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Background: Functional neurological disorders are characterized by neurological
symptoms that have no identifiable pathology and little is known about their
underlying pathophysiology.

Objectives: To analyze motor cortex excitability and intracortical inhibitory and
excitatory circuits’ imbalance in patients with flaccid functional weakness.

Methods: Twenty-one consecutive patients with acute onset of flaccid functional
weakness were recruited. Single and paired-pulse transcranial magnetic stimulation
(TMS) protocols were used to analyze resting motor thresholds (RMT) and
intracortical inhibitory (short interval intracortical inhibition – SICI) and excitatory
(intracortical facilitation – ICF) circuits’ imbalance between the affected and non-
affected motor cortices.

Results: We observed a significant increase in RMT and SICI in the affected motor
cortex (p < 0.001), but not for ICF, compared to the contralateral unaffected side.

Conclusion: This study extends current knowledge of functional weakness, arguing for
a specific central nervous system abnormality which may be involved in the symptoms’
pathophysiology.

Keywords: functional neurological disorders, functional paralysis, transcranial magnetic stimulation, short
interval intracortical inhibition, motor threshold

INTRODUCTION

Functional neurological disorders (FND) are characterized by neurological symptoms that have no
identifiable, responsible pathology (American Psychiatric Association, 2013; Edwards et al., 2014;
Roelofs et al., 2019; Baizabal-Carvallo and Jankovic, 2020). Functional disorders are common in
neurological practice, accounting up to 15% of new referrals in neurology clinics (Stone et al.,
2010). Despite their common occurrence, little is known about the underlying pathophysiology
and treatment, also considering that they have a poor prognosis at long term follow-up, with
high levels of physical disability (Espay et al., 2006; Avanzino et al., 2008; Quartarone et al.,
2009). Individuals with FND have traditionally been left in a therapeutic void, with neither
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neurologist nor psychiatrics able to provide adequate strategies
for improvement (Pringsheim and Edwards, 2017).

Recent studies have shown that patients with FNDs are
not different psychologically from individuals with neurologic
movement disorders, and that a relevant proportion of
individuals with FND have no psychopathology detectable on
symptom screening measures (van der Hoeven et al., 2015).
These symptoms are thought to result from a distorted mind-
body relationship in self-awareness, with a functional mismatch
between beliefs/expectations and sensory information related to
the symptom (Edwards et al., 2013), rather than an intention to
obtain earning or help (Espay et al., 2018). However, researchers
are continuing to explore the psychological underpinnings of
FND, still debating whether to support the Freudian hypothesis
of conversion or to embrace a neurologic (organic) explanation
for the disorder (Pringsheim and Edwards, 2017).

Among FNDs, a great proportion is determined by patients
presenting with sudden weakness, mimicking an acute stroke
(stroke-mimic) (Carson et al., 2000). In functional weakness and
paralysis, the motor system, from motor cortex to muscle, seems
to be unaffected. To date, the diagnosis is based exclusively on
ruling out organic disorders, while we still lack an objective
measure of disease.

A possible marker could reside in the functional evaluation of
the motor cortex, but mixed results have been reported regarding
motor cortex excitability and intracortical inhibitory circuits,
evaluated with transcranial magnetic stimulation (TMS) (Premi
et al., 2017). These studies were performed in small groups of
patients, including both flaccid and spastic-dystonic paralysis.

TMS has already been proven useful to assess non-invasively
and in vivo several inhibitory and excitatory intracortical circuits,
as well as several parameters of cortical plasticity (Rossini et al.,
2015). These techniques have been successfully applied in several
studies, which have included stroke, movement disorders and
neurodegenerative diseases (Motta et al., 2018; Koch et al., 2019;
Benussi et al., 2020).

Abnormalities in frontal, parietal and limbic influences on
the motor system have recently emerged (Kanaan et al., 2007;
Stone et al., 2007; Cojan et al., 2009; Demartini et al., 2019),
suggesting for a top-down inhibition of the motor system
causing weakness or paralysis (Hallett, 2016). In particular, these
studies have provided novel insights into the possible neural
mechanisms involved in functional paralysis, by showing that
unilateral paralysis was associated not only with a suppressed
activation of the motor cortex during attempted movements but
also with changes in its functional connectivity, including greater
recruitment of the precuneus and ventromedial prefrontal cortex
regions that are critical for accessing self-related representations
and memories. Moreover, no evidence has emerged that brain
regions normally implicated in conscious motor inhibition (such
as the inferior frontal gyrus) are responsible for the paralysis
(Cojan et al., 2009).

