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The three-signal paradigm tries to capture how the innate immune system instructs
adaptive immune responses in three well-defined actions: (1) presentation of antigenic
peptides in the context of MHCmolecules, which allows for a specific T cell response; (2) T
cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines
in the priming environment, thereby specializing T cell immunity. The three-signal model
provides an empirical framework for innate instruction of adaptive immunity, but mainly
discusses STAT-dependent cytokines in T cell activation and differentiation, while the
multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often
neglected. IL-1a and IL-1b are pro-inflammatory cytokines, produced following damage
to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both
DCs and T cells can further shape the adaptive immune response with variable outcomes.
IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action
of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical
polarizing cytokines, influences T cell differentiation under different conditions. The
activities of IL-1 form a direct bridge between innate and adaptive immunity and could
therefore be clinically translatable in the context of prophylactic and therapeutic strategies
to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity
during T cell activation thus could hold major implications for rational development of the
next generation of vaccine adjuvants.

Keywords: interleukin-1, dendritic cells, CD4+ T cells, CD8+ T cells, cellular adjuvant, vaccination,
cancer immunotherapy
INTRODUCTION

Innate immune cells represent the first line of defense in response to an injury or a pathogen encounter.
Next to this, specialized innate immune cells called antigen-presenting cells (APCs), including dendritic
cells (DCs), also collect peripheral information on the source of the antigen and transfer this data to cells
of the adaptive immune system. This information transfer happens over three major routes: (1)
presentation of antigenic peptides to antigen-specific T cells, resulting in an antigen-specific response; (2)
co-stimulation, which can be perceived as qualitative information on the context of the antigen and
allows for breaking tolerance; and (3) release of priming cytokines that polarize the T cell response, as
such raising a tailor-made reaction to the encountered threat. This so-called “three-signal paradigm”
places activation of the adaptive immune system under innate control and is currently a well-established
org January 2021 | Volume 11 | Article 6219311
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paradigm in immunobiology (1). In order to perform these essential
functions, innate immune cells are equipped with germline-encoded
extra- and intracellular pathogen-recognition receptors (PRRs).
These allow the innate immune system to recognize evolutionary
conserved “non-self” microbial components (pathogen-associated
molecular patterns (PAMPs), e.g. bacterial cell wall components or
viral nucleic acids) and host-derived damage-associated molecular
patterns (DAMPs), e.g. extracellular ATP and monosodium urate
crystals) (2, 3).

The T cell reaction that results from this three-leveled instruction
can be regarded as “productive” adaptive immunity: a measurable
and antigen-specific response that is characterized by activated T cells
that undergo clonal expansion and produce effector cytokines, but
which is not necessarily “protective” upon pathogen encounter (4).
Vaccines aim to mimic natural infections, but progression from
productive to actually protective T cell responses remains a major
challenge for the vaccine field, where most strategies are still
dependent on the generation of long-lasting neutralizing antibodies
(4, 5). Nevertheless, there is a dire need for T cell-inducing vaccines, as
both CD4+ and CD8+ T cell responses have been deemed crucial for
protection against different pathogens, such as Plasmodium
falciparum, HIV and Mycobacterium tuberculosis, and for successful
treatment of cancer. Although a lot of research has already been
dedicated to develop vaccines that provide protective T cell immunity,
the majority of these efforts were found to only result in low-level and
non-protective responses (5, 6).

A limitation of the three-signal model, as it stands today, is its
oversimplification of how the innate immune system controls
and sculpts T cell responses. Indeed, innate immune cells provide
extra clues on the origin of the antigen outside of the three major
information routes addressed above. In their 2017 opinion piece
(4), Jain and Pasare discuss different limitations of the current
three-signal model and argue that its revisitation is needed in
order to successfully translate these principles for the generation
of protective T cell responses in different contexts. For instance,
the fact that pathogens carry ligands for multiple PRRs infers
cross-talk between different PRRs in innate immune cells, which
can alter the outcome of their activation. Eventual occurrence of
co-infection should also be considered, as this was found to
possibly influence the T cell reaction mounted in response to the
initial infection. Recent work has also demonstrated that the
host’s history of prior infection, which is often neglected in
mouse models, and the composition of the commensal
microbiota and the metabolites derived thereof can sculpt the
behavior of innate and adaptive immune cells (4).

Another issue is that during T cell priming, the cytokine
environments that are formed are probably more complex and
include other players next to the prototypical priming cytokines.
The innate cytokines produced during the initiation of T cell
immunity can be roughly categorized based on their dependence
on STATs or MyD88 for signaling. Cytokines that signal via
STATs are well-studied as these induce the expression of lineage-
specific transcription factors and as such drive differentiation of
CD4+ T cells towards different phenotypes (Table 1). This
plasticity is not restricted to CD4+ T cells as also naive CD8+ T
cells can acquire different phenotypes during priming, not all of
Frontiers in Immunology | www.frontiersin.org 2
which with cytotoxic functionality and the capacity to
produce IFN-g. These so-called TC subsets mirror the different
CD4+ T cell phenotypes and are also shaped by the same
environmental STAT-signaling cytokines as for their CD4+

counterparts (30). The roles of MyD88-dependent cytokines in
the priming environment, including interleukin-1 (IL-1)
cytokine superfamily members, are rather neglected as the
focus of the three-signal model primarily lies on STAT-
signaling cytokines that polarize the T cell response (4).
However, the pro-inflammatory activities of the IL-1 cytokines
IL-1a and IL-1b take on a central role during activation of the
innate immune system and innate instruction of adaptive
immunity (1). IL-1a is released in the extracellular environment
as a consequence of cellular damage and locally acts as an alarmin.
On the other hand, innate immune cells integrate PAMP and
DAMP signals and respond by controlled production of IL-1b (31).

Here, we will review established and new literature in support
of a role for IL-1 as innate instructor of adaptive immune
responses and elaborate on how IL-1 activity influences three
protagonists of the three-signal model: DCs, CD4+ and CD8+ T
cells. It has become clear that IL-1 activity on both the antigen-
presenting DC and the T cell, either alone or in synergy with
priming cytokines, can contribute to the formation of protective
T cell immunity. As such, IL-1a and IL-1b might play a
prominent role as innate instructors of adaptive immune
responses. Gaining more insight in the environmental context
wherein T cell priming takes place may help to advance
prophylactic and therapeutic applications (4).
INTERLEUKIN-1

The IL-1 superfamily of ligands and receptors currently comprises
21 members: 11 soluble factors and 10 receptor molecules.
Among these soluble factors, seven perform pro-inflammatory
actions (IL-1a, IL-1b, IL-18, IL-33, IL-36a, IL-36b, and IL-36g)
and four display anti-inflammatory activities. Two of these anti-
inflammatory mediators are receptor agonists (IL-37 and IL-38)
and two are receptor antagonists (IL-1Ra and IL-36Ra). The IL-1
receptor superfamily is organized in several (overlapping)
subgroups: ligand-binding receptor proteins (IL-1R1, IL-1R2,
IL-1R4, IL-1R5, and IL-1R6), accessory chains (IL-1R3 and IL-
1R7), molecules that inhibit signaling (IL-1R2, IL-1R8, and IL-18
binding protein) and orphan receptors (IL-1R9 and IL-1R10). In
this review, we solely discuss the IL-1 cytokines IL-1a and IL-1b.
These cytokines exert their biology via the same binary receptor
complex that contains the primary receptor IL-1R1 and the
accessory chain IL-1R3 (31–33). From here on, this is the IL-1
receptor (IL-1R) complex referred to in this review.

IL-1a is constitutively expressed as a 31 kDa precursor
protein (pro-IL-1a) with a basal level of pro-inflammatory
activity (31, 34). Expression of pro-IL-1a varies over different
cell types, but cells lining body barriers, such as epithelial and
endothelial cells, contain relatively high cytoplasmic levels of this
protein under homeostatic conditions (35). Alternatively,
expression of the IL-1a precursor protein is inducible and
January 2021 | Volume 11 | Article 621931
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TABLE 1 | Overview of the described subsets of CD4+ T cells discussed in this review.

D4+ TH17 CD4+ Treg CD4+ Tfh CD4+ Tfr CD4+ TH9

F-b
-6

TGF-b
IL-2

IL-6
IL-21

IL-4
TGF-b

TAT3 STAT5 STAT3 IRF4

ORgT FoxP3 Bcl6 FoxP3
Bcl6

-1b
-21
-23

RA

-17A/F
-21
-22
-25
-26

IL-10
TGF-b

IL-4
IL-21

IL-10
TGF-b

IL-9

gh (8–11) negative (12) high (12) low (12) ND

D positive population of thymic Treg (13)
positive (tumor) (14)
↑↑ activation (15)

negative (16) high (12) ND

gative (resting) (18) positive (20, 21) negative (22) negative (23) positive (24)

D positive population of thymic Treg (28) ND ND ND

D ND ND ND ND

perfamily members. This table is limited to signal-competent primary receptors (IL-1R1, IL-1R4, IL-1R5 and IL-1R6) and the
s indicated. TEM = effector memory T cell (CD44+ CD62L- in naive mice and CD45RO+CD45RA− in humans); IL-1R4, ST2; IL-
factor. Note: subsets of CD8+ T cells mimic those described for CD4+ T cells, but this falls beyond the scope of the current

Van
D
en

Eeckhout
et

al.
Interleukin-1

M
ediates

T
C
ellIm

m
unity

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

January
2021

|
Volum

e
11

|
A
rticle

621931
3

CD4+ TH0 CD4+ TH1 CD4+ TH2 C

Polarization IL-12
IFN-g

IL-4 T
IL

Polarization TF(s) STAT4
STAT1

STAT6 S

Lineage TF(s) T-bet GATA-3 R

Lineage commitment IL-18 IL-33 IL
IL
IL

Effector cytokines IFN-g
TNF

IL-4
IL-5
IL-13

IL
IL
IL
IL
IL

IL-1R1
IL-1a/b (+)
IL-1Ra and IL-38 (-)

low on TH0 (7)
↑↑ on TEM (7)

negative(?) (8)
positive(?) (9)

negative(?) (8)
positive(?) (9)

h

IL-1R2
Decoy receptor
IL-1a/b (-)

ND ND ND N

IL-1R4
IL-33 (+)

low on TH0 (17) negative (resting) (18)
low/transient (active) (18)

positive (resting) (18)
high (active) (8, 19)

n

IL-1R5
IL-18 (+)

low on TH0 (7)
↑↑ on TEM (7)

high (8, 25, 26) negative (27) N

IL-1R6
IL-36a/b/g (+)
IL-36Ra and IL-38 (-)

