamyl amino acid levels were 

slightly decreased in the old group (Supplementary 

Figure 3, Supplementary Table 1). Our results did not 

reveal an obvious relationship or causality of the 

phenomenon, potentially due to the lower levels of 

gamma-glutamyl transferases (GGTs) or GSH-specific 

gamma-glutamyl cyclotransferase 2 (CHAC2) enzymes, 

which catalyze GSH catabolism and gamma-glutamyl 

amino acid synthesis. In fact, concordant with our 

results, increases in GSH and oxidized GSH levels and 

decreases in gamma-glutamyl amino acid levels 

attributed to rewiring at the transcription levels of 

related genes were reported in malignant human kidney 

tumors [17, 18]. Furthermore, we simultaneously 

observed decreased GSH levels in serum samples from 

the old group (Figure 4B). Considering that the kidneys 

regulate GSH catabolism and systemic cysteine 

homeostasis, our results cautiously suggest that the 

systemic decrease in circulating GSH levels is attributed 
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to altered GSH catabolism and increased GSH and 

oxidized GSH pool sizes in aged mouse kidneys. 

 

Transcriptomic analysis of differential metabolic 

pathways in aged mouse kidneys 

 

In addition, revealing rewired GSH metabolism during 

renal aging by metabolomic analysis, transcriptomic 

data were bioinformatically analyzed to identify 

differential metabolic pathways at the expression level. 

KEGG pathway analysis using transcriptomic data 

revealed that immune-related pathways, such as the 

intestinal immune network for IgA production, 

chemokine signaling, natural killer cell-mediated 

cytotoxicity, Jak-STAT signaling, phagosomes, T cell 

receptor signaling, complement and coagulation 

cascades, antigen processing and presentation, and Toll-

like receptor signaling pathways, were enriched in the 

 

 
 

Figure 3. Barplots of the relative intensities of metabolites in differential pathways in aged mouse kidney tissues (A–D, n = 7 
and 8 for young and old groups, respectively). The means and SEMs of the relative intensities determined by LC-MS are plotted. 

P-values were calculated by two-way ANOVA with Sidak’s multiple comparison tests to see intergroup differences for (A–D). Boxplots of the 
log2 transformed fold changes of genes annotated in differential pathways (E, n = 3 for both the young and old groups). Boxplots of the –
log10(P-values) determined by t-tests to assess the differential expression of genes between the old and young groups (F, n = 3 for both the 
young and old groups). The distributions of –log10 P values from each pathway were tested and compared to those in the whole 
transcriptome by Wilcoxon rank-sum tests. (p-values: #< 0.1, *< 0.05, **< 0.01, ***< 0.001, ****< 0.0001). 
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old group compared to the young group (Supplementary 

Figure 4A). A previous study also revealed that genes in 

immune response pathways were most differentially 

expressed at the RNA level in aged mouse glomerular 

podocytes [19]. In fact, published data support that the 

immune system plays an underlying role in renal aging; 

reduced renal fibrosis and cellular senescence were 

observed in aged animals after bone marrow transplants 

from young mice [2, 20]. In contrast, pathways related 

to cellular protein synthesis, such as the mRNA 

surveillance, spliceosome, and protein processing in 

endoplasmic reticulum pathways, were downregulated 

in the old group compared to their counterparts. Two 

cytochrome P450 enzymes mediated pathways, the 

retinol and drug metabolism pathways, were 

upregulated in the old group. Members of tight junction 

and oxidative phosphorylation pathways were also 

expressed at lower levels in the old group. 

 

To understand a potential association between gene sets 

in the mouse kidney aging model, we utilized the 

GScluster gene set clustering method of Kin et al. 

(Supplementary Figure 4B) [21]. In this method, PPI 

and KEGG databases for Mus musculus were used to 

determine possible interactions among groups of genes. 

