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Abstract: Hydrogen sulfide (H2S) is considered the third gas signal molecule in recent years. A
large number of studies have shown that H2S not only played an important role in animals but
also participated in the regulation of plant growth and development and responses to various
environmental stresses. Waterlogging, as a kind of abiotic stress, poses a serious threat to land-based
waterlogging-sensitive plants, and which H2S plays an indispensable role in response to. In this
review, we summarized that H2S improves resistance to waterlogging stress by affecting lateral root
development, photosynthetic efficiency, and cell fates. Here, we reviewed the roles of H2S in plant
resistance to waterlogging stress, focusing on the mechanism of its promotion to gained hypoxia
tolerance. Finally, we raised relevant issues that needed to be addressed.

Keywords: hydrogen sulfide; waterlogging; reactive oxygen species; gas signaling molecule;
hypoxia tolerance

1. Introduction

Hydrogen sulfide (H2S) is a colorless, toxic gas readily soluble in water with a pungent
odor of rotten eggs [1,2]. It can be ionized to H+, HS−, and S2− in aqueous solution;
although the HS− cannot cross the cell membrane, H2S, acting as a small liposoluble
molecule, is five times more soluble in lipophilic solvents than in water, can permeate the
lipid membrane freely, because of H2S’s poor water solubility, it is difficult to long-distance
transport; however, SO4

2− and sulfur compounds can be realized long-distance transport
through xylem vessels to participate in endogenous H2S metabolism in plant cells” [3–5].
H2S is widely regarded as a harmful gas produced in industrial production until the
middle of the late 1990s. The physiological role and importance of H2S was gradually
recognized by researchers. It was discovered that H2S can be produced by mammals
through cysteine metabolism. With the further study of H2S as a gas signal molecule, many
new physiological functions of H2S- and H2S-induced effects are of increasing interest, and
it is considered as the third gas signaling molecule, which can be produced internally and
plays multiple physiological functions in plants and animals. In recent years, more and
more excellent research works on H2S have been done, and it is clearer and clearer to the
mechanism of crosstalk between H2S with other molecules to regulate plant growth and
development [2,6,7].

Water condition, affecting plant morphology, physiological, biochemical metabolism,
and geographical distribution, is one of the important environmental factors for plant
growth [8–11]. As the global warming, distribution of rainfall is seriously uneven, which
leads to frequent waterlogging, and plant’s growth and development are impacted, espe-
cially xerophytes [9,12]. During the waterlogging period, although most vascular plants
were obviously damaged and even died, the main cause of waterlogging damage to plants
is not the water itself but secondary stress induced by excessive water [13,14]. Researchers
initially found that plants accumulate higher than normal levels of H2S when exposed
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to stress. With the continuous in-depth study of the mechanism of stress response by
many researchers, more and more evidence show that H2S plays a very important and
extensive role in many stress processes in plants, including hypoxic stress induced by
waterlogging [15,16].

A large number of studies have confirmed that H2S participates in the regulation
of plants response to drought [17–19], extreme temperature [20–23], high salt [24,25],
ultraviolet light [26], high osmotic pressure [27–29] and heavy metal (cadmium, chromium,
lead, copper, mercury, etc.) [30–38] and significantly improves the stress tolerance of plants.
Because endogenous H2S can be produced in plant cells, and H2S’s functions could be
strengthened with the application of exogenous H2S. In order to study expediently, the
application of H2S donors to plants has become a common method, especially when H2S
responds to abiotic stresses. Waterlogging stress, which H2S is involved in response to in
plants, acts as abiotic stress with significant destructive power, and this review will focus
on the role of H2S as a signaling molecule in plant response to hypoxia stress induced by
waterlogging [3,39,40].

2. The Role of H2S in Response to Hypoxia Stress Induced by Waterlogging in Plants
2.1. Multiple Factors Affect Tolerance to Waterlogging Stress

Waterlogging stress leads to the decrease in oxygen concentration in the rhizosphere
of plants, resulting in the formation of hypoxia and anoxia. It directly acts on roots, making
root hypoxia, nutrient absorption efficiency decreases, reduction in growth rate, further
influences growth, and development of plants [41–44]. What is more, after a long period of
evolution, plants have developed a series of stress response mechanisms. After sensing
the anaerobic signal, a series of morphological, anatomical, physiological, and metabolic
changes are caused by regulating the expression of genes so as to improve the ability to
tolerate hypoxia and maintain the survival of individuals [45–49].