High on TH0 (29) ND ND N

An overview of the differentiation conditions for murine CD4+ T cells subsets and their expression of IL-1 receptor s
decoy receptor IL-1R2. Respective ligands for these receptors chains and whether they elicit signaling (+) or not (−)
1R5, IL-18Ra; ND, no data found with the literature search used in this review; RA, retinoic acid; TF, transcription
review. We wish to direct interested readers to other review articles (30).
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potential triggers include pro-inflammatory mediators (e.g. IL-
1a itself and IL-1b) and growth or stress-associated factors (e.g.
TLR agonists, such as LPS) (35, 36). Pro-IL-1a comprises an N-
terminal precursor part, which is linked to the mature and fully
biologically active IL-1a cytokine (31, 34). This N-terminus
contains the LKKRRL nuclear localization sequence (NLS) that
allows for translocation of pro-IL-1a to the nucleus (37). Nuclear
translocation is regulated by interaction with HCLS1-associated
protein X (HAX)-1 (38). In the nucleus, pro-IL-1a can directly
regulate the expression of pro-inflammatory chemokines and
interact with histone modifying enzymes, such as the
acetyltransferases p300, p300/CBP-associated factor (PCAF)
and GCN5 (39, 40). Pro-IL-1a continuously shuttles between
the nucleus and the cytosol within nanoseconds and its
commitment to a subcellular compartment is determined by
environmental cues. When the cell receives a pro-apoptotic
trigger, pro-IL-1a rapidly migrates into the nucleus and binds
tightly to the chromatin, while upon necrotic cell death, the
precursor is found exclusively in the cytosol (41). As such,
accidental cell death results in far more pro-inflammatory
lysates and under these conditions, pro-IL-1a performs the
role of a classical DAMP, hence its “alarmin” alias (35, 41).
Pro-IL-1a can be further processed intra- and extracellularly by
Frontiers in Immunology | www.frontiersin.org 4
different proteases, including calpain and neutrophil elastases.
These cleave the N-terminal precursor from the mature IL-1a
protein, which augments biological activity (34). Next to a
nuclear and an extracellular role, pro-IL-1a can also appear
bound on the cell surface following stimulation of hematopoietic
and non-hematopoietic cells, including fibroblasts and
endothelial cells, with pro-inflammatory mediators (35, 42).
Pro-IL-1a probably becomes glycosylated intracellularly and
subsequently anchors to the cell membrane via a lectin-like
interaction. This membrane-associated pro-IL-1a has the
ability to interact with IL-1R complexes on neighboring cells
and as such mediate paracrine signaling (34, 35). Membrane-
bound pro-IL-1a can be shaved from the cell surface by
extracellular proteases, as such allowing for its release in the
environment (35, 43). Figure 1 summarizes the expression, post-
translational modification and subsequent processing of (pro-)
IL-1a.

IL-1b is a circulating factor, for which the expression is not
constitutive, but tightly regulated. A major source of IL-1b are
cells of myeloid origin, which express the cytokine as a
cytoplasmic 31 kDa precursor protein (pro-IL-1b) that needs
to be converted into a mature form to allow for activity (31, 44,
45). The conventional mechanism leading to activation of pro-
FIGURE 1 | Synthesis, modification and extracellular release of human (pro-)IL-1a. (1) and (2) Inflammatory triggers can induce pro-IL-1a expression, whereas
homeostatic expression is regulated by housekeeping transcription factors, such as Sp1. (3) Alternatively, expression can be initiated following DNA release of
negative regulators. (4) Pro-IL-1a is modified post-translationally. (5) Pro-IL-1a continuously shuttles between cytosol and nucleus and nuclear translocation is
mediated via HAX-1, which binds to the pro-IL-1a NLS. Binding of pro-IL-1a to chromatin sequesters the cytokine in the nucleus, whereas interaction with histone
modifying enzymes mediates pro-inflammatory gene expression. (6) Calpain cleaves pro-IL-1a in the cytosol, leading to the formation of mature and fully biologically
active IL-1a. (7) and (8) Following accidental cell death or damage, (pro-)IL-1a is released extracellularly, where maturation by cleavage is mediated by granzyme B,
neutrophil elastases and mast cell chymases. (9) Post-translational modification can allow for extracellular membrane anchorage of pro-IL-1a. (10) A unique
intracellularly occurring form of IL-1R2 can neutralize and sequester pro-IL-1a in the cytosol, possibly by masking its NLS. (11) Turnover of (pro-)IL-1a and the
cleaved N-terminal pro-piece is mediated in the proteasome. Figure adapted from (35). Created with BioRender.com.
January 2021 | Volume 11 | Article 621931
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IL-1b is proteolytic cleavage in the N-terminal precursor region
by caspase 1 (46, 47). Caspase 1 houses in the cytoplasm as an
inactive protease that depends on further proteolytic processing
to become activated, which takes place in multimolecular protein
complexes called inflammasomes (34, 48, 49). Processing of
inactive pro-caspase 1 into fully biologically active caspase 1
can be mediated by different canonical inflammasomes, the
NLRP3 inflammasome unarguably being the most extensively
studied (48–50). Assembly and activation of the NLRP3
inflammasome depends on two distinct signals: (1) an NF-kB-
activating stimulus, such as a cytokine or TLR agonist (PAMP),
which induces the expression of pro-IL-1b, NLRP3 and caspase 1
in the cytosol (“priming”); and (2) an NLRP3-activating
agent that leads to the actual assembly of the functional
inflammasome complex (“activation”) (50, 51). This signal two
can be rendered by different bacterial, viral and fungal PAMPs
(e.g. peptidoglycan, single and double stranded RNA and
zymosan) and a multitude of DAMPs (e.g. extracellular ATP
and monosodium urate crystals) (50, 52–56). Alternatively,
cleavage of pro-IL-1b can be mediated by caspase 8, a caspase
family protease that is commonly associated with pro-apoptotic
signaling via TNF receptor family members, such as Fas and
TRAIL (57). Although unprocessed IL-1b is usually not found in
the extracellular space, it can be found outside of the cell as a
result of uncontrolled cell death following a stressful event or a
strong inflammatory trigger (34). Different cleavage sites for
neutrophil proteases and mast cell chymases are present within
the N-terminal region of pro-IL-1b. Despite the fact that these
proteases can individually yield mature and biologically active
IL-1b (58, 59), recent work found that protease mixtures from
phorbol 12-myristate 13-acetate (PMA)-activated neutrophils
can activate pro-IL-1a, but surprisingly fail to activate pro-IL-
1b (60). As IL-1b contains no leader sequence, the matured
cytokine is released in the environment via an unconventional
secretion mechanism that is independent of the endoplasmic
reticulum (ER) and Golgi network (61). Multiple theories on
how such a “leaderless” protein is released in the environment
have been proposed, one of the earlier working models
suggesting that IL-1b could be secreted via vesicular
mechanisms, such as secretory lysosomes, multivesicular
bodies and exosomes, or via secretory autophagy (61–64).
Recent research into the secretion mechanism of IL-1b focuses
on pyroptosis, a rapid and inflammatory form of programmed
cell death induced following NLRP3 inflammasome activation.
The pore-forming protein gasdermin D (GSDMD) was recently
identified as the primary mediator of pyroptosis and its activity
was found to depend on maturation by caspase 1 cleavage.
Pyroptosis ultimately leads to cell death, which allows for the
release of mature IL-1b in the process (65–67). However,
GSDMD pores can perform an additional non-pyroptotic role
that allows for IL-1b release from viable cells with intact, but
porous cell membranes (68–70). In Figure 2, the controlled
expression of (pro-)IL-1b is illustrated graphically.

Receptors within the receptor superfamily generally have
a strongly conserved, homologous molecular structure.
The extracellular part of these molecules is “question mark”-
Frontiers in Immunology | www.frontiersin.org 5
or “grasping hand”-like shaped and comprises three
immunoglobulin (Ig)-like domains (D1, D2 and D3). The
transmembrane domain is a single helix that anchors
the extracellular portion in the plasma membrane. The
intracellular part contains a Toll-IL-1R (TIR) domain, which is
responsible for signal transduction (32, 33). Agonists of the IL-1
cytokine superfamily mediate their signaling via a three-step
mechanism: (1) formation of a binary complex upon binding to a
ligand-binding receptor subunit; (2) formation of a ternary
complex after inducing a conformational change in the ligand-
binding receptor subunit, which allows for recruitment and
binding to an accessory chain; (3) juxtaposing the TIR
domains of both receptor subunits (if present), which allows
for signal transduction (31–33). As mentioned above, IL-1a and
IL-1b signal via a receptor complex composed of the primary
ligand-binding subunit IL-1R1 and the accessory chain IL-1R3.
The three extracellular Ig-like domains of IL-1R1 provide two
comparably-sized cytokine interaction interfaces. D1 and D2,
which are relatively rigid and positioned tightly next to each
other, form a first binding interface, while a second contact area
is provided by the more flexible D3 (71). The D1/D2 interface
has been described to be sufficient for capturing the ligand (72),
but the interaction provided by the D3 domain is responsible for
the conformational changes in IL-1R1 that allow for recruitment
and binding to IL-1R3 (73, 74). The accessory protein binds with
its backside to ligand-bound IL-1R1/2, making contacts with D2
and D3 (73, 74). Upon formation of the ternary complex, the
intracellular TIR domains of the ligand-binding subunit and the
accessory chain juxtapose, as such forming a scaffold structure
that allows for recruitment and binding of a sequence of adaptor
molecules to the intracellular site of activated receptor
complexes, which initiates downstream signal transduction and
activation of different transcription factors (32, 33). Downstream
IL-1R signaling events are extensively reviewed elsewhere (32,
36) and we summarized the main modalities in Figure 3.