In this view, FNDs would represent a proper neurological
disorder, beyond the possible presence of a specific psychological
or psychiatric trait (Edwards et al., 2013).

The objective of this study was to evaluate possible
abnormalities in motor cortex excitability between the affected

and unaffected motor cortices in a relatively large cohort of
well characterized patients with flaccid functional weakness,
mimicking an acute stroke, by applying paired-pulse TMS
protocols measuring short interval intracortical inhibition (SICI)
and intracortical facilitation (ICF).

METHODS

Participants
Twenty-one patients were recruited from the Stroke Unit, ASST
Spedali Civili Hospital, Brescia, and from the Neurology Unit,
Fondazione Poliambulanza Hospital, Brescia, Italy with an acute
onset functional paralysis (flaccid hemiparesis, 7 right-sided, 14
left-sided), admitted for a clinical suspect of ischemic stroke with
acute hemiparesis.

Brain CT scan was unremarkable and some patients
(n = 11) were treated with recombinant tissue plasminogen
activator if clinical and temporal inclusion criteria were satisfied
(Powers et al., 2019).

At 24 h follow-up, brain 1.5T or 3T MRI scans with T1, T2,
T2-Fluid Attenuated Inversion Recovery (FLARI) and Diffusion
Weighted Images (DWI) sequences resulted unremarkable and
ruled out a cerebrovascular event or any other abnormality that
could have possible explained the symptomatology.

At discharge (range: 4–7 days after admission), global
neurological examinations showed a persistent hemiparesis.
At follow-up (mean disease duration: 22.5 ± 31.5 months),
considering the persistency of clinical symptoms, brain
and cervical spine MRI, and EMG-ENG were performed
in all patients to exclude lesions in the cervical spinal
cord (i.e., myelopathy) or peripheral nerves. All tests were
unremarkable and excluded an organic lesion. Central
motor conduction time (CMCT) was not evaluated in all
patients, thus possible subclinical myelopathies could have
been undiagnosed.

The functional etiology was also defined according to the
Carson scale (Carson et al., 2000) (1 = not at all; 2 = somewhat;
3 = largely; 4 = completely) based on the assessment of
the premorbid psychological status by Minnesota Multiphasic
Personality Inventory 2 (MMPI-2) (Tellegen and Ben-Porath,
1993) and the Italian version of the Symptom Rating Test (Fava
et al., 1983). Functional etiology was confirmed by unremarkable
instrumental examination, including the assessment of the
premorbid psychological status, which supported the presence of
a largely (n = 13) or completely (n = 8) functional etiology, in line
with the Carson scale (Carson et al., 2000). None of the patients
were excluded and all met criteria for a functional etiology.

Patients were screened for depression using the Zung Self-
Rating Depression Scale (Zung, 1965).

None of the patients were being treated with drugs that could
have altered the cerebral cortex excitability at TMS evaluation.

Informed consent was acquired from all participants in
accordance to the Declaration of Helsinki. The local ethics
committee of the Brescia Hospital approved the present study
(05.19.2015, #NP1965).
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70 healthy subjects (age 44.9 ± 16.5) who underwent TMS on
the left motor cortex were included as a control group.

Transcranial Magnetic Stimulation
Variables and Protocols
A TMS figure-of-eight coil (each loop diameter 70 mM –
D702 coil) connected to a monophasic Magstim Bistim2 system
(Magstim Company, Oxford, United Kingdom) was employed
for all TMS paradigms, as previously reported (Benussi et al.,
2018a). Motor evoked potentials (MEPs) were recorded from the
right and left first dorsal interosseous (FDI) muscles through
surface Ag/AgCl electrodes placed in a belly-tendon montage
and acquired using a Biopac MP-150 electromyograph (BIOPAC
Systems Inc., Santa Barbara, CA, United States). Responses were
amplified and filtered at 20 Hz and 2 kHz with a sampling
rate of 5 kHz and recorded on a personal computer for
offline elaboration (AcqKnowledge 4.1, BIOPAC Systems Inc.,
Santa Barbara, CA, United States).

Resting motor threshold (RMT) was determined on both
motor cortices as the minimum intensity of the stimulator
required to elicit motor evoked potentials (MEPs) with a 50 µV
amplitude in 50% of 10 consecutive trails, recorded form the
right or left first dorsal interosseous muscles during full relaxation
(Rossini et al., 2015). Moreover, MEP latencies were measured on
both sides at an intensity of 120% RMT.