Plant waterlogging resistance is controlled by a combination of multiple factors [50–54].
The specific adaptive mechanism involves secondary signal transduction, gene expression,
and protein synthesis, antioxidant enzyme system, and fermentation pathway under
hypoxia stress [55–58]. Plants adapt to hypoxic stress from two aspects: avoidance and
tolerance, that is, with promoting oxygen absorption and transport in vivo and reducing
oxygen loss to escape hypoxic state, and with adjusting biochemical mechanisms to reduce
the damage caused by hypoxia [47,59,60] when H2S acts a remarkable biological function
in both these avoidance and adaptation strategies [6,61].

2.2. Synthesis of H2S in Plants

Because of toxicity for the over-accumulation of H2S in plant cells, different enzymes
could be able to regulate the balance of H2S content [3,7,61,62]. In mammals, H2S produc-
tion occurs in the cytoplasm and depends on the catalysis of enzymes, including cythione
-β-synthase (CBS) and cythione-γ-lyase (CSE), in the sulfur-conversion pathway. On the
one hand, CBS catalyzes the β-cysteine or homocysteine to produce cysteine and H2S. On
the other hand, CSE, acting as a homologous tetramer enzyme, directly binds and catalyzes
homocysteine and cysteine to product H2S. Additionally, 3-mercaptopyruvate thitrans-
ferase also contributes to the production of endogenous H2S from 3-mercaptopyruvate [63].
However, the key plant H2S synthases, named L/D-cysteine desulfhydrases (L/D-CDes),
was first discovered in tobacco and gourd cells and mainly distributed in chloroplasts,
mitochondria, and cytoplasm. Then, D-cysteine desulfhydrase (D-CDes) were identified
and purified for the first time in Arabidopsis, which was found mainly based on homol-
ogy characteristics similar to the D-CDes active protein in the large intestine. D-CDes
are mainly located in the mitochondria, and their mRNA transcription level gradually
increases plant growth and development but decreases during plant aging process. They
also can catalyze the degradation of D-cysteine to produce H2S, pyruvate, and ammonia
(Figure 1), and synthesis of H2S can achieve self-regulation when plants face different
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needs such as growth, fruit ripening, diseases, and insect pests and abiotic stresses, and
acquire regular growth and development or stress tolerance [64–67].
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Figure 1. Synthesis of H2S in plant cells [15]. APS: 5’-adenylylsulfate; SIR: sulfite reductase. OAS: O-acetyl serine; OAS-TL:
O-acetyl-L-serine (mercaptan) lyase; ASE: acetate; Cys: cysteine.

2.3. Intermediate Metabolite of H2S in Plants Promotes Stress Tolerance

The sulfur-containing defense system of plants includes elemental sulfur, H2S, glu-
tathione (GSH), plant chelating agents, various secondary metabolites, and sulfur-rich
proteins [68,69]. SO4

2− is absorbed and enters the vacuole to regulate the osmotic pressure
of the cells, and some are transported to the aboveground part of the plant by high-affinity
transporters and enters into the chloroplasts, chromoplasts, and other plastids to participate
in the anabolism of SO3

2−, these also could occur in the cytoplasm [70–73]. The formation
of ASE and Cys from carrier compounds of H2S or sulfur with OAS under OAS-TL can oc-
cur in both cytoplasm and mitochondria. The Cys is the metabolic precursor of glutathione,
phytochemicals, and some sulfur-rich proteins, which is of great significance for the normal
physiological activities of plants (Figure 2) [32,74].
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metabolism in plants are mainly absorbed by roots in the manner of SO4

2− from the soil, which was
transported to various parts of plants through microtubules to participate in the process of sulfur
metabolism in plants. Another complementary pathway is the absorption of H2S, carbonyl sulfide
(COS), and SO2 from the air through stomata on the leaves, thus immobilization of sulfur into the
sulfur metabolic pathway in plants. CA: carbonic anhydrase, SiR: sulfite reductase.