A hallmark within the IL-1 superfamily is the tight control
over cytokine activity, in particular for IL-1a and IL-1b (see also
Figure 3). A first level of IL-1 activity regulation is the
membrane-bound decoy receptor IL-1R2, which lacks an
intracellular TIR domain and is therefore unable to transduce
the signal (32, 33). However, cytokine-bound IL-1R2 is still able
to recruit and interact with IL-1R3, as such decreasing the
availability of this accessory chain on the cell membrane. IL-
1R3 sequestering is an important regulatory mechanism, as the
availability of surface-expressed IL-1R3 is the rate-limiting step
in the formation of IL-1R complexes due to its relatively low
abundance compared to the primary receptor chains (75). A
second level of regulation is the availability of soluble decoy
receptors with the capacity to bind and neutralize circulating
cytokines, which can be generated by alternative splicing of the
encoding mRNA or cleavage of the receptor protein from the
membrane by metalloproteinases (32, 76). Receptor antagonists
form a third level of IL-1 activity regulation. IL-1Ra shows a very
homologous molecular configuration compared to IL-1a and IL-
1b, but carries shorter peptide loops between b-strands 4/5 and
5/6. As such, IL-1Ra cannot bind to D3 of IL-1R1/2 and is
January 2021 | Volume 11 | Article 621931
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therefore unable to induce the conformational change in the
receptor subunit that is essential to recruit and interact with the
accessory chain (33, 77, 78).
HOW IL-1 AFFECTS THE MAIN PLAYERS
OF THE IMMUNE RESPONSE TO
ANTIGEN

IL-1 Signaling in Dendritic Cells Empowers
Their Maturation and Facilitates T Cell
Priming
Functional maturation of DCs is required for successful priming
of naive T cells and initiation of potent antigen-specific
adaptive immune responses. Understanding the determinants
Frontiers in Immunology | www.frontiersin.org 6
of efficient DC maturation is therefore critical for the
development of clinical applications, which becomes evident
from advances made in the field of DC therapy for the
treatment of different types of cancer (79). The first generation
of such immunotherapies relied on the generation of monocyte-
derived DCs (moDCs) from PBMCs after ex vivo culture in the
presence of GM-CSF and IL-4 (80, 81). These moDCs were
subsequently loaded with tumor lysates, tumor-associated
antigens (TAAs) or synthetic peptides and administered to
patients. However, DC therapy as such only showed a
disappointing tumor-regression rate of around 3.3% (82–84).
Second-generation therapies expanded on this concept by
maturing the moDCs by treatment with LPS, CD40L or
cocktails that included TNF, IL-6, IL-1b , PGE2 and
polyinosinic:polycytidylic acid (poly(I:C)) or combinations
thereof. The use of matured DCs further increased the clinical
FIGURE 2 | The two-step paradigm of controlled IL-1b release. (1) Signal 1 or “priming” involves expression of pro-IL-1b, NLRP3 and caspase 1 following triggering
of pro-inflammatory receptor complexes (e.g. TLR4 or IL-1R) and activation of the transcription factor NF-kB. (2) NLRP3’s LRR falls back onto the NACHT domain,
rendering the protein inactive in the cytoplasm. (3) Signal 2 or “activation” can be mediated by PAMPs (e.g. viral RNA) or DAMPs (e.g. extracellular ATP, extracellular
particles and crystal complexes). Viral RNA can activate mitochondrial antiviral signaling (MAVS) protein. ATP is detected via the P2RX7 receptor and extracellular
particles and crystal complexes can induce intracellular lysosome disruption, leading to changes in Ca2+ flux and K+ efflux. Intracellular changes in ion concentration
can influence mitochondria, as such inducing release of ROS and oxidized mtDNA or relocalization of cardiolipin to the outer mitochondrial membrane. (4) and (5)
Relocalized cardiolipin, oxidized mDNA, activated MAVS protein and changes in cytosolic ion concentrations can induce conformational changes in NLRP3 and lead
to formation of the activated NLRP3 inflammasome after recruitment of NEK7, ASC and caspase 1. (6) Activated caspase 1 cleaves immature pro-IL-1b to mature
and fully biologically active IL-1b. In addition, caspase 1 can cleave the GSDMD protein. (7) GSDMDNterm integrates in the membrane as a pore, which induces
pyroptosis and represents a putative way for IL-1b release. CD, catalytic domain; NTE, N-terminal extension. Figure adapted from (50). Created with BioRender.com.
January 2021 | Volume 11 | Article 621931
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efficacy of these therapies up to 8-15%, depending on the
tumor type (79, 85, 86). An alternative approach that bypasses
the need for cytokine maturation cocktails involves ex vivo
electroporation of moDCs with mRNA encoding CD40L,
CD70 and constitutively active TLR4, which is referred to as
the TriMix formula. Co-delivery of mRNA that encodes for
tumor antigens was found to empower T cell responses and trials
in melanoma patients revealed that this therapy is safe and
establishes durable immunogenic clinical responses (87).
Nowadays, the most recent efforts in the field focus on further
combinations of these second-generation DC therapies with
checkpoint inhibition molecules (e.g. anti-CTLA-4 and anti-
Frontiers in Immunology | www.frontiersin.org 7
PD-(L)1), which shows increased overall survival compared
with monotherapies in stage III and IV melanoma patients, or
chemotherapy (e.g. carboplatin and paclitaxel) (79, 88–90).

Maturation of DCs can thus be initiated by triggering PRRs,
such as TLR4, or following activation of pro-inflammatory
cytokine receptors, including the IL-1R complex. The
overlapping effect of LPS and IL-1 on DC maturation results
from the fact that both ligands signal via TIR domain-containing
receptor complexes that share multiple downstream signaling
mediators, many of these with a known involvement in the
regulation of DC maturation and their capacity to present
antigen (91). Signaling downstream of IL-1R activation is
FIGURE 3 | Formation of the signaling-competent IL-1R complex and downstream IL-1 signaling. (1) Extracellular IL-1b makes two contacts with IL-1R1 and
induces a conformational change in the primary receptor. (2) This allows IL-1R1 to recruit and bind to co-receptor IL-1R3. (3) Receptor dimerization leads to
scaffolding of intracellular receptor TIR domains via the R-interface. (4) and (5) Formation of an intracellular TIR scaffold allows for recruitment of the MyD88 adaptor
molecule via S-interface interactions. MyD88 comprises an N-terminal death domain (DD), an intermediate domain (ID) and a C-terminal TIR domain. IRAK-1, IRAK-4
and/or IRAK-2 are recruited. These molecules comprise an N-terminal DD and a C-terminal catalytic domain. Under steady-state, IRAK-1 is bound to Tollip. As such,
the Myddosome is formed. (6) IRAK-4 auto-phosphorylates and gains full activity, in turn activating IRAK-1 by phosphorylation. This induces rapid IRAK-1 auto-
phosphorylation. (7) A conformational change in IRAK-1 allows its dissociation from Tollip. Different IRAK-1 oligomers form a scaffold for TRAF6, which becomes
activated upon oligomerization. UBC13 and UEV1A facilitate TRAF6 self-poly-ubiquitination (K63-linked). TAB2 and TAB3 recruit TAB1 and the MAP3K TAK1 to the
K63-linked poly-ubiquitin chain on TRAF6. (8) TRAF6 poly-ubiquitinates TAK1. (9) Initiation of the canonical NF-kB pathway: NEMO binds to the poly-ubiquitin chain
on TAK1 and recruits IKKa and IKKb. IKKa and IKKb become activated following phosphorylation by TAK1. (10) and (11) IKKa and IKKb phosphorylate IkBa, which
allows for its dissociation from p50/p65 NF-kB. (12) Free p50/p65 NF-kB translocates to the nucleus and binds to specific kB sites on DNA, as such inducing gene
expression. (13) Initiation of the MAPK pathway: the MAP3K MAP3K3 binds the poly-ubiquitin chain on TAK1. MAP3K3 becomes activated following phosphorylation
by TRAF6. IKKa and IKKb activate TPL2 by phosphorylation. MAP3K3, TAK1 and TPL2 activate different MAP2Ks by phosphorylation. (14) MAP2Ks activate the
p38, JNK and ERK MAPKs by phosphorylation. (15) In turn, MAPKs activate different transcription factors by phosphorylation, as such inducing gene expression.
(16) Binding of IL-1b to sIL-1R2 does not induce signal transduction. (17) Binding of IL-1b to the signaling-incompetent IL-1R complex does not induce signal
transduction. (18) Binding of IL-1Ra to the signaling-competent IL-1R complex does not induce signal transduction. Created with BioRender.com.
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graphically represented in Figure 3. MyD88−/− mice, for
example, fail to mount adaptive immune responses against
Listeria monocytogenes and are therefore highly susceptible to
infection (92, 93). However, restoration of MyD88 signaling in
DCs only is sufficient to regain control over the infection (94).
Conversely, upon hyperactivation of MyD88 in DCs, mice suffer
from severe autoimmune effects, characterized by spontaneous
activation of B and T cells, production of autoantibodies and
systemic inflammation (95). Also, TRAF6-deficient DCs fail to
upregulate CD86 and MHC-II, produce pro-inflammatory
cytokines (e.g. IL-12 and IL-6) and prime naive T cells
following stimulation with CD40L or LPS (96). Further
downstream, canonical NF-kB signaling plays a prominent role
during maturation of murine and human DCs as NF-kB drives
the expression of co-stimulatory molecules and antigen
presentation (97–100). Intriguingly, NF-kB signaling in DCs
has been suggested to allow for self-tolerance, as steady-state
migratory DCs display an enriched alternatively regulated
network of NF-kB-instructed genes (101, 102). Among the
MAPKs, p38 is described the most extensively in the context of
DC activation and maturation. p38 inhibition impairs clustering
of DCs with T cells and effector T cell activation (103).
Phosphorylation of p38 in DCs correlates with improved
uptake and presentation of antigens via MHC-I and MHC-II
and the upregulation of co-stimulatory molecules (104–106).
Studies on the role of JNK and ERK during DC maturation and
antigen presentation are more limited. In human DCs, steady-
state levels of JNK are notably lower than those of p38 (103).
Although p38 and JNK are known to be redundant for many
cellular functions, different reports propose that JNK signaling
Frontiers in Immunology | www.frontiersin.org 8
could be negatively regulating presentation of antigens via
MHC-I and CD1d (107–109). ERK signaling, on the other
hand, positively regulates CD1d-mediated presentation of lipid
antigens and promotes the survival of matured DCs (91, 97).

The capacity of IL-1 to drive DC maturation (Figure 4A) was
first suggested in 1987 by the group of Ralph Steinman,
who demonstrated that DCs pre-treated with low doses of
recombinant IL-1 were more potent in stimulating helper T cells
compared to unconditioned DCs. In fact, IL-1 was the first cytokine
reported to empower the activation of T cells by interfering at the
level of the APC (110). Over the decades, different studies have
shown that IL-1 signaling is indeed involved during the maturation
of different DC subsets by driving the upregulation of several co-
stimulatory molecules (e.g. CD80, CD86, CD40 and SLAM), release
of pro-inflammatory cytokines (e.g. IL-12, IL-1a/b and IL-6) and
expression of surface MHC (111–114). During steady state, lower
numbers of peripheral CD103+ DCs are observed in IL-1R1−/−mice
compared to wild-type (WT) animals and these cells additionally
display a less mature phenotype, indicated by lower surface CD86
expression. Upon infection with influenza A virus (IAV), IL-1R1−/−

CD103+ DCs in the lung fail to upregulate CCR7 and show an
impaired capacity to migrate and accumulate in lung-draining
lymph nodes (LNs) (115). Conversely, IL-1Ra−/− DCs are more
matured under steady state conditions and release of IL-1Ra by
epithelial cells suppresses the activation of moDCs (116, 117).