SICI and ICF were studied using a paired-pulse technique,
employing a conditioning-test design. For all paradigms, the test
stimulus (TS) was adjusted to evoke a MEP of ∼1 mv amplitude
in the right and left FDI muscles (Benussi et al., 2018b).

The conditioning stimulus (CS) was adjusted at 70% of
the RMT, employing multiple interstimulus intervals (ISIs),
including 1, 2, 3 ms for SICI and 7, 10, 15 ms for ICF
(Kujirai et al., 1993; Ziemann et al., 1996). For each ISI
and for each protocol, ten different paired CS-TS stimuli and
fourteen control TS stimuli were delivered in all participants
in a pseudo randomized sequence, with an inter trial interval
of 5 s (± 10%). Patients were stimulated on the left side first
in ∼50% trails in order to reduce possible effects of attention
and adaptation to the TMS pulses and thus on motor cortex
excitability measures.

The conditioned MEP amplitude, evoked after delivering
a paired CS-TS stimulus, was expressed as percentage of
the average control MEP amplitude. Audio-visual feedback
was provided to ensure muscle relaxation during the entire
experiment and trials were rejected if electromyographic
activity was greater that 100 µV in the 250 ms before
TMS stimulus application. Less that 2% of trials were
discarded for each protocol. All of the participants were
capable of following instructions and reaching complete
muscle relaxation; if, however, the data was corrupted by
patient movement, the protocol was restarted and the initial
recording was rejected.

Statistical Analysis
TMS evoked responses were compared using one-way repeated
measures ANOVA (for RMT and MEP latency) or two-way

repeated measures ANOVA (for SICI and ICF) with SIDE
(affected vs. unaffected) and ISI (1, 2, 3, 7, 10, 15 ms)
as within-subjects factor. If a significant main effect was
observed, group differences were evaluated with post hoc
tests (p-values are reported after Bonferroni correction for
multiple comparisons). Mauchly’s test was used to check for
sphericity violation. Pearson’s correlation co-efficient was used
to investigate any association between differences in RMT and
SICI scores between sides and with NIH Stroke Scale scores
(Pezzella et al., 2009).

Data analyses were carried out using SPSS 21.0 software.

RESULTS

Participants
Demographic and clinical characteristics are reported in Table 1.
We did not observe a significant association between handedness
and side of the hemiparesis, as assessed by Fisher’s exact test
(p = 0.533). NIH Stroke Scale scores were 3.8 ± 1.4 and 2.4 ± 0.7
at onset and at TMS, respectively.

Transcranial Magnetic Stimulation
In one patient, RMT could not be measured on the affected
side because the motor cortex was unexcitable at 80% of the
maximum stimulator output (% MSO) (intensities between 80
and 100% MSO were not tested for patient discomfort), and was
excluded from analysis.

No significant differences in MEP latencies between sides were
observed, F(1,19) = 0.42, p = 0.524, partial η2 = 0.02 (see Table 2).

One-way repeated measures ANOVA showed a significant
difference in RMT scores between the affected and the
unaffected side, F(1,19) = 26.62, p < 0.001, partial η2 = 0.58,
with a significantly increased RMT in the affected motor
cortex (49.1 ± 9.0% MSO) compared to the unaffected one
(43.3 ± 7.3% MSO) (see Table 2).

TABLE 1 | Demographic and clinical characteristics of included patients.

Functional neurological
disorders

Healthy
controls

Patients (n) 20 70

Age (years) 43.5 ± 11.9 44.9 ± 16.5

Gender (% female) 95.0%∗ 62.9%

Education (years) 11.8 ± 2.7 12.8 ± 4.3

Duration (months) 22.4 ± 32.5 –

Hemiparesis side (% right) 35.0% –

Handedness (% right) 95.0% 87.1%

NIH Stroke Scale at onset 3.8 ± 1.4 –

NIH Stroke Scale at TMS 2.4 ± 0.7 –

Zung Self-rating Depression Scale 40.6 ± 13.3 –

Demographic and clinical characteristics are expressed as mean ± SD or %, as
appropriate. *Significant p-values compared to healthy controls for one-way
ANOVA (post hoc tests with Bonferroni correction for multiple comparisons) or
Fisher’s exact test, where appropriate.
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TABLE 2 | Neurophysiological characteristics of included patients.