Two clusters were identified as follows. Gene sets in 

KEGG pathways related to the immune system, natural 

killer cell-mediated cytotoxicity, B cell receptor 

signaling, T cell receptor signaling, and FC epsilon RI 

signaling pathways were clustered into one group. In 

the other cluster, metabolic pathways involving 

cytochrome P450 genes, such as xenobiotic metabolism 

by cytochrome p450, drug metabolism, retinol 

metabolism and linoleic acid metabolism, were grouped 

together. 

 

Gene Ontology analysis was performed to explore the 

enriched gene ontologies in the mouse kidney aging 

model. The top 10 gene ontology terms from the 

analysis were plotted for each of 3 categories: cellular 

component (CC), biological process (BP), and 

molecular function (MF) (Supplementary Figure 5). 

Interestingly, most of the top enriched gene ontology 

terms in the BP category were related to the immune 

response. GSEA was also performed using our 

transcriptomic data. A total of 3974 Mus musculus gene 

sets were obtained from mSigDB, and 3352 gene sets 

were filtered out by gene set size filters (min = 1, max = 

500) [22, 23]. The remaining 622 gene sets were used in 

the analysis. In concordance with other transcriptomic 

data analysis results, most of the enriched gene sets in 

the old group were related to the immune response 

(Supplementary Table 4). 
 

DISCUSSION 
 

A main characteristic of aging is complex metabolic 

syndrome; in particular, the renal aging process is 

mutually correlated with systemic metabolic 

deterioration. However, although efforts are ongoing to 

 

 
 

Figure 4. Rewired glutathione metabolism in aged mouse kidney tissue. The transcriptomic profile was plotted according to the 

glutathione metabolic pathway (A). Relative intensities of the serum glutathione levels in young (n = 4) and old (n = 4) mice as determined 
by LC-MS analysis (B). Circulating systemic serum glutathione appeared to be decreased in the old group compared to the young group, but 
the difference was not significance (p-value: 0.1143). Wilcoxon rank sum test was performed to determine whether glutathione was 
decreased in the old group. 
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restrain aged kidney metabolism, the factors underlying 

the causes and effects of age-related renal metabolic 

dysfunction are largely unknown. To elucidate this 

comprehensive metabolic alteration, we conducted 

integrated metabolic and transcriptomic data analysis by 

utilizing mouse kidney tissues of different ages. 

 

We performed metabolic profiling analysis, revealing 

aging-dependent metabolic dysregulation. It is well 

established that changes in lipid metabolism are distinct 

characteristics of the renal aging process [24]. A 

previous study has demonstrated that decreased fatty 

acid oxidization capacity is a main factor underlying 

age-related lipid imbalance and accumulation [25]. 

Recently, gene expression analysis of various 

mammalian tissues, including the liver, kidney, and 

brain, revealed that the expression levels of genes 

involved in lipid oxidation and lipid modification were 

negatively correlated with lifespan [26]. Additionally, 

the protein and RNA levels of acetyl coenzyme A were 

reportedly decreased in aged mouse samples compared 

to their counterparts [27]. In agreement with previous 

research, we found that the levels of lipid species and 

CoA synthesis metabolism intermediates in aged 

kidneys were increased compared with those in young 

mouse kidneys in our in vivo mouse study (Figure 1). 

Acsl6, an acyl-CoA synthetase that drives acyl 

coenzyme A toward lipid synthesis in skeletal muscle 

tissue, was expressed at significantly higher levels in 

aged kidneys than in young kidneys (Supplementary 

Figure 2). Although an experimental study has not been 

conducted to determine whether Acsl6 plays the same 

role in kidney tissue as it does in skeletal muscle, we 

did herein simultaneously observe increased Acsl6 gene 

expression and lipid accumulation in aged mouse 

kidneys. Our metabolic profiling results also revealed 

that most intermediates in nucleic acid metabolism were 

decreased in aged mouse kidneys. The cytosolic 

ribonucleotide and deoxyribonucleotide metabolism 

occur in mitochondria, and mitochondrial dysfunction 

limits the level of nucleotides, thereby resulting in 

genomic instability. It is well established that aging is 

associated with a decreased mitochondrial function 

[28]. Collectively, aging-associated mitochondrial 

dysfunction could limit and imbalance nucleoside 

metabolism in aged mouse kidneys. 