Special attention should be dedicated to the delicate role that
IL-1 signaling plays during the cross-talk between keratinocytes
and Langerhans cells (LCs) in the skin (Figure 4B), which is of
fundamental importance during the defense against skin
pathogens (118). For example, during development of the
A B

FIGURE 4 | (A) Left scheme: IL-1R triggering in DCs empowers their capacity to promote T cell responses. (B) IL-1 activity plays a central role during the
keratinocyte-LC cross-talk in the skin. (1) Damage to keratinocytes following tissue damage or pathogen invasion leads to the release of (pro-)IL-1a. (2) In synergy
with tissue-derived GM-CSF, IL-1R signaling promotes LC survival. (3) IL-1R signaling in moDCs upregulates pMHC (signal 1), expression of co-stimulatory
molecules (signal 2), production of priming cytokines (signal 3) and release of chemokines, leading to attraction of neutrophils, monocytes and lymphocytes. (4) PRR
and IL-1R signaling promotes LC IL-1b production. IL-1b acts on keratinocytes and induces TNF release, which in turns signals via TNFRII on LCs. TNFRII and
autocrine IL-1R signaling in LCs enable migration to the skin-draining LNs, where T cell responses can be initiated. Created with BioRender.com.
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neonatal skin, IL-1 signaling serves as a host safeguard
mechanism that prevents tolerance to Staphylococcus aureus
(119). LCs reside in the epidermis, the outmost layer of the
skin, where they are closely associated with keratinocytes. LCs
are ontogenically different from dermal DCs and probably arise
from aMafb-expressing macrophage progenitor, whereas dermal
DCs are more related to the different cDC subsets found in
lymphoid tissues. LCs later express the transcription factor
Zbtb46, which induces a shift towards the cDC identity (118,
120). Keratinocytes are the epidermis’ major cell type and form
an important reservoir for IL-1a, which is constitutively
expressed in the cytoplasm of these cells (31, 118). IL-1a
released from keratinocytes synergizes with GM-CSF to
enhance LC survival and capacity to stimulate naive T cells
(121–124). Moreover, release of IL-1a following chemically
induced keratinocyte damage induces the expression of co-
stimulatory molecules (e.g. CD80 and CD86), MHC-I and
inhibitory receptors (e.g. PD-L1/2) on the surface of moDCs.
Furthermore, these IL-1a-conditioned moDCs release more pro-
inflammatory cytokines (e.g. IL-6 and IL-12) and chemokines
(e.g. IL-8, CCL2 and CXCL9) and appear to be superior in
driving CD4+ T cell proliferation compared to untreated DCs
(114). Next to a clear and well-established role in LC maturation,
IL-1R signaling has a known involvement in LC migration to
skin-draining LNs, for which the synergy with TNF is essential
(125, 126). Indeed, within 2 – 4h after injection of recombinant
IL-1b in both murine and human skin, LCs migrate and
accumulate in skin-draining LNs (127, 128). The synergy
between TNF and IL-1b has been elucidated by experiments
that show inhibition of IL-1b-induced LC migration following
administration of an anti-TNF antibody and vice versa (129).
The current working model suggests that upon receiving a
sensitizing trigger, LCs produce IL-1b and as such stimulate
keratinocytes to release TNF. In turn, TNF signaling via TNFRII
provides a first license for LC migration, while a necessary
secondary stimulus is delivered via autocrine IL-1b signaling
(126, 130, 131). Moreover, treatment of mice with an anti-IL-1R1
neutralizing antibody completely abrogates LC migration to
skin-draining LNs, as such indicating the importance of this
trigger for the information transfer from the innate to the
adaptive immune system (132).

Beyond a role in driving maturation of DCs prior to T cell
priming, IL-1 signaling additionally mediates DC activation further
downstream, for instance by facilitating the CD40/CD40L-
interaction during DC/T cell cross-talk. CD4+ T cells upregulate
CD40L during their activation which is used to interact with CD40
on the DC surface, as such equipping the APC for successful CD8+

T cell priming (133). Nakae et al. reported that DC-released IL-1b
acts on T cells and upregulates their CD40L and OX40 surface
expression (134). In turn, different reports demonstrated that IL-1b
facilitates DC activation following the CD40/CD40L-interaction,
ultimately leading to DCs that release more pro-inflammatory
cytokines (e.g. IL-12, IL-1a/b and IL-6) and generate stronger
TH1 CD4+ and CD8+ T cell responses (e.g. IFN-g release) (111,
135, 136). However, the ability of T cells to induce release of IL-1b
by DCs could be a double-edged sword for the host. For example,
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during autoimmune myocarditis, IL-1R signaling in DCs promotes
the expansion of autoreactive CD4+ T cells (137). More recent work
demonstrated that during self-reactivity, effector CD4+ T cells
instruct DCs to release IL-1b via an inflammasome-independent
mechanism potentiated by TNF and FasL signaling. This TNFR/
Fas/caspase 8-dependent pathway is responsible for the systemic
inflammation and pathology commonly associated with T cell-
driven autoimmune diseases, such as experimental autoimmune
encephalitis (EAE) (138). How IL-1 signaling acts during the
interplay between DCs and T cells after their initial stimulation,
as such further shaping adaptive immune responses, is intriguing
and a recent study showed that CD8+ T cells also participate in this
cross-talk. After antigen presentation, CD8+ T cells activate the
NLRP3 inflammasome in DCs via a perforin-dependent
mechanism, which subsequently led to release of IL-1b and
further amplification of adaptive immune responses (139).
Comparably, maturation and release of fully biologically active IL-
1b from bystander cells can be induced by macrophage-derived
granzyme A upon recognition of Pasteurella multocida toxin (140).

Finally, IL-1 signaling on bystander DC is proposed to potentiate
T cell immunity and mediate protective responses during infection
with pathogens. In case that pathogen-infected DCs are unable to
mount effective adaptive immune responses, successful T cell priming
during encounter of live pathogens depends on activation of
bystander DCs (141). DCs infected with Legionella pneumophila
were shown to release IL-1 and IL-1R signaling on bystander cells is
essential to overcome infection (142, 143). Data from Akiko Iwasaki’s
lab shows that a normal IAV-specific CD8+ T cell response can be
formed in TLR7−/− and MAVS−/− mice, but fails to develop in IL-
1R1−/−mice, which suggests that activation of CD8+ T cells upon IAV
infection is dependent on the inflammasome-IL-1R axis rather than
TLR7 and RIG-I. The authors propose a model where a first DC
responds to virus-induced damage to the host by NLRP3 and caspase
1-mediated maturation of IL-1b, which acts on a second bystander
DC and promotes its activation, ability to migrate to the draining LN
and prime the CD8+ T cell response. In this context, DAMP detection
via the inflammasome/IL-1R axis can thus be perceived as a surrogate
for the direct recognition of PAMPs (115). Moreover, IL-1b activity
on Leishmania amazonensis-infected DCs, which are maintained in a
suppressed state, enhances their activation and maturation, which
leads to augmented parasite-specific CD4+ T cell responses (113).

Together, these combined works provide evidence that IL-1
signaling in DC subsets contributes to their initial maturation,
migration and accumulation in lymphoid organs, but also for
secondary activation during DC/T cell-crosstalk. During
pathogen infection, signaling via the IL-1R complex can serve
as a surrogate for PAMP recognition, which enables effector T
cell responses by activating bystander cells. Next, we will discuss
how direct signaling of IL-1 on T cells flavors their differentiation
and activation status.

CD4+ T Cells
General Aspects
The ability of IL-1 to drive CD4+ T cell responses has been
reported for decades (111, 135, 144–146). Moreover, defective
adaptive immune responses following IAV infection were
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observed in mice deficient for ASC, caspase 1 and IL-1R1, which
all failed to raise effector IAV-specific CD4+ T cells and produce
neutralizing antibodies (147–149). As addressed above, a first
important mode of T cell activation by IL-1 is indirect and
depends on the cytokine’s activity on DCs. However, more recent
work suggests an important contribution of direct action of IL-1
on CD4+ T cells to advance cellular immune responses. Ben-
Sasson et al. demonstrated that IL-1a and IL-1b show the same
potency to stimulate CD4+ T cell responses, both in adoptive T
cell transfer (ATCT) as well as in endogenous models. These
responses included enhanced CD4+ T cell expansion through
proliferation, peripheral survival, establishment of memory and
memory recall. Moreover, different subsets of CD4+ T cells,
including TH1, TH2 and TH17, were found to be sensitive for
this direct IL-1 activity (150). The innate immune system locally
releases inflammatory cytokines as an extra cue beyond TCR
triggering and co-stimulation to fine-tune the recall of antigen-
experienced effector and memory T cells. A recent study by Jain
et al. looked further into how IL-1 drives the reactivation of these
subsets and found that IL-1 signaling in memory CD4+ T cells of
different lineages can license cytokine production. Intriguingly,
IL-1R1−/− CD4+ T cells differentiated normally into TH1, TH2
and TH17 phenotypes, but failed to produce lineage-specific
effector cytokines (i.e. IFN-g, IL-4/5/13, and IL-17A/F/22,
respectively) following reactivation. Moreover, this study
demonstrated that DCs are a major source of IL-1b, which was
found to act directly on CD4+ T cells to stabilize different
cytokine-encoding transcripts, probably via a mechanism
dependent on p38 MAPK signaling (7).

Altogether, this indicates that while IL-1 activity clearly
facilitates differentiation of naive CD4+ T cells following the
first antigen encounter, the absolute necessity of IL-1 signaling
presumably lies in activation of antigen-experienced effector and
memory helper T cells of different lineages. Both TCR triggering
and the ligation of co-stimulatory molecules remain the two
indispensable instructions that allow for reactivation of these
CD4+ T cells, but IL-1 signaling can be perceived as an extra
signal for further regulation and fine-tuning of these responses.
We will summarize how IL-1 signaling modulates differentiation
and further activation of the different CD4+ T cell subsets.