Neurophysiological
measures

Affected side Unaffected side Healthycontrols

MEP latencies (ms) 23.4 ± 0.9 23.5 ± 0.9 –

RMT (% MSO) 49.1 ± 9.0∗ 43.3 ± 7.3 45.1 ± 9.3

1 mV (% MSO) 59.3 ± 13.3∗ 51.7 ± 9.5 53.8 ± 12.0

Average SICI (ratio) 0.18 ± 0.05∗ 0.39 ± 0.10# 0.22 ± 0.11

Average ICF (ratio) 1.40 ± 0.30 1.44 ± 0.28 1.50 ± 0.2

RMT and 1 mV are expressed as ratio of the MSO; SICI and ICF are represented
as ratio of mean motor evoked potential (MEP) amplitude related to the control
MEP. RMT, resting motor threshold; MSO, percentage of maximal stimulator output;
SICI, mean short interval intracortical inhibition (1, 2, 3 ms) expressed as ratio
of unconditioned response; ICF, mean intracortical facilitation (7, 10, 15 ms)
expressed as ratio of unconditioned response; MEP, motor evoked potential.
∗Significant p-values for one-way ANOVA compared to the unaffected side
(post hoc tests with Bonferroni correction for multiple comparisons). #Significant
p-values for one-way ANOVA compared to the healthy controls (post hoc tests
with Bonferroni correction for multiple comparisons).

RMT was significantly increased in the affected side compared
to healthy controls, F(1,89) = 5.07, p = 0.027, partial η2 = 0.05,
but not in the unaffected side, F(1,89) = 0.20, p = 0.656, partial
η2 < 0.01 (see Table 2).

Two-way repeated measures ANOVA highlighted a significant
ISI × GROUP interaction for SICI-ICF, F(5,95) = 3.87, p = 0.003,
partial η2 = 0.17. Post hoc tests, with Bonferroni corrections for
multiple comparisons, showed a significant difference in MEP
amplitudes between the affected and unaffected side at ISI 1, 2,
3 ms (for all p < 0.001) but not at ISI 7, 10, 15 ms (for all
p > 0.005) (see Figure 1), with a significantly increased SICI in
the affected (average 0.18 ± 0.05) compared to the unaffected side
(average 0.39 ± 0.10) (see Table 2).

There was no significant correlation between the difference in
RMT measures between sides and the difference in average SICI
between sides (r = 0.149, p = 0.531).

We observed a significant correlation between NIH Stroke
Scale scores and average SICI in the affected side (r = 0.601,
p = 0.005), but not in the unaffected side, nor with RMT or SICI
(both affected and unaffected sides), all p > 0.05.

Compared to healthy controls, we observed a significant
ISI × GROUP interaction for SICI-ICF in the affected,
F(6,528) = 8.73, p < 0.001, partial η2 = 0.09, and unaffected
sides, F(6,528) = 3.41, p = 0.003, partial η2 = 0.04. Post hoc tests,
with Bonferroni corrections for multiple comparisons, showed a
significant increase in SICI at ISI 2 ms (p = 0.022) in the affected
side compared to healthy controls, and a significant decrease
in SICI at ISI 1, 2, 3 ms (all p < 0.001) in the unaffected side
compared to healthy controls.

DISCUSSION

In the present study, carried out in a well characterized group
of patients with long-lasting flaccid functional paralysis, we
observed an imbalance of intracortical inhibition between the
affected and unaffected motor cortices. In particular we observed
an increase in motor threshold and intracortical inhibition,
evaluated with the SICI paired-pulse TMS protocol. SICI is
thought to reflect short-lasting post-synaptic inhibition mediated
through GABAergic interneurons, modulating the activity of
the corticospinal output. In this case, an increase in SICI
could reflect an increase of inhibitory intracortical circuits
affecting corticospinal excitability, possibly inducing a decrease
in voluntary movements.

Previous studies have shown that patients with functional
paralysis show a paradoxical suppression of the MEP amplitude
after motor imagery in the affected side, opposite to what is
observed in healthy subjects, suggesting for a disturbed control
of voluntary movements. Conversely, action observation has

FIGURE 1 | Neurophysiological parameters in the affected and unaffected sides. Short-interval intracortical inhibition (SICI) at ISI 1, 2, 3 ms and intracortical
facilitation (ICF) at ISI 7, 10, 15 ms. Data are represented as a ratio to the unconditioned MEP amplitude; error bars represent standard errors. MEP, motor evoked
potential; ISI, inter stimulus interval. *p < 0.05 vs. contralateral side using one-way ANOVA (post hoc tests with Bonferroni correction for multiple comparisons).
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shown to induce an increase in motor cortex excitability similar
to healthy controls (Liepert et al., 2011). One of these studies,
performed on 3 patients with flaccid paralysis, did not observe
any significant differences in SICI or ICF between the affected
and unaffected side (Liepert et al., 2008). Subsequently, another
study performed on 4 patients with functional paralysis showed
a significant increase in SICI and a non-significant increase
in RMT in the affected side compared to healthy controls
(Premi et al., 2017).