Cysteine is also the metabolic precursor of many important molecular substances
such as vitamins, cofactors, antioxidants, and many defense substances, and it could be
further metabolized into other sulfur-rich proteins (SRPs), plant chelating peptides and
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GSH, and so on [72,75]. Meanwhile, O-acetylserine(thiol)lyase isoform a1 (OAS-A1), the
main isozyme of OAS-TL, and L-cysteine desulfhydrase 1 (DES1), a cysteine-degrading cy-
toplasmic thiol enzyme, affected the homeostasis of cysteine in the cytoplasm. In this series
of metabolites, H2S is a very important intermediate product in the sulfur metabolism path-
way, and sulfur metabolism has a significant impact on the stress adaptability of plants [76].

3. Adventitious Root Formation, Photosynthesis Efficiency Improvement, Cell Death
Alleviation Promoted by H2S against Waterlogging Stress
3.1. H2S Enhances the Occurrence of Adventitious Roots

The occurrence of adventitious roots is one of the ways for plants to adapt to low
oxygen stress in waterlogging [77–79]. H2S produced by microorganisms in soil is little
absorbed by roots for its poor water solubility, and the main pathway of H2S accumulation
is endogenous production in root cells. H2S can promote the elongation of plant roots; for
example, a low concentration of exogenous H2S (0–40 µmol · L−1) can promote the growth
of pea radicles and the formation of adventitious root formation in cucumber [80,81]. It was
also found that the endogenous H2S, indoleacetic acid (IAA), and NO contents in sweet
potato stem tip increased in sequence with the addition of H2S donor sodium hydrosulfide
(NaHS), suggesting that H2S may induce adventive root formation through IAA and
NO [67,82,83].

3.2. H2S Elevates the Photosynthetic Efficiency of Plants

Photosynthetic efficiency is also an important reference index for the degree of hypoxia
stress of plants subjected to waterlogging [84]. As early as 1973, Gassman reported that
H2S could break the disulfide bonds of photosystem proteins in yellow bean leaves and
make them reversible. Then, much evidence showed that exogenous H2S could increase the
chlorophyll content of plant leaves [85,86]. For instance, H2S increases the chlorophyll con-
tent of spinach leaves, changes the chloroplast structure, and improves the photosynthetic
rate, which may be through the regulation of rubisco activity and the redox modification of
sulfhydryl compounds to enhance photosynthesis [84]. Photosynthesis could be promoted
with H2S through promoting photosynthetic enzyme expression, chloroplast biogenesis,
and thiol redox modification in Spinacia oleracea seedlings [19].

3.3. H2S Alleviates Plant Cell Death

Cell is the basic constituent unit of the plant, whose surviving or not directly deter-
mines the survival state of plants during waterlogging [87]. Further, though the factors
influencing cell survival include cytoplasmic redox state, pH, energy supply, metabolic
enzyme activity, programmed cell death factor, and many other factors, H2S is generally
involved in these physiological and biochemical processes [3,88,89]. Strawberries smoked
with H2S have been demonstrated that exogenous H2S could maintain low rot index, high
fruit firmness, low respiration density, and polygalacturonase activity, thus extending
the fresh-keeping period of strawberries after picking [90]. There are studies that found
that H2S can reduce the plant tissue and cell death against hypoxia stress induced by
waterlogging in pea, maize, and Arabidopsis, respectively [16,91,92].

4. How H2S Enhances the Hypoxia Tolerance of Plants during Waterlogging
4.1. H2S Enhances the Activity of Antioxidant System to Gain Waterlogging Tolerance

Studies have shown that abnormal levels of reactive oxygen species (ROS) will be
produced in plants subjected to stresses, resulting in oxidative damage of cells and some
related key enzyme genes up-expression observably. Catalase (CAT), peroxidase (POD),
and superoxide dismutase (SOD) are core members of the antioxidant enzyme system
and have been recognized as key players in the complex signaling network in plants’
response to environmental stresses [93–95]. Previous studies showed that the activities
of CAT, POD, and SOD were enhanced under mild waterlogging conditions, while their
activities increased first and then decreased under severe waterlogging conditions [14].
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Under waterlogging stress, the activities of POD and SOD in leaves of begonia seedlings
increased significantly at the initial stage and then tended to be similar to the control [96].
The activities of key antioxidant enzymes in root tip cells of pea and maize treated with H2S
were significantly higher than untreated groups, and the degree of cell death was less than
untreated groups, which was also reappeared in seedlings of Arabidopsis thaliana [91,92,97].