TH1 and TH2 Immunity
IL-12 is the main cytokine that drives the differentiation of naive
CD4+ T cells towards an early TH1 phenotype after TCR
triggering and co-stimulation by inducing the expression of
the lineage transcription factor T-bet. While the IL-1
cytokine superfamily member IL-18 cannot induce TH1
development itself, its presence in the environment further
drives commitment to the TH1 lineage, mainly by promoting
peripheral TH1 proliferation and secretion of IFN-g, TNF and IL-
2. TH1 cells also show a remarkably high expression of the IL-
18Ra (IL-1R5) (Table 1). Generally, TH1 cells are well-known
for their critical role as initiators of cellular immune responses
and as mediators of protection against different intracellular
pathogens and generation of anticancer immunity (151). Naive
T cells can acquire an early TH2 phenotype when the priming
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environment contains IL-4, which drives expression of the
lineage factor GATA3. GATA3 upregulates the expression of
the IL-33 receptor ST2 (IL-1R4) on the surface of TH2 cells. IL-33
is another IL-1 superfamily member that allows for TH2 lineage
commitment, proliferation and release of IL-5 and IL-13
(Table 1) (18, 151). TH2 cells play pivotal roles during
infections with helminths and facilitate humoral immune
responses, yet, this is now believed to be largely a function of
follicular helper T (Tfh) cells (151). Both the study by Ben-
Sasson et al. as well as the report by Jain et al. have demonstrated
that IL-1 can act directly on both TH1 and TH2 cells and boost
their activation, expansion and effector cytokine production (7,
150). Interestingly, Jain et al. found elevated IL-1R1 expression
on antigen-experienced CD4+ T cells of different lineages versus
their naive counterparts, making the case for a role of IL-1
signaling as inducer of cellular immune responses beyond CD4+

T cell priming (7).
IL-1-mediated modulation of the TH1/TH2 balance has been

widely studied in the murine model of cutaneous Leishmaniasis.
It is widely accepted that during infection with intracellular
protozoan parasites from the Leishmania genus, TH1 responses
are associated with resolution of cutaneous lesions and clearance
of the pathogen, while TH2 responses rather contribute to disease
progression (152). Intracellular replication of L. amazonensis in
macrophages triggers the assembly and activation of the
NLRP3 inflammasome, which leads to release of IL-1b and
subsequent induction of NO production, a critical mechanism
of defense against Leishmania species (153). Moreover, mice
with deficiencies for several inflammasome components (e.g.
NLRP3, ASC and caspase 1) fail to control multiplication of L.
amazonensis, whereas TH1 responses against L. major are
reduced in IL-1R1−/− mice, next to enhanced TH2 immunity
(153, 154). In accordance with these observations, treatment of
BALB/c mice with IL-1a or IL-1b following L. major infection
induces dramatic reductions in lesion sizes or parasite load due
to augmented TH1 responses. This IL-1 effect depends on the
presence of IL-12 and significantly reduces TH2 immunity (155,
156). In addition, infection of C57BL/6 mice with L. major leads
to enhanced release of the TH1-inducing cytokines IL-12, IL-1b
and TNF in the infected skin (157).

Different studies employing Leishmania infection models
unambiguously prove that IL-1 activity promotes TH1
responses, while it impairs TH2 immunity. However, the exact
contribution of IL-1 signaling to the regulation of TH2 responses
clearly depends on the experimental model system. Infection
with the intestinal helminth Heligmosomoides polygyrus bakeri
promotes the local release of IL-1b, leading to diminished
production of IL-25 and IL-33, suboptimal TH2 responses and
chronic infection (158). Conversely, blocking IL-1 signaling by
treatment with the recombinant IL-1Ra in a mouse model of
systemic sclerosis enhances TH2-mediated inflammation and
worsens pulmonary fibrosis (159). Following infection with
Cryptococcus neoformans, IL-1R1−/− mice show impaired TH1
and TH17 responses, next to augmented TH2 immunity (160).
However, mice with an IL-1R1 deficiency on radioresistant lung
epithelial cells fail to raise a TH2 immune response and do not
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develop house dust mite-induced asthma, whereas caspase 8-
mediated IL-1 activity promotes TH2 immunity and contributes
to the development of asthma pathogenesis (161, 162).
Ovalbumin (OVA)-induced airway hypersensitivity, TH2
cytokine production (i.e. IL-4 and IL-5) and IgE and IgG1
levels are all reduced in mice with deficiencies in both IL-1a
and IL-1b and IL-1R1-deficient mice display diminished CD4+ T
cell priming in bronchial LNs and lungs (163, 164). On the other
hand, NLRP3 activation and IL-1b release do not appear to be
required for the activation of TH2 immunity by uric acid during
asthma development, but this pathway is suggested to be
important for skin TH2 responses (165, 166). In conclusion,
the ability of IL-1 to influence TH2 immune responses is clearly
context-dependent, as evidenced from studies in different
model systems.

Recent work by Kuhn et al. demonstrated that antitumor
CD4+ T cell responses, including proliferation, tumor infiltration
and intratumoral IFN-g and TNF production, can be promoted
by administration of monosodium urate acid crystals in
combination with Mycobacterium smegmatis and this response
completely depends on IL-1R signaling in the host (167, 168).
Tumor-specific effector TH1 cells establish a pro-inflammatory
tumor microenvironment after tumor infiltration and their
ability to mediate anti-cancer immune responses depends on
IL-1 signaling, which can be delivered by both IL-1a and IL-1b
(169, 170).

TH17 and Treg Immunity
IL-1 is generally perceived as a cytokine that favors the
differentiation of naive CD4+ T cells during priming, with a
notorious role as a driver of murine and human TH17
development. TH17 cells are a subset of CD4+ T cells that exert
potent pro-inflammatory activities, which need to be kept in
balance by the dampening anti-inflammatory roles of regulatory
T cells (Treg cells). TH17 cells express CCR6 and CD103 and
preferentially home to mucosal tissues, including the gut (171).
TH17 cells are essential mediators of mucosal immunity, as they
offer local protection against extracellular pathogens, such as
opportunistic infections with fungi, and mediate barrier integrity
via production of IL-17 cytokines. Next to this, TH17 cells are
strongly implicated during autoimmune responses against self-
antigens (172). Intriguingly, TH17 and inducible Treg cells are
believed to arise from a common progenitor CD4+ T cell (172).
Upon priming, expression of the transcription factor FoxP3
induces the differentiation of naive CD4+ T cells into Treg
cells, whereas expression of the transcription factor RORgT
enables the generation of TH17 cells (173–175). In mice,
transforming growth factor (TGF)-b drives the differentiation
of CD4+ T cells away from TH1 and TH2 phenotypes by inducing
the expression of both RORgT and FoxP3, meaning that a second
tier of regulation is necessary to further select between the TH17
or the Treg transcriptional programs. Key for this differentiation
are cytokines that signal via the JAK-STAT pathway: STAT3-
inducing cytokines (e.g. IL-6, IL-21 and IL-23) drive
differentiation towards the TH17 phenotype and cytokines that
utilize STAT5 (e.g. IL-2) promote development of Treg cells
(Table 1 and Figure 5) (178).
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The minimal requirement for naive murine CD4+ T cells to
acquire the TH17 phenotype is the presence of IL-6 and TGF-b
in the priming environment. Although it is generally not
regarded as one of the typical polarizing cytokines for mouse
TH17 differentiation, there is ample evidence in favor of a
fundamental role for IL-1 as a facilitator of TH17 development
in mice (179–181). Basu et al. demonstrated that IL-1 tips the
balance between the TH17 and Treg transcriptional programs in
favor of TH17 development by repressing the expression of
SOCS3, which is an inhibitor of STAT3 phosphorylation, via
an NF-kB-dependent mechanism. As such, IL-1 enhances the
amplitude and duration of STAT3 phosphorylation downstream
of TH17-polarizing cytokine signaling, without interfering with
STAT5 phosphorylation (182). This leads to enrichment of
STAT3 versus STAT5 at their shared consensus sequences, for
example in the Foxp3 locus, which regulates FoxP3 expression,
and the Il17a and Il17f loci, which regulate TH17 effector
cytokine production (Figure 5) (178, 182, 183).

In both mice and human, TH17 cells are among the most
sensitive immune cells for IL-1 activity due to their relatively
high expression of IL-1R1 (10, 11). Abrogated TH17 responses
and lower incidences of EAE are reported in mice deficient for
different players involved in the biology of IL-1, including IL-
1R1, IRAK-4, ASC and caspase 1 (184–190). Conversely, mice
deficient for IL-1R8 (or SIGIRR), a negative regulator of
signaling via the IL-1R complex, are more susceptible to EAE
due to hyperactivation of TH17 cells following immunization
with myelin oligodendrocyte glycoprotein peptide (191). Also in
experimental arthritis models, IL-1 signaling drives the
development of pathogenic TH17 cells (192, 193). Uncontrolled
and excessive activity of IL-1 in IL-1Ra−/−IL-6−/− mice inhibits
TGF-b-mediated expression of FoxP3 and induces a TH17
transcriptional program in CD4+ T cells, which even bypasses
the need for IL-6 signaling (194). Interestingly, T cell-specific
deletion of IL-1R1 in mouse does not impair TH17 development
under steady state conditions, but strongly abrogates the
potential of TH17 cells to migrate and proliferate in the anti-
CD3 treatment model (195). Different studies have reported on
the capacity of IL-1 to promote differentiation of TH17 cells and
enhance their expansion, IL-17 production, peripheral survival
and capacity to mediate vaccine-induced protection against
pathogens, such as Coccidioides species and Blastomyces
dermatitidis (196–200). Proliferation and persistence of TH17
cells following IL-1 signaling is suggested to be a consequence of
Akt-mediated activation of the mTOR pathway, which has been
linked with cell cycle progression. As a negative feedback switch,
TH17 cells upregulate IL-1R8 after differentiation, which directly
inhibits different signaling pathways induced by IL-1, including
phosphorylation of mTOR and JNK (191, 196, 198, 201).

Human TH17 differentiation is substantially differently
regulated compared to the murine situation, as IL-1 has been
demonstrated to be a main polarizing cytokine for TH17
development by directly inducing the expression of the lineage
transcription factor RORgT in human CD4+ T cells. In these
studies, differentiation of naive human CD4+ T cells towards the
TH17 phenotype is additionally facilitated by IL-23 or IL-6, but
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surprisingly antagonized by TGF-b (202, 203). The truth possibly
lies somewhere in between and the local concentrations of both
TGF-b as well as inflammatory mediators are proposed to be
critical determinants of the outcome of TH17 development. High
local levels of TGF-b can drive the differentiation of naive CD4+