 

Furthermore, the aged mouse group showed 

significantly higher levels of GSH and oxidized GSH 

but lower levels of gamma-glutamyl amino acids than 

the young mouse group. Intriguingly, similar renal 

metabolic rewiring was observed in benign and 

malignant tumors derived from the impairment of 
mitochondrial complex 1 or GGT1 in human kidneys 

[17, 18]. In fact, metabolic rewiring causes more 

severely altered renal GSH metabolism in malignant 

tumors than in benign tumors. To that extent, we herein 

determined that the fold changes in the relative 

abundances of GSH and oxidized GSH in the older 

mice compared to younger mice were less than those 

previously reported in tumors compared to normal 

samples. In renal cell carcinoma, the proposed reason 

for increasing GSH levels is the counteracting 

damaging ROS to sustain the viability and growth of the 

malignancy [29]. Aging and oncogenesis share several 

pathophysiological mechanisms, including genomic 

instability, telomere shortening, proteostasis 

dysfunction, nutrient sensing and alterations of many 

cellular metabolism pathways [30]. The mechanisms of 

aging also occur in oncogenesis despite their divergent 

end results. Moreover, cancer is hypothesized to be 

relatively rare in young mammals due to the loss of 

tumor suppressor mechanisms [31]. Therefore, drawing 

the same conclusion from our mouse kidney aging study 

as that drawn from human kidney tumor models in 

previous studies is acceptable, and the concordant 

results are potentially due to their shared alteration of 

renal GSH metabolism. 

 

In rat and mice, the hepatic gamma-glutamyl transferase 

(gamma-GT) activity is much lower than that in the 

kidneys [32, 33]; oxidation state of extracellular fluids 

depends on the catabolism of GSH by the renal 

γ-glutamyl transpeptidase (γ-GT) activity [34]. Gamma-

GT is the enzyme present in the cell membranes that 

catalyzes the first step in GSH catabolism. Renal GSH 

concentrations are maintained by intracellular synthesis 

via the GSH cycle and transport of extracellular GSH 

[8]. The kidneys are known to be dependent on renal 

GSH levels to maintain restrained metabolism due to 

high rates of ROS production, specifically in the 

proximal tubules [8]. A significantly increased level of 

GSH has been recognized as a major metabolic 

determinant of renal cell carcinoma (RCC) [29]. In 

addition, since cysteine is a particularly unstable amino 

acid, GSH plays an important role in providing a 

cysteine reservoir [35]. Therefore, renal GSH 

catabolism is tightly associated with the interorgan 

metabolism of GSH to maintain systemic cysteine and 

GSH homeostasis. It is also well established that the 

concentration of systemic GSH decreases over time 

[36]. Collectively, we cautiously postulate a hypothesis 

that a significantly increased GSH pool in aged mouse 

kidneys is associated with an age-related systemic 

decline in circulating GSH levels. Notably, the recently 

published study hypothesized that age-dependent 

decline of low molecular weight (LMW) thiols, such as 

GSH, of the extracellular fluids could promote the 

protein-protein interaction of CoV-2 and the host cell, 
and increase the risk of infection of COVID-19 [34]. 

Furthermore, chronic kidney disease (CKD) is known to 

be associated with increased risk of severe COVID-19 
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infection [37]. Thus, the association between CKD and 

risk of severe COVID-19 infection could be related to 

the decrease in circulating GSH of the patients. 