Reduced glutathione/oxidized glutathione (GSH/GSSG) is a meaningful parameter
to reflect the redox state of cells (Figure 3) [98,99]. NaHS pretreatment could recover the
loss of ascorbic acid (AsA) content and further increase the GSH content under extreme
environmental conditions [100,101]. Furthermore, the content of GSH was further increased
to maintain the ratio of AsA/dehydroascorbate (DHA) and GSH/GSSG, balance the
content of mineral elements, reduce the absorption of Na+ and the ratio of Na+ /K+,
and increase the endogenous H2S content to protect chlorophyll, carotenoid and soluble
proteins from oxidative damage [102,103]. It was found that NaHS up-regulates the
activity of glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes related to glycine (Gly)
metabolism in rice, thus maintaining the GSH system homeostasis and slowing down
the cytotoxicity of methylglyoxal (MG) and ROS [17,104]. Oxidative damage caused by
water stress could be alleviated by regulating ascorbic acid and glutathione metabolism
resulting in alleviation of the impact of water stress on wheat seedlings [68,105]. It is worth
noting that exogenous NaHS (H2S donor) was applied to maize seedling roots inducing
improvement of endogenous NO level in root tip cells, and NO acted as a second messenger
to enhance the cyclic metabolism of AsA-GSH, maintained antioxidant system capacity,
reduced ROS-induced macromolecular damage, and alleviated the damage caused by
peroxidation to plants [106,107].
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4.2. The Crosstalk between H2S and Hormones Improves the Hypoxia Tolerance

H2S interaction with plant hormones withstands waterlogging-induced hypoxia stress.
The physiological activities of higher plants are in a complex signal network, and there are
different interactions between different pathways to jointly resist abiotic stress, and H2S
changes the balance of different signal substances and regulates plant growth and stress
tolerance [31,108]. For example, salicylic acid (SA) is a phenol signaling substance that
acts upstream of H2S and participates in plants' response to stress [23,109]. Moreover, H2S
may be involved in the stomatal closure process induced by abscisic acid (ABA), ethylene
and jasmonic acid (JA), and exogenous ABA can significantly improve the H2S level and
L/D-cysteine desulfhydrase activity in leaves, while H2S synthesis inhibitors can reverse
the effects of ABA [17,110]. In the study of maize seedlings, H2S may act as a downstream
signal molecule of NO to respond to waterlogging-induced hypoxia stress [92].
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4.3. H2S Affects Respiratory Metabolism to Improve Hypoxia Stress Tolerance

Respiration is the most basic source of power to maintain plant metabolism, growth,
and transform nutrients. The plant root respiration is closely related to plant matter
metabolism and energy metabolism, and the success of root respiration is one of the impor-
tant indicators to measure plant root normal function and stress tolerance [40,111]. Malic
dehydrogenase (MDH), phosphofructokinase (PFK), and glucose-6-phosphate dehydroge-
nase (G-6-PDH), whose activities directly affect the respiratory rate, are the key enzymes
that regulate the rate of each respiratory metabolic pathway. Additionally, NaHS treatment
of chestnut roots could improve the enzyme activities of MDH, PFK, and G-6-PDH to a
certain extent, thus improving the stress tolerance of plants [84,112].

4.4. Sulfur-Sulfhydrylation of Proteins by H2S Strengthens Hypoxia Tolerance

In plant cells, H2S firstly modifies Cys residues with thiol, and then the Cys-SH group
is transformed into the Cys-SSH sulfyl group, which directly regulates the activity of
proteins [113]. H2S induces changes in actin cytoskeleton and inhibits actin polymerization
through s-vulcanization of actin, proving that H2S regulates actin dynamics and affects root
hair growth. Another study showed that exogenous H2S promoted the sulfhydrylation of
ascorbate peroxidase (APX) in Arabidopsis thaliana and improved its activity [72,114]. In
conclusion, S-sulfhydrylation is an integrant pathway for an H2S signaling molecule to exert
biological activity in plants, and proteins, modified with sulfhydrylation, provide direct or
indirect support for the acquisition of tolerance to low oxygen stress in waterlogging.