T cells towards Treg phenotypes. TH17 development is favored in
environments that contain pro-inflammatory cytokines, such as
IL-6 and IL-1, and are less enriched in TGF-b. Absence of
environmental TGF-b or local presence of IL-12 allows the
formation of TH17 cells with pathogenic phenotypes that
typically produce IFN-g and express T-bet and RORgT (176,
204, 205). A recent study by Grandclaudon et al. demonstrated
that IL-1b can synergize with the activity of IL-12 to drive
differentiation of naive human CD4+ T cells following
polyclonal stimulation with CD3/CD28 towards a mixed TH1/
TH17 phenotype, which corresponded with enhanced IL-17F
production and expression of RORc, T-bet and IL-23R (206).
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Both self- and commensal antigens are known as weak triggers of
T cell and costimulatory receptors and low-strength TCR and
CD28 signals have been reported to favor the differentiation of
TH17 cells in the presence of cytokines. Revu et al. found that IL-
1b synergizes with IL-23 to drive the development of human
TH17 cells in the absence of CD28 by empowering glucose uptake
and glycolytic activity, as such supporting TH17 expansion and
avoiding anergy (207). Signaling of IL-1b on human Treg cells
interferes with alternative splicing of the Foxp3 transcript by
promoting excision of exon 7, which facilitates TH17
differentiation in vitro (208). In mice, IL-1 activity was found
to attenuate the function of CD4+CD25+FoxP3+ Treg cells,
allowing for autoreactive T cells to break tolerance and cause
autoimmune disease (209). Administration of increasing
amounts of exogenous IL-1b in mice blocks thymic
development of Treg cells, which results in decreased amounts
of CD4+CD25+FoxP3+ cells and enhanced levels of Treg
FIGURE 5 | IL-1 signaling facilitates TH17 differentiation. TGF-b drives the expression of both FoxP3 and RORgT during CD4+ T cell priming. Commitment to a role
as regulator or effector is further dependent on IL-2 (STAT5) and IL-6 (STAT3) activity, which antagonize each other. This process was found to be facilitated by other
environmental factors, including the metabolite retinoic acid (RA) and the pro-inflammatory cytokine IL-1. Priming environments enriched in TGF-b concentrations and
lacking STAT3-dependent cytokines drive Treg development. IL-2 activates STAT5, leading to sustained FoxP3 expression and inhibition of IL-17A and IL-17F
production. Presence of RA empowers IL-2 expression and further pushes the balance towards the Treg phenotype. Priming environments that include IL-6 drive
STAT3 activation, which mediates IL-17A and IL-17F expression and inhibits FoxP3 expression. IL-1 activates NF-kB, which inhibits expression of SOCS3. This
further empowers STAT3 activity and pushes the balance towards the TH17 phenotype. In the absence of TGF-b, development of a TH1-like TH17 phenotype can be
driven by IL-6, IL-23 (STAT3), and IL-1. This pathogenic phenotype is characterized by production of IL-17, IFN-g, IL-21, and IL-22. Figure adapted from (176, 177).
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precursor cells (13). Moreover, T cell-specific ablation of MyD88
abrogated TH1 and TH17 responses and memory CD4+ T cell
formation, while no effect could be observed in the Treg subset
(210). Besides acting directly on T cells, IL-1b also indirectly
drives a TH17 instructional program in human immature DCs
that leads to upregulation of CD14 and enhancement of a TH17-
like phenotype in human CD4+ memory T cells (211). Human
DCs are a major source of IL-1b and addition of NO to LPS-
matured human DCs limits their IL-12 production, while
enhancing the release of IL-1b, IL-6 and IL-23, thus favoring
TH17 development (212).

Tfh and Tfr Immunity
Tfh cells aid during the differentiation of B lymphocytes
into antibody-secreting plasma cells, a process that is
negatively regulated by regulatory Tfh (Tfr) cells, which were
demonstrated to descend from a Treg lineage (16, 213–216). This
cellular interplay is organized in the germinal centers (GCs) of
LNs, where Tfh and B cells are located in the middle and Tfr cells
build up the surroundings (217). It has been demonstrated that
IL-1b acts directly on Tfh cells to enhance their proliferation and
induces the production of IL-4 and IL-21, as such initiating a B
cell response. Recent work showed that this pathway is strongly
maintained by Tfr cells, which express the IL-1 decoy receptor
subunit IL-1R2 and actively release IL-1Ra (12). As such, Tfr cells
employ a dual homeostatic regulation mechanism to keep IL-1b-
mediated activation of Tfh cells in check (12, 16). Barbet et al.
identified MHC-II+CD11b+CD11c+CX3CR1+ monocytes as the
main source of IL-1b upon live vaccine administration. These
cells express CCR7, localize to T cell zones in LNs and depend on
IFN-b signaling to release IL-1b, which acts directly on Tfh cells
and drives their differentiation in response to live bacteria (218).
Reduced Tfh responses were also found after sensitization of IL-
1R1−/− mice with peanut allergen (219). Also in human systems,
the presence of IL-1b in the priming environment enhances Tfh
cell development and these responses are diminished upon
neutralization of IL-1 activity (220, 221).

Corroborating these recent findings, reduced antibody
production following prime/boost immunization has been
reported in BALB/c mice with combined deficiencies in IL-1a
and IL-1b, while humoral immune responses were enhanced in IL-
1Ra−/− counterparts. This work suggests that IL-1 produced by
APCs upregulates OX40 and CD40L expression on T cells during
priming, as such enhancing their capacity to activate B cells. Despite
this, IL-1 appears not be involved in the humoral immune response
to T cell-independent antigens (134, 222). In other studies, intact
humoral immune responses were observed in C57BL/6 IL-1R1−/−

mice following immunization with both T cell-dependent and
-independent antigens (154, 223). The contribution of IL-1
activity in humoral immunity is thus controversial. Besides this,
the influence of the mouse background, type of antigen used and its
delivery method should not be underestimated.

The amount of tumor-infiltrating Tfh cells and B lymphocytes
inversely correlates with the progression and recurrence of human
colon carcinoma (224). In a recent paper, Roberti et al.
demonstrated that in colon carcinoma models, the effect of
chemotherapy with oxaliplatin (OXA) on intestinal epithelial cell
Frontiers in Immunology | www.frontiersin.org 13
(IEC) death is dictated by the gut microbiota, which determines the
clinical response to anti-PD-1 immune checkpoint blockade. OXA-
induced immunogenic IEC death is favored in environments
dominated by Erysipelotrichaceae family members or Bacillus
fragilis, which allow for superior responses to anti-PD-1
treatment. This effect relies on migration of CD103+CD11b-Batf3+

cross-presenting DCs to mesenteric LNs, where a Tfh response is
primed, which depends on T cell-intrinsic IL-1 and IL-12 signaling.
IL-1b-induced Tfh cells promote B cell maturation and class switch
and stimulate effector CD8+ T cell responses against neo-antigens in
the tumor microenvironment (225).

TH9 Immunity
Approximately a decade ago, IL-9-producing CD4+ T cells were
first identified and termed TH9 cells, which are formed following
priming of naive CD4+ T cells in the presence of IL-4 and TGF-b
(Table 1) (226, 227). Over the years, TH9 cells have been
associated with protection against helminth parasites and were
demonstrated to exert very potent antitumor immunity (228–
230). In this latter context, a recent report has demonstrated that
IL-4 and IL-1b act synergistically in the absence of TGF-b to
empower a tumor-specific TH9 response, which mediates robust
antitumor activity. Of note, the authors showed that direct IL-1
signaling on the CD4+ T cell is required for TH9 development
and they identified the NF-kB pathway as a major signaling
cascade that allows for pro-inflammatory IL-9 production (231).
Furthermore, ATCT of TH9 cells in advanced B16-OVA
melanoma tumor-bearing mice revealed that these cells exert
potent effector functions, which are distinct from TH1 and TH17
CD4+ T cell subsets, and express less exhaustion markers (i.e.
PD-1 and LAG3). The proliferative potential of TH9 cells appears
to be NF-kB-driven, while TRAF6 and Eomes were identified as
the main instructors of TH9 antitumor effector functions (230).

CD8+ T Cells
The importance of IL-1 signaling for CD8+ T cell activation
becomes evident from the evolutionary pressure imposed on this
pathway by viruses including different vaccinia strains, which
encode a viral soluble protein that binds and incapacitates IL-1b.
Remarkably, this binding appears to be specific for IL-1b, as
IL-1a was found not to be subjected to this neutralization
(232–234). Using a modified vaccinia virus Ankara (MVA)
that lacks the gene encoding for the anti-IL-1b soluble protein,
the lab of Gerd Sutter found enhanced virus-specific memory
CD8+ T cell responses following prime/boost immunization,
which correlated with improved long-lasting protection upon
respiratory challenge infection (235, 236). Moreover, MVA-
induced murine DCs were identified as the main source for IL-
1b production and cytokine secretion following MVA infection
is abrogated in DCs with a caspase 1 deficiency, indicating the
importance of the inflammasome-IL-1R axis for potent
induction of protective virus-specific CD8+ T cell immunity
(235). In addition, the inflammasome-IL-1R axis appears to be
important for successful priming of IAV-specific CD8+ T cells, as
different reports have demonstrated defective CD8+ T cell
responses in IL-1R1−/− mice following IAV infection (115, 147,
148). Activation of the NLRP3 inflammasome and subsequent
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release of IL-1b is also critical during control of infection with
West Nile Virus (WNV) (237–239). CD11b+CD45high

macrophages were identified as the predominant producers of
IL-1b in theWNV-infected central nervous system (CNS). While
Ramos et al. found less WNV-specific effector CD8+ T cells (i.e.
producing TNF, IFN-g, perforin and granzyme) in infected IL-
1R1−/− mice, Durrant et al. could only link impaired effector
CD4+ T cells responses to IL-1R1 deficiency during infection
(237–239). A follow-up paper by Durrant et al. identified IL-1b
as an essential regulator of CXCL12 expression and CXCR4-
mediated retention of WNV-specific effector CD4+ and CD8+ T
cells (i.e. expressing CD69, IFN-g and granzyme B) to the blood-
brain barrier, as such facilitating their migration into the
parenchyma of the CNS (238).

Besides their pivotal work on the role of IL-1a and IL-1b
signaling during the development, maintenance and recall of
CD4+ T cell responses, Ben-Sasson et al. looked into the effects
of IL-1 activity on the CD8+ T cell compartment (150, 240).
Treatment of mice with IL-1b massively enhances the expansion
of adoptively transferred OT-I CD8+ T cells in both lymphoid (i.e.
spleen and LNs) and peripheral (i.e. lung and liver) organs in
response to OVA antigen administration. Next to improved
expansion and tissue localization, Ben-Sasson et al. showed that
IL-1b empowers CD8+ T cell effector functions (i.e. production of
IFN-g/granzyme B and cytolytic activity) and memory recall. In
addition, the protective capacity of inefficient experimental
vaccines against L. monocytogenes, vaccinia virus and the lung
epithelial TC1 carcinoma is enhanced upon inclusion of IL-1b in
the immunization formula (240). Lee et al. combined adoptive
transfer of tumor antigen-specific CD8+ T cells with repeated IL-
1b administration in a murine melanoma model. IL-1b improves
the antitumor effect of ATCT, which correlates with stronger
infiltration of CD8+ T cells in the tumor, a more pronounced
effector phenotype and enhanced peripheral survival (241). IL-
1R1−/− mice fail to clear infection with lymphocytic
choriomeningitis virus (LCMV) and LCMV-specific CD8+ T
cells from IL-1R1-deficient mice do not synthesize granzymes
and lack potent cytolytic activities (242). Despite the fact that
CD8+ T cell-intrinsic MyD88 expression is essential for adequate
expansion and accumulation of antiviral CD8+ T cells that control
LCMV infection, two independent studies showed that this effect
does not depend on signaling via IL-1R1 (243, 244). At the peak of
the antiviral effector CD8+ T cell response to LCMV, impaired
expansion, cytokine production (i.e. IFN-y, TNF and IL-2) and
formation of a CD127+ memory precursor pool was observed in
IL-1R1−/− CD8+ T cells with specificity towards different viral
epitopes. Next to the importance of IL-1 signaling in
programming potent effector CD8+ T cell polyfunctionality,
defective formation of a functional LCMV-specific memory
CD8+ T repertoire was found in IL-1R1−/− mice at 8 weeks after
pathogen encounter (245).