 

In addition to our findings in age-related metabolomic 

changes, we identified age-related differential gene 

expression by comparing the kidneys of mice of 

different ages. Genes residing in pathways governing 

immune system were specifically up-regulated in aged 

group. It is widely accepted that age is a major 

detrimental factor in the development of autoimmune 

disease [38]. The expression of autoantibodies also 

increases with age [39]. Furthermore, specifically in 

kidney, a previous study histologically identified an 

increase in the influx of glomerular macrophage from 

healthy aged mice [2]. Intriguingly, a recent study 

revealed that glutathione induces the stimulation of 

immune response by promoting macrophage polarization 

via acting as an ROS scavenger [40]. Defective antigen 

processing and presentation is known to be induced by 

the alteration of redox potential due to the changes in the 

level of intracellular GSH [41]. It is notable that we 

observed renal glutathione level increases and higher 

expression levels of genes in pathways related to the 

immune system in our aged mouse group. In fact, the 

expected redox potential calculated from the ratio of 

reduced GSH to oxidized GSH was decreased in aged 

mouse kidneys, similar to the results observed in renal 

tumor samples from previous human studies [17, 18]. 

Collectively, although whether rewired renal GSH 

metabolism is associated with increased immune signals 

in aged mice remains unclear, our results underscore the 

pivotal role of this metabolic rewiring and suggest that 

further research should be performed on the interplay 

between increased GSH concentrations and immune 

system stimulation in aged mouse kidneys. 

 

We herein investigated rewired kidney metabolism 

attributed to aging by integrating metabolic profiling 

and transcriptomic analyses. We have shown that 

altered GSH metabolism is a major metabolic hallmark 

in aged kidneys that is associated with abnormal 

immune system stimulation. Also we hypothesized that 

the age related alteration in renal GSH metabolism may 

increase the potential risk of severe COVID-19 

infection in aged individuals. Previous studies have 

demonstrated the role of the kidneys in GSH 

metabolism, the significance of GSH in the immune 

system, decreases in GSH levels over time, and the 

relationship between the immune system and the aging 

process. However, notably, our mouse kidney aging 

study is the first to demonstrate aging-related metabolic 

rewiring in mammalian kidney tissue and underscores 
the importance of rewired renal GSH metabolism in 

aging. This study does have several limitations, such as 

the utilization of a nonhuman system mimicking human 

aging and the absence of hypothesis validation by using 

controlled cell models. Since mimicking aged kidneys 

in vitro is not straightforward, aging-related renal 

metabolic rewiring was not further experimentally 

verified. Also, C57BL/6 mouse strain-specific character 

could affect our results. Moreover, obtaining healthy 

human kidney tissue samples over time for research 

purposes is technically challenging. Thus, the future 

establishment of an ex vivo kidney aging model (e.g., 

organoid culture) would feasibly help to further 

elucidate the mechanism underlying renal GSH 

metabolism alterations during the aging process.  

 

MATERIALS AND METHODS 
 

Mouse samples 

 

All animal experiments were performed according to 

protocols approved by the Animal Care and Use 

Committee of the Korea Research Institute of 

Bioscience and Biotechnology (KRIBB). Young (3 

months) and old (24 months) naive C57BL/6 male mice 

were obtained from the Laboratory Animal Resource 

Center of KRIBB. The mice were fed a standard diet 

and housed under a controlled temperature at 22−24°C 

and a 12 h light/dark cycle with humidity levels varying 

between 40 and 60% for 2 weeks. Both groups of mice 

were fasted for 12 hours before tissue sampling. Blood 

samples were collected at 10:00 am, and then kidney 

tissues were dissected and frozen in liquid nitrogen. 

Kidney tissues were stored at −80°C until processed. 

The body weights of the individual mice are provided in 

Supplementary Table 5. The mice increased their body 

weight over time similar to the bodyweight information 

for C57BL/6J mouse from the Jackson Laboratory [42, 

43]. Also, we confirmed that renal glutathione intensity 

is not correlated with body weight, which is a proxy 

measure for obesity. 

 

LC-MS-based global profiling of kidney metabolites 

 

The metabolites were extracted according to modified 

procedures previously used for mouse and rat tissues 

[44]. Briefly, whole kidney tissue was mixed with the 

extraction solvent at a ratio of 1:7.94 (ratio of kidney 

weight to water/methanol/chloroform (1/2.3/1.8, v/v/v)). 