4.5. H2S Associating with Ca2+ Elevates Hypoxia Tolerance

The increase in Ca2+ concentration is similar to the accumulation of ROS, which is one
of the basic steps in plants' response to stress signals. Just like other signaling molecules,
Ca2+ is a necessary universal second messenger acting as transduction and regulatory
factor in plants, which can produce adaptive responses by Ca2+ binding proteins that
sense rapid Ca2+ increase and transmit specific signals [115,116]. The reduction effect of
H2S is related to the promotion of Ca2+ influx, and H2S generated by CBS was 3.5 times
when there was Ca2+/calmodulin (CaM) more than without them, while that can be
inhibited with treating CaM inhibitors [117]. It has been reported that the application of
exogenous Ca2+ and its ionic carrier A23187 could significantly enhance the antioxidant
capacity induced by NaHS. However, Ca2+ chelating agents, ethylene glycol diethyl ether
diamine tetraacetic acid (EGTA), plasma membrane channel blocker La3+, and calmodulin
antagonist chlorpromazine and trifluoperazine can weaken this resistance [118].

4.6. H2S Involves in Regulating Gene Expression to Improve Tolerance to Waterlogging Stress

The hypoxia stress of waterlogging, as one stress of plants response to, is regulated
by many types of genes and involved many kinds of stress regulation processes [12,45,46].
H2S up-regulated genes including SICDKA1, SICYCA2, CYCD3, CDKA1, ARF4, and ARF7
associated with cell cycle-related to lateral root growth in tomato seedlings, suggesting
that H2S and indoleacetic acid (IAA) jointly induced lateral root formation in tomato
seedlings, which can enhance both drought resistance and waterlogging tolerance [83,119].
Transcriptomic sequencing of Arabidopsis thaliana pretreated with H2S under hypoxia
conditions found that significant changes related to transcription regulation-associated
genes, hypoxia-sensing genes, and hormone signal transducer genes [16,54]. In addition,
the accumulation of H2S helps maize seedlings to enhance the waterlogging tolerance,
during when the expression of related genes contained stress response, hypoxic induction,
energy metabolism, and other changes remarkably [92].

Based on the above descriptions, enhancement of plant waterlogging tolerance in-
volved in the regulation of H2S was not determined by a single factor, but rather through
gene expression, protein modification, regulation of plant hormones, and interaction with
other signaling molecules, which were reflected in the reduction in cell death, enhancement
of plant photosynthesis, formation of lateral roots at the macro level. In the future, through
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making full use of advanced gene editing and proteomics technology, the mechanism of
H2S participating in the regulation of plants to improve the waterlogging tolerance will be
continuously improved.

5. Conclusions and Perspectives

The function of H2S runs through the whole process of plant growth and development,
and it is also indispensable in responding to hypoxic induced by waterlogging (Figure 4). In
this review, we summarized the roles of H2S in adventitious root formation, photosynthesis
efficiency improvement, and cell death decrease in plants responding to waterlogging
hypoxia stress and further discussed the specific approaches from the perspective of
molecular mechanisms.
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Abbreviations

H2S Hydrogen sulfide
NO Nitric oxide
CO Carbon monoxide
L/D-CDes L/D-cysteine desulfhydrases
D-CDes D-cysteine desulfhydrase
APS 5’-adenylylsulfate
SIR Sulfite reductase
OAS O-acetyl serine
OAS-TL O-acetyl-L-serine (mercaptan) lyase
ASE Acetate
Cys Cysteine
GSH Glutathione
SRPs Sulfur-rich proteins
OAS-A1 O-acetylserine(thiol)lyase isoform a1
DES1 Desulfhydrase 1
COS Carbonyl sulfide
IAA Indoleacetic acid
ROS Reactive oxygen species
CAT Catalase
POD Peroxidase
SOD Superoxide dismutase
GSH/GSSG Glutathione/oxidized glutathione
AsA Ascorbic acid
DHA Dehydroascorbate
Gly I Glyoxalase I
Gly II Glyoxalase II
Gly Glycine
MG Methylglyoxal
SA Salicylic acid
ABA Abscisic acid
JA Jasmonic acid
MDH Malic dehydrogenase
PFK Phosphofructokinase
G-6-PDH Glucose-6-phosphate dehydrogenase
APX Ascorbate peroxidase
CaM Calmodulin
EGTA Ethylene glycol diethyl ether diamine tetraacetic acid
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