The roles of the inflammasome-IL-1R axis and the process of
pyroptosis, the form of inflammatory cell death initiated following
the formation of membrane GSDM pores after inflammasome
activation, have also been studied in the context of mounting
anticancer CD8+ T cell immunity. A first report by Ghiringhelli
Frontiers in Immunology | www.frontiersin.org 14
et al. showed that the capacity of chemotherapy to induce CD8+ T
cell responses against developing tumors depends on their ability to
trigger the NLRP3 inflammasome in DCs and DC-mediated release
of IL-1b. Moreover, the therapeutic response of two independent
tumor models to treatment with doxorubicin diminishes upon
treatment with an anti-IL-1b, but not an anti-IL-1a neutralizing
antibody (246). Delivery of an anti-IL-1b neutralizing antibody also
reduces the antitumor properties of other anthracycline
chemotherapy in established tumor models (247). On the same
note, a recent study byWang et al. demonstrated a novel method to
selectively deliver active GSDMA3 protein to murine tumor cells in
vivo, as such inducing pro-inflammatory pyroptosis. Intriguingly,
pyroptosis levels of less than 15%were found to be sufficient to clear
a complete 4T1 mammary carcinoma graft and this effect depends
on circulating IL-1b, as inhibition of IL-1b activity using a specific
neutralizing antibody completely nullifies antitumor immunity
(248). However, no contribution of IL-1b activity in GSDME-
mediated immune responses against tumors was observed by
Zhang et al. (249).

While literature provides ample evidence in favor of a
stimulatory role of IL-1 for different aspects of CD8+ T cell
biology, there is ongoing debate on whether IL-1 exerts these
actions directly on CD8+ T cells or indirectly via an intermediate
cell type (Figure 6). Sarkar et al. reported that intrinsic IL-1
signaling is necessary for the development of effector and
memory CD8+ T cells responses against LCMV, as both
numbers as well as cytokine synthesis were decimated in IL-
1R1−/− LCMV-specific CD8+ T cells. This indicates that direct
IL-1 activity regulates the size and functionality of effector and
memory CD8+ T cell pools (245). The study by Ben-Sasson et al.
shows that IL-1b-mediated expansion of CD8+ T cells and their
migration into lymphoid organs only requires IL-1R1 expression
on OT-I cells, advocating a role for direct IL-1b activity, whereas
peripheral localization and cytokine production demands IL-1R1
expression in the host (240). Lee et al. demonstrated that IL-1R1
expression on both the transferred CD8+ T cells as well as the
host environment is required for the enhancing effect of IL-1b on
peripheral accumulation and survival of CD8+ T cells. However,
IL-1b‘s ability to enhance granzyme B expression in CD8+ T cells
surprisingly depends on IL-1R1 expression on vascular
endothelial cells and host release of IL-2 and IL-15, but not IL-
6 and IL-12, nor TCR stimulation. CD11b+Ly6G+Ly6Cint

neutrophils in the spleen were additionally suggested as the
predominant source of IL-15 (241). While Pang et al. showed
that IL-1R1 expression in the hematopoietic cell lineage is an
absolute requirement to mount potent anti-IAV CD8+ T cell
responses, expression of the receptor complex on CD8+ T cells is
not needed for their activation following infection. In fact, DC-
intrinsic IL-1R signaling was found to mediate their upregulation
of CCR7 upon IAV infection and their subsequent migration
towards draining LNs, where they were shown to prime potent
antiviral CD8+ T cell immunity (115). Also, in the vaccinia
model, reduced CD8+ T cell responses were demonstrated in
MyD88−/− mice following viral infection, yet, IL-1R1 expression
on CD8+ T cells does not appear to play a role, according to a
study by Zhao et al. (250). From these combined reports, we can
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at least conclude three important findings considering IL-1R
signaling in the regulation of CD8+ T cell immunity: (1) both IL-
1R1 expression on CD8+ T cells as well as peripheral expression
of the receptor complex contribute to IL-1-mediated CD8+ T cell
activation; (2) different bodies of evidence indicate a segregation
in this contribution, meaning that the different cellular targets of
IL-1 possibly regulate different aspects of the CD8+ T cell
response; (3) the relative importance of IL-1R signaling in
different cell populations could be context-dependent and thus
variable in naive mice versus virus-infected or tumor-bearing
backgrounds. The recent generation of Il1r1-floxed mice is
therefore very exciting, as this will allow for detailed dissection
of the importance of IL-1R signaling in different cell populations
under specific conditions (251).
TRANSLATIONAL IMPLICATIONS

Vaccines
Prophylactic and therapeutic vaccination strategies are, considering
the evidence above, the most obvious clinical applications where the
activities of IL-1 could play meaningful roles. Prophylactic
Frontiers in Immunology | www.frontiersin.org 15
vaccination has been used with great success to (nearly) eradicate
numerous infectious diseases across the globe, including smallpox,
rubella and polio. These strategies depend on evoking potent
immunological memory against pathogenic antigens, in such a
way that invading pathogens are swiftly eliminated upon
encounter (252, 253). The far more experimental therapeutic
vaccines have been used primarily in the context of cancer and
aim to stimulate T cells that recognize TAAs. TAAs can appear in
different forms, which can be highly tumor-specific (e.g. neo-
epitopes or aberrantly expressed germline antigen genes) or
demonstrate rather low tumor specificity (e.g. tissue-specific
antigens, such as melanocyte proteins, or overexpressed antigens)
(254). This can impose an immunological challenge, as certain
classes of TAAs are self-antigens for which high-affinity T cells have
been eliminated during the immune system’s development, only
leaving T cells carrying low-affinity TCRs. Next to this, established
tumor masses and immunosuppressive environments are other
major hurdles that have been limiting the success of therapeutic
cancer vaccination (252).

Vaccines need to display an exquisite safety profile, especially
when used prophylactically in healthy subjects. For this reason,
traditional vaccines that generally comprise live attenuated or
FIGURE 6 | The whereabouts of IL-1R signaling during stimulation of CD8+ T cell responses. While IL-1 activity can potently promote CD8+ T cell responses at
multiple levels, the exact whereabouts of IL-1R triggering for mediation of these effects remain under debate. This figure indicates the context-dependency of several
key findings: (A) CD8+ T cell responses during LCMV-Armstrong infection; (B) Treatment of naive mice with antigen and IL-1b following ATCT of CD8+ T cells (240);
(C) Treatment of B16 melanoma tumor-bearing mice that received ATCT of CD8+ T cells with IL-1b (241); (D) CD8+ T cell responses during IAV infection (115).
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inactivated pathogens have been gradually replaced with
recombinant protein subunit formulations, which show an
improved safety due to a reduction in their reactogenicity. In
order to enhance the efficacy of subunit vaccines, these
formulations have been supplemented with adjuvants (Lat.
“adiuvare” or “to help”). Not only could IL-1 be an interesting
candidate for a new vaccine adjuvant as such, but the activities of
IL-1a, IL-1b, and other members of the IL-1 cytokine
superfamily might be involved in the mode of action (MOA)
of several vaccine adjuvants, as extensively summarized in a
recent review by Muñoz-Wolf and Lavelle (253). Alum, for
instance, which is an overarching denominator for different
aluminum-based adjuvants, is known as a potent driver of
TH2-biased immune responses and antibody production.
However, despite being used for nearly a century, alum’s MOA
is not completely resolved. Both in vitro and in vivo, alum has
been found to activate the NLRP3 inflammasome and promote
the release of IL-1b, but how this exactly influences alum’s
adjuvanticity has not been clearly unraveled yet. The relative
contribution of IL-1 superfamily cytokines in the alum-mediated
immunity could be tissue-dependent and subjected to the
susceptibility of resident cells to alum-induced necrosis (253,
255–258). Indeed, Kuroda et al. demonstrated that alum
inhalation induces necrosis of CD11c+SiglecF+ alveolar
macrophages and release of IL-1a, which evokes TH2-driven
airway hypersensitivity. Upon subsequent OVA administration,
host IL-1R1 expression was found to be essential in the
formation of inducible bronchus-associated lymphoid tissue
and antibody production (258). Others have shown that IL-1
superfamily cytokines are unlikely to be prominent regulators of
the antibody response induced following alum administration
(259–261). Muñoz-Wolf and Lavelle also mention that while
different other vaccine adjuvants, including MF59, GLA-SE,
AS03 and CAF01, trigger the inflammasome-IL-1 axis, the
precise importance of this pathway in the MOA of these
adjuvants is incompletely understood (253).

While most of the licensed adjuvant systems mentioned
above undeniably raise potent TH2 and humoral immune
responses, adequate protection against different infectious
pathogens (e.g. M. tuberculosis, dengue virus or Plasmodium
falciparum) and cancer requires potent TH1, TH17 and CD8+ T
cell immunity (253). In the specific case of IAV, the moderate
heterosubtypic immunity that occurs naturally following
infection is most likely mediated by cross-reactive T cell
responses aimed against highly conserved internal viral
epitopes, which makes a case for vaccine adjuvants that
promote cellular immunity in the search for a universal IAV
vaccine (262, 263). In this context, Lapuente et al. designed an
adenoviral vector-encoded IL-1b and co-delivered this
intranasally as an adjuvant with vector-encoded IAV
nucleoprotein (NP) and hemagglutinin (HA). Next to
enhancing HA-specific antibody responses, IL-1b strongly
increases both mucosal and systemic NP-specific CD4+ and
CD8+ T cell immunity. Moreover, the CD8+ tissue-resident T
(TRM) cell population induced in the lung was shown to be
sufficient for heterosubtypic protection against other IAV strains
Frontiers in Immunology | www.frontiersin.org 16
(264). In a follow-up study, these authors evaluated whether
DNA plasmid-encoded IL-1b could act as a cellular adjuvant to
improve the efficiency of a DNA vaccine with plasmids encoding
the IAV antigens HA and NP. However, while intramuscular co-
delivery of IL-1b slightly improved the formation of cross-
reactive anti-HA antibodies, no stimulatory effect on NP- and
HA-specific CD8+ T cells could be observed, suggesting that IL-
1b might act as a strictly mucosal adjuvant in IAV vaccination
strategies (265).