Then, the mixture was homogenized twice with 2.8-mm 

zirconium oxide beads at 5,000 rpm for 25 s using a 

Precellys 24 tissue grinder (Bertin Technologies, 

France) and stored at 4°C for 20 min to separate the two 

phases. After centrifugation at 12,500 rpm and 4°C for 

20 min, 87.5% of the supernatant was collected from 

each sample, equally aliquoted into 4 tubes and dried in 

a vacuum concentrator. One aliquot was reconstituted in 

20% aqueous acetonitrile, and the solvent volume (μL) 

was 7.5-fold higher than the kidney weight (mg). 
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Chromatographic separation of kidney metabolites was 

carried out on an Acquity UPLC system (Waters, 

Milford, MA, USA) using an Acquity UPLC HSS T3 

column (2.1 × 100 mm, 1.8 µm; Waters) at 40°C and a 

flow rate of 0.45 mL/min. The mobile phases comprised 

water containing 0.1% formic acid (solvent A) and 

acetonitrile containing 0.1% formic acid (solvent B). 

The UPLC gradient was programmed as follows: 1% to 

10% B from 0 min to 3 min, 10% to 30% B from 3 min 

to 5 min, 30% to 50% B from 5 min to 10 min, 50% to 

70% B from 10 min to 13 min, 70% to 90% B from 13 

min to 15 min, 90% to 1% B from 15 min to 16 min, and 

1% B for 2 min to equilibrate for the next run. A total of 

5 μL of the sample was injected using the partial loop 

mode for both positive and negative ionization modes. 

Quality control (QC) samples, which were pooled 

identical sample aliquots, were measured regularly 

throughout the experiment for data reproducibility. 

 

A triple TOF™ 5600 MS/MS system (Sciex, Concord, 

Canada) equipped with a DuoSpray ion source 

operating in the positive and negative electrospray 

ionization (ESI) modes was used for the detection of 

kidney metabolites with a mass range of m/z 50–1,000. 

The following parameter settings were used: ion spray 

voltage, 5,500 V (positive mode) and 4,500 V (negative 

mode); source temperature, 500°C; nebulizer gas 

pressure, 50 psi; drying gas pressure, 60 psi; curtain gas 

pressure, 30 psi; declustering potential, 90 eV; and 

accumulation time, 100 ms. An automated calibrant 

delivery system (Sciex) was used to maintain mass 

accuracy with an atmospheric pressure chemical 

ionization calibration solvent (Sciex). MS/MS spectra 

for ions were obtained via the information-dependent 

acquisition (IDA) method. 

 

The MS spectral data were processed by MarkerView™ 

(Sciex, Concord, Canada) to identify peaks, perform 

peak alignment, and generate peak tables of the m/z 

values and retention times (min). The data were 

normalized using the total spectral area. After excluding 

isotopes, peaks with coefficients of variation below 20 

in the QC samples were selected to identify reliable 

peaks and prohibit instrumental bias. 

 

For the identification of metabolites, fragment patterns 

(MS/MS spectra) were initially matched to the in silico 

fragments generated from MS-DIAL and MS-Finder. 

Then, metabolites were tentatively identified by 

comparing the experimental data to the METLIN 

database (https://metlin.scripps.edu). 

 

Serum glutathione quantification 

 

To extract metabolites in serum, 20 μL of the serum 

sample was mixed with 220 µL of chloroform/methanol 

(2:1, v/v) and 40 µL of water. The mixture was vortexed 

and incubated at 4°C for 10 min. After centrifugation, 

40 µL of the upper aqueous supernatant was dried under 

a nitrogen concentrator. The extracts were diluted with 

80 µL of a methanol/water mixture (20:80, v/v) for 

targeted analysis. To quantify the metabolites, liquid 

chromatography-mass spectrometry was performed on 

an Agilent 1290 Infinity LC and an Agilent 6490 Triple 

Quadrupole MS system equipped with an Agilent Jet 

Stream ESI source (Agilent Technologies, USA). 