Several studies using functional neuroimaging have now
shown that frontal areas are dysfunctional and particularly
strongly connected to the affected motor cortex (Cojan et al.,
2009; Nowak and Fink, 2009; Hallett, 2016. Interestingly, long-
lasting functional paralysis has been associated with greater
cortical thickness/density in motor areas, suggesting that
functional brain abnormalities lead to structural changes when
disease is sustained over time (Aybek et al., 2014).

Interestingly, patients with depression exhibit a significant
interhemispheric difference in motor cortex excitability, an
imbalanced inhibitory and excitatory intracortical circuitry, and
an impaired long-term potentiation-like response to paired-
associative transcranial magnetic stimulation, reinforcing the
possible parallelism between FND and psychological comorbidity
(Cantone et al., 2017).

In line with previous studies on FND, the majority of
patients in this study were represented by females. There is
currently no clear scientific explanation for the differences in
gender prevalence favoring females but it can be argued that
neurobiological, hormonal, cultural, social, and previous history
of psychological or sexual trauma may be relevant contributors
(Baizabal-Carvallo and Jankovic, 2020; Edwards and Aybek,
2020).

Interestingly, in one patient we could not evoke a reliable MEP
on the affected motor cortex, which is somewhat contradictory
with previous studies, in which patients with psychogenic
paralysis had normal MEPs, confirming the physiological
integrity of motor fibers in the corticospinal tract, anterior roots
and plexuses (Cantello et al., 2001).

Other than evaluating intracortical circuits and corticospinal
tract integrity, TMS may be also used as a therapeutic option
in patients with FND. It has been demonstrated that TMS
may exert a therapeutic effect via genuine neuromodulation,
via non-specific placebo effects and by demonstrating, through
its immediate effects on the motor system (i.e., movement in
a “paretic” limb), that symptom improvement is possible, thus
directly changing higher level beliefs that may be responsible for
the maintenance of the disorder (Pollak et al., 2014; Schönfeldt-
Lecuona et al., 2016; Garcin et al., 2017).

We acknowledge that this study entails some limitations.
Firstly, it is not known if these modifications in cortical
excitability are the cause or consequence of the functional
disorder. To this, further studies should assess cortical excitability
in the acute phase of symptoms’ onset. Supporting these findings
and arguing for a causal role of increased SICI in functional
hemiparesis are previous findings observed at only 1 month
after symptom onset in patients with functional paralysis (Premi
et al., 2017). Moreover, these findings should be compared with

patients with organic hemiparesis (i.e., after stroke), in order to
shed further light on disease pathophysiology.

Moreover, it would have been interesting to assess the
excitability of the motor cortex with further measures, primarily
the input–output (IO) curves and TMS mapping. The IO
curves can be easily measured by plotting the amplitude of
motor evoked potentials (MEP) against a range of different
stimulus intensities, and are sensitive measures of changes in
neuronal system excitability (Ridding and Rothwell, 1997). TMS
mapping, i.e., the assessing of the area (number of scalp positions
from which a MEP can be elicited) and volume (the sum of
the averaged MEP amplitudes for each excitable scalp site)
of the cortical representation of a target muscle is relatively
more time consuming but provides interesting information;
in stroke, for example, hand muscles of the paretic side are
underrepresented (Marconi et al., 2007). Another relevant aspect
could have been to investigate interhemispheric connectivity
between the two motor cortices, using a paired coil method to
test interhemispheric inhibition (IHI) (Ferbert et al., 1992). In
stroke survivors, a disruption of IHI from the unaffected to the
affected motor cortex via glutamatergic transcallosal fibers can
interfere with motor performance of the paretic limb (McDonnell
and Stinear, 2017). Moreover, EEG analysis should be performed
in functional paralysis, possibly providing novel aspects in disease
pathophysiology (Cojan et al., 2009). Finally, the small sample
size and the gender imbalance may preclude generalization of
these results to larger populations.

CONCLUSION

The asymmetry/imbalance of SICI between the affected and
unaffected motor cortices could represent a potential tool to
support the diagnosis of FND in flaccid hemiparesis. To this,
further studies on larger samples are warranted, combining
clinical, electrophysiological and neuroimaging approaches for a
more comprehensive assessment.
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