TH17 cells do not only play detrimental roles during
autoimmune disease, but also mediate mucosal protection
against different pathogens, including extracellular bacteria,
Toxoplasma gondii and fungi (266–268). Considering the
global threat imposed by pathogens such as M. tuberculosis,
vaccine adjuvants that drive protective mucosal immune
responses thus could be of great value (269). The above
mentioned CAF01 cationic liposome adjuvant, which is
currently under clinical investigation, was found to induce
long-lived TH17 responses that can be recalled to the lung
parenchyma upon challenge infection with M. tuberculosis two
years after their initial induction (270). Intriguingly, peripheral
CAF01-induced TH17 cells were found to promote the induction
of IgA-producing B lymphocytes in the lung parenchyma and
enhanced the formation of GCs and Tfh cells in lung-draining
mediastinal LNs (271). Moreover, IL-1R1 signaling appears to be
essential for the induction of IFN-g and IL-17-producing cells in
mice following vaccination with CAF01, but not for the
generation of an antibody response (272). In an effort to
evaluate IL-1b as a possible TH17-driving adjuvant, Wüthrich
et al. demonstrated that an experimental live attenuated B.
dermatiditis vaccine supplemented with IL-1b improves TH17-
mediated protection against subsequent infection (200).

Cancer Immunotherapy
In the context of cancer, the inflammasome-IL-1 axis can be
perceived as a double-edged sword with both pro- and
antitumorigenic properties, which is extensively summarized in
a recent paper by Rébé and Ghiringhelli (273). There is ample
evidence demonstrating that in many different types of cancer,
including malignancies in skin, colon and lung, upregulated
expression of IL-1b correlates with progression of disease. In
addition, several common cancer-associated mutations, such as
genetic alterations in KRAS and BRACA1, promote IL-1b
expression. Cancer cells can also drive the production of IL-1b
in tumor-associated inflammatory macrophages, as such
installing an environment where immune responses are
dampened, for instance via IL-1b-mediated accumulation of
myeloid-derived suppressor cells (MDSCs) that produce IL-10
and recruit pro-tumorigenic neutrophils. Besides this, IL-1b has
been described a promotor of angiogenesis and cancer cell
metastasis (273). Consequentially, clinical cancer research
strongly focuses on antagonizing IL-1 activity in patients,
which can be achieved by treatment with NLRP3
inflammasome inhibitors, recombinant IL-1Ra or monoclonal
antibodies that neutralize IL-1b (273–275). The CANTOS (for
“canakinumab anti-inflammatory thrombosis outcome study”)
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trial evaluated the effect of treatment with canakinumab, an anti-
IL-1b neutralizing monoclonal IgG1 antibody, in patients with a
history of myocardial infarction and high circulating levels of C-
reactive protein (CRP). The study found that treatment with
canakinumab could dose-dependently reduce levels of CRP and
the risk of recurrence of a cardiovascular event (276). Moreover,
treatment with canakinumab significantly lowered the incidence
and mortality of lung cancer, making a case for strategic
inhibition of IL-1 activity in patients at risk (277).

In contrast to this, IL-1 activity can promote anti-tumor
immune responses by influencing both DCs and T cells in
different models and experimental settings. Therapeutic
vaccination of mice with irradiated melanoma cells that secrete
IL-1b impairs tumor growth, which correlates with enhanced T
cell activity (i.e. more release of IL-2/IFN-g and augmented
cytolytic activity upon ex vivo restimulation) (278). IL-1R
triggering activates bystander DCs, which could be of
importance for the improvement of DC vaccination strategies
(143). Indeed, different studies have shown that successful
priming of CD8+ T cell responses during vaccination with ex
vivomatured and antigen-loaded DCs is dependent on help from
bystander DCs (279, 280). Allogeneic DCs that are matured ex
vivo with a cocktail containing poly(I:C), R848 and IFN-g in
combination with an infection-enhanced adenoviral vector
produce high amounts of IL-1b. This correlates with an
enhanced potential to activate bystander DCs, which in turn
cross-present antigen to CD8+ T cells and induce an antigen-
specific adaptive immune response (281). In the CT26 colon
carcinoma model, systemic administration of Salmonella
typhimurium in mice enhances the release of IL-1b by DCs
and inhibits tumor growth, which can be reverted upon
treatment with an IL-1b-neutralizing antibody (282, 283).
Work by Segovia et al. demonstrated that mice with a
deficiency for the transmembrane protein 176B (TMEM176B),
which inhibits activation of the NLRP3 inflammasome by
controlling the cellular Ca2+ flux, efficiently control tumor
growth in a caspase 1 and IL-1b-dependent manner. Moreover,
pharmacological targeting of TMEM176B mediates inhibition of
tumor growth and increases susceptibility to immune checkpoint
inhibition (284). Recent work by Zhivaki et al. shows that
hyperactive cDC1s produce mature IL-1b in a NLRP3-
dependent, but pyroptosis-independent manner and display an
enhanced ability to take up and present TAAs, migrate to tumor-
draining LNs and promote antitumor effector CD8+ T cells,
altogether establishing a durable antitumor response.
Interestingly, neutralization of IL-1b activity with an antibody
completely abrogates the antitumor response mediated by these
hyperactive cDC1s (70).

IL-1 could be a strong candidate to improve the therapeutic
efficacy of adoptive T cell transfer in cancer, which remains
largely ineffective for the majority of patients carrying solid
tumors. The general idea is that cancer patients receive a
transfer of T cells with reactivity against different tumor
antigens, which can be either inherent or acquired following
genetic insertion of transgenic TCRs or chimeric antigen
receptors (CARs) (285). In this context, Lee et al. showed that
Frontiers in Immunology | www.frontiersin.org 17
repeated administration of IL-1b improves the antitumor activity
of ATCT in a mouse model of melanoma, while Sarkar et al.
found that IL-1 supplementation enhances priming and
expansion of anti-CD19 human CAR-T cells (241, 245).

In conclusion, while IL-1 activity primarily shows pro-
tumorigenic properties, different bodies of evidence demonstrated
that antitumor immune responses can be facilitated by IL-1.
Therapeutic application of IL-1’s activity in the context of cancer
will completely depend on the ability to clearly segregate its pro-
tumorigenic from its antitumorigenic effects.

Toward Safe and Efficient Clinical
Application of IL-1
Efficient clinical translation of cytokine activity is hampered by a
variety of problems. First, long-term and high-dose cytokine
administration might raise detrimental side effects. In the case of
IL-1a and IL-1b, these toxicities include fevers, rigor and
headaches. Hypotension is the dose-limiting factor and the
maximum tolerated dose (MTD) of intravenously administered
IL-1b was found to range from 0.07 – 0.3 mg/kg body weight
(286). A second problem that some cytokines face is the necessity
of dose escalation to reach sufficient therapeutic efficacy, which is
due their limited serum half-life (287). Third, cytokines are
highly pleiotropic molecules and not all of their functionalities
are desirable. The abovementioned tumor-promoting functions
of IL-1 could therefore nullify the favorable promotion of an
antitumor CD8+ T cell response (273). Isolation of the favorable
immunostimulatory properties of IL-1 from its undesired side
effects might pave the way for its safe and efficient clinical
application. In this regard, structure/function analysis has
revealed a region within IL-1b (i.e. the primary sequence
VQGEESNDK located between b-strand four and five) that
displays comparable adjuvanticity to complete IL-1b in the
absence of inflammation and toxicity (288). An alternative
solution for the abovementioned problems are so-called
immunocytokines, which represent fusion proteins comprised
of a WT cytokine and a targeting moiety directed against a cell
type-specific surface molecule. Immunocytokines aim to widen
the therapeutic window of cytokines by increasing their local
concentration at carefully selected target sites. This empowers
the local biological activity of the cytokine moiety and allows for
the use of lower amounts of immunocytokine to achieve the
same therapeutic effect compared with the WT cytokine only, as
such reducing cytokine-related toxicities (289). As of today, one
IL-1b-based immunocytokine has been preclinically evaluated.
This immunocytokine delivers IL-1b activity to the tumor
microenvironment and modestly slows down the subcutaneous
growth of a murine B16 melanoma tumor (290). A limitation of
immunocytokines is the fact that these still comprise WT
cytokines that maintain the capacity to exert undesired
cytokine activities on non-targeted cells (291, 292). A
modification of the immunocytokine concept are AcTakines
(for “Activity-on-Target cytokines”), which represent fusion
molecules that carry a mutation in the cytokine moiety, as
such rendering them essentially inactive. Upon delivery of the
mutated cytokine to a cell type-specific surface molecule,
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cytokine activity can be restored up to WT level. As such,
AcTakines are devised to remain inactive en route through the
body and reveal their full agonist activity following binding to
selected cell types only (293). AcTakines based on type I IFN
(294, 295) and TNF (296) activity were previously demonstrated
to mediate potent antitumor activity without raising the
toxicities observed with WT cytokine administration. Recently,
we developed an AcTakine molecule that delivers IL-1b activity
to CD8+ T cells and safely promotes T cell activation,
proliferation and memory differentiation. Inclusion of this
AcTakine in an experimental prime/boost IAV vaccine
established protection against a high influenza challenge dose,
which correlated with the formation of a potent and durable
IAV-specific cellular immune response (297). The use of this
strategy could be expanded to other models, for instance to
evaluate antitumor CD8+ T cell activation by IL-1b.
CLOSING REMARKS AND OPEN
QUESTIONS

The pro-inflammatory cytokines IL-1a and IL-1b can strongly
impact the outcome of adaptive immune responses. However,
their pleiotropic activities are usually not included in the three-
signal model, an empirical framework that places adaptive
immunity under innate control. Successful progression from
productive to actual protective T cell immunity requires a
more holistic view, with additional attention for the biological
effects of these pro-inflammatory IL-1 cytokine superfamily
members. A revised model could be of major importance for
more rational development of adjuvants that promote cellular
immune responses, which are highly requested in vaccination
against intracellular pathogens and the new generation of
recombinant personalized tumor vaccines.

As IL-1a and IL-1b utilize the exact same receptor complex,
their biological activities can be regarded as redundant. However,
clear temporal and spatial factors distinguish these two pro-
inflammatory mediators: whereas IL-1a performs a local role as
an alarmin that is released upon cellular damage, the release of
IL-1b, which can also appear in circulation, is strictly controlled.
From this biological perspective, the activities of cytokine
alarmins, including IL-1a and the IL-1 cytokine superfamily
Frontiers in Immunology | www.frontiersin.org 18
member IL-33, could be important to induce in mucosal
vaccination strategies. As many pathogens enter the host via
mucosal membranes of the respiratory, genital and gastro-
intestinal tract, raising local immune responses at the sites
where infection and transmission take place is highly requested
and the success of mucosal vaccination to locally induce
functional T cell responses will in part depend on the
availability of powerful adjuvants that yield such responses.

The IL-1 cytokine superfamily contains other members
besides IL-1a and IL-1b with functionalities that could be used
to fine-tune adaptive immune responses. IL-33 is an established
inducer of TH2 immunity and promotes the release of TH2-
polarizing cytokines in vivo (298). IL-18 was originally described
as “IFN-g-releasing factor” due to its ability to promote TH1
responses and NK cell activation (299). Further research is
requested on how these cytokine properties can be exploited to
advance immunization strategies.
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