MassHunter Workstation (Ver B.07.01 Agilent 

Technologies, USA) software was used for data 

acquisition and analysis. LC separations were carried 

out on an Imtakt SM C18 column (100 × 2.0 mm, 

particle size 3.0 µm, Imtakt, USA), with the column 

temperature and flow rate set to 25°C and 0.2 mL/min, 

respectively. The binary gradient system comprised 

0.1% formic acid in water (solvent A) and 0.1% formic 

acid in methanol (solvent B). The linear gradient 

program was as follows: 5% B from 0–3 min, 5–100% 

B from 3–14 min, 100% B from 14–16 min, 100–5% B 

from 16–17 min, and 5% B from 17–20 min. The 

injection volume of the sample was 1 μL. Tandem MS 

experiments were conducted in positive ion mode with 

the following parameters: capillary voltage, 3.5 kV; 

nebulizer gas, nitrogen at 40 psi; drying gas 

temperature, 120°C; drying gas flow rate, 11 L/min; 

sheath gas temperature, 350°C; sheath gas flow rate, 12 

L/min; and nozzle voltage, 500 V. The selected reaction 

monitoring (SRM) of glutathione was a m/z 308 > 179.1 

transition at a collision energy of 10eV. 

 

Transcriptome sequencing 

 

The transcriptomes of mouse kidney tissue samples 

were analyzed by Macrogen. Triplicate kidney tissue 

samples from young and old mice were stored on dry 

ice before sequencing. The mm10 data set was used as 

the sequencing reference genome, and annotation was 

performed based on NCBI-108 data. The TruSeq 

Stranded mRNA LT Sample Prep Kit and TrueSeq 

Stranded mRNA Sample Preparation Guide, Part # 

15031047 Rev. E were used as the library kit and 

library protocol, respectively. Reagents were obtained 

from the NovaSeq 600 S4 Reagent Kit, and the 

sequencing protocol was obtained from NovaSeq 6000 

System User Guide Document # 1000000019358 v02. 

After the QC processing of sequencing data, trimmed 

reads were mapped to the reference genome by using 

HISAT2, and StringTie was used for transcript 

assembly. 

 

Network analysis 

 

Metabolomics data were processed to build a correlation 

coefficient-based network. Identified metabolites are 

https://metlin.scripps.edu/
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represented as nodes in the network graph. The 

resampling strategy-based probabilistic context 

likelihood of relatedness (PCLR) algorithm [13] and R 

software [45] were applied to determine the edges 

between nodes. The built network was further processed 

by using Cytoscape [46]. The width and height of the 

nodes were scaled based on the stress centrality 

measures, where stress centrality was the number of 

shortest paths passing through as a proxy measurement to 

capture the importance of features [14]. Differential 

network analysis was also performed to evaluate 

differences in networks between older mice and younger 

mice according to the study of Sanjeevan et al. [47]. 

 

Pathway analysis 

 

Pathway analysis of the metabolomics results was 

conducted through MetaboAnalyst [48]. The relative 

intensities of metabolites with Human Metabolome 

Data Base (HMDB) identifiers were used as input for 

the analysis. A hypergeometric test was conducted to 

evaluate the pathway enrichments based on Mus 
musculus data in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database [49]. Pathway analysis of 

the metabolomics results was conducted using the gage 

package in R software [50]. 

 

Gene set clustering analysis 

 

We performed gene set clustering analysis by using 

GScluster to identify the gene set-gene set interactions 

[21]. Adjusted p values from the Deseq2 results, the 

KEGG gene set database for Mus musculus and the 

protein-protein interaction (PPI) network for Mus 

musculus from STRING were used for the clustering 

analysis [51]. The GsQCutoff and GQCutoff were set 

to 0.9. 

 

Gene set enrichment analysis 

 

Gene set enrichment analysis (GSEA) was conducted 

by using GSEA 4.1.0 software [22]. Gene sets were 

downloaded from MSigDB [23]. 

 

Statistical analysis 

 

Principal component analysis (PCA) and partial least 

squares discriminant analysis (PLS-DA) were carried 

out using SIMCA-P+ software version 12.0 (Umetrics, 

Umeå, Sweden) to visualize score plots and identify 

differences between the young and old groups. The 

Wilcoxon rank sum test or t-test was used to evaluate 

significant differences in metabolite or RNA expression 
levels between the young and old groups. Intragroup 

metabolite level differences in a pathway were 

evaluated by using 2-way ANOVA with Sidak’s 

multiple comparisons test implemented in GraphPad. R 

1.2.1335 software and relevant packages were utilized 

for the statistical analyses and figure generation in this 

research [45]. Gene ontology analysis was conducted by 

using the goseq R package [52]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Score plots of principal component analysis (PCA) and partial least squares discriminant analysis 
(PLS-DA) obtained from the UPLC-QTOF MS spectra of kidney extracts. (A) PCA (R2X = 47.3%, Q2 = 7.7%) and PLS-DA (R2X = 29.0%, 
R2Y = 99.4%, Q2 = 84.2%) score plots for the positive ion mode. (B) PCA (R2X = 38.3%, Q2 = 6.5%) and PLS-DA (R2X = 28.7%, R2Y = 99.4%, 
Q2 = 86.2%) for the negative ion mode. 
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Supplementary Figure 2. RNA-seq results of long-chain-fatty-acid-CoA ligase (Acsl) genes. FPKM values of genes from the old (n 

= 3) and young (n = 3) groups were shown. The mean ± SEM of each group is shown. Adjusted p-values were calculated by using the Deseq2 
R package. (p-value: *< 0.05, **< 0.01, ***< 0.001, ****< 0.0001). 
 

 

 
 

Supplementary Figure 3. Volcano plot of the LC-MS-based aqueous metabolite profiling results. Glutathione, oxidized 

glutathione and gamma-glutamyl amino acids are denoted in red. 
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Supplementary Figure 4. Transcriptomic analysis results. Pathway enrichment analysis results using the KEGG database (A). 

Upregulated metabolic pathways in the old group are plotted as red bars, and downregulated metabolic pathways in the old group are 
plotted as blue bars. Pathway-pathway interaction analysis results using the clustering-based method (B). CYP gene-related pathways were 
grouped and colored red, and immune system-related pathways were grouped and colored blue. 
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Supplementary Figure 5. Gene Ontology analysis results for the cellular component (A), biological process (B) and molecular function (C) 
categories. The FPKM values of genes from the old (n = 3) and young (n = 3) groups were used for the analysis. 
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Supplementary Tables 
 

Supplementary Table 1. LC-MS-based metabolomic analysis results of metabolic genes related to glutathione 
metabolism in mouse kidney tissue. 

The retention times (rts) and detected mass over charge (mz) values of metabolites are shown. Fold changes (FCs) were 
calculated by dividing the mean relative intensity values of identified metabolites from the old group (n = 8) by those from 
the young group (n = 7). P-values were determined by the Wilcoxon rank sum test (Wilcox_p) and t-test (t-test_p) using R. 

 

Supplementary Table 2. Metaboanalyst results. 

 Total Cmpd Hits Raw p FDR Impact 

Riboflavin metabolism 4 2 0.00078 0.00397 0.5 

Nicotinate and nicotinamide metabolism 15 2 0.00004 0.00095 0.4290 

Glutathione metabolism 28 4 0.00043 0.00281 0.3026 

Purine metabolism 65 6 0.00037 0.00281 0.2061 

Alanine, aspartate and glutamate metabolism 28 2 0.00820 0.01066 0.1971 

Citrate cycle (TCA cycle) 20 2 0.00337 0.00572 0.1345 

Arginine and proline metabolism 38 2 0.00140 0.00438 0.0860 

Glyoxylate and dicarboxylate metabolism 32 3 0.00204 0.00482 0.0318 

Pyrimidine metabolism 39 2 0.00092 0.00397 0.0202 

The number of total annotated compounds in each metabolic pathway (Total Cmpd) and the number of identified 
metabolites (Hits) were used for the hypergeometrical test-based pathway enrichment test. According to the test results, raw 
p-values (Raw p) and FDR values were calculated. Additionally, the estimated impact parameters in the Metaboanalyst results 
are shown. 

 

Supplementary Table 3. Transcriptomic results of metabolic genes related to glutathione metabolism in mouse 
kidney tissue. 

Gene_Sym Description FC Adjusted p-value 

Ggct gamma-glutamyl cyclotransferase 0.55 1.49E-06 

Oplah 5-oxoprolinase (ATP-hydrolysing) 1.38 0.0406977 

Gss glutathione synthetase 0.8 0.0608817 

Chac2 ChaC, cation transport regulator 2 0.78 0.0956953 

Ggt1 gamma-glutamyl transferase 1 0.87 0.3969397 

Anpep alanyl (membrane) aminopeptidase 0.79 0.1122825 

Gclc glutamate-cysteine ligase, catalytic subunit 0.74 0.4305143 

Dpep1 dipeptidase 1 0.75 0.4100684 

Fold changes (FCs) were calculated by dividing the mean FPKM values of genes from the old group (n = 3) by those from the 
young group (n = 3). Adjusted p-values were calculated by using the Deseq2 R package. 

rt mz Metabolite Wilcox_p t-test_p FC 

1.53 307.0843 Oxidized glutathione 0.01 0.00 2.77 

1.12 308.0915 Glutathione 0.03 0.03 2.37 

0.61 148.0603 L-Glutamic acid 0.01 0.01 0.91 

3.71 261.1447 Ƴ-glutamylisoleucine 0.04 0.04 0.86 

2.26 247.1285 Ƴ-glutamylvaline 0.01 0.00 0.82 

2.3 279.1007 Ƴ-glutamylmethionine 0.02 0.01 0.66 

1.29 497.1009 Bis-Ƴ-glutamylcystine 0.01 0.01 0.64 
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Supplementary Table 4. Gene Set Enrichment Analysis results of transcriptome data from mouse kidney tissue. 

Gene Set ES NES 
NOM  
p-val 

FDR  
q-val 

GSE17721_LPS_VS_POLYIC_1H_BMDC_DN –0.96 –1.53 0 0.046 

GSE14308_TH1_VS_NAIVE_CD4_TCELL_DN –0.9 –1.46 0 0.046 

GSE43955_10H_VS_30H_ACT_CD4_TCELL_DN –0.96 –1.42 0 0.046 

GSE14308_INDUCED_VS_NATURAL_TREG_UP –0.98 –1.36 0 0.069 

GSE14769_UNSTIM_VS_120MIN_LPS_BMDM_DN –0.98 –1.36 0 0.055 

CAIRO_LIVER_DEVELOPMENT_DN –0.91 –1.35 0 0.054 

OHGUCHI_LIVER_HNF4A_TARGETS_DN –0.96 –1.34 0 0.078 

GSE19198_6H_VS_24H_IL21_TREATED_TCELL_DN –0.93 –1.33 0 0.074 

Nominal p-values (NOM p-val) were adjusted as FDR q-values. Only the gene sets with FDR q-values less than 0.1 are shown 
above. Enrichment scores (ES) and negative enrichment scores (NES) are also shown. 

 

Supplementary Table 5. Body weights of the young and old mice. 

Young (3 months) BW (g) 

Y1 25.2 

Y2 25.8 

Y3 28.4 

Y5 21.6 

Y7 23.5 

Y8 22.4 

Y9 24.3 

Old (24 months)  

O1 37.7 

O2 45.3 

O3 35.6 

O4 49.6 

O5 31.0 

O7 35.6 

O8 45.1 

O9 41.7 

Young group (n = 7) and old group (n = 8). 

 


