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Abstract: Comprehensive study of the structure and bonding of disodium, dipotassium and di-
ammonium di-o-phthalatocuprates(II) dihydrates has been undertaken. The crystal structure of
ammonium o-phthalatocuprate has been determined. The identity of structures of phthalatocuprate
chains in potassium and ammonium salts has been revealed. Vibrational spectra of all three com-
pounds have been recorded, and the assignment of vibrational bands has been made. Force field
calculations have shown a minor effect of outer-sphere cations (Na+, K+, NH4

+) on both intraligand
(C-O) and metal–ligand bond strengths. Synthesized compounds have been tested as electrochemical
sensors on D-glucose, dopamine and paracetamol. Their sensitivity to analytes varied in the order of
Na+ > K+ > NH4

+. This effect has been explained by the more pronounced steric hindrance of copper
ions in potassium and ammonium salts.

Keywords: alkaline o-phthalatocuprates; crystal structure; vibrational spectra; force constants; elec-
trochemical sensors; D-glucose; paracetamol; dopamine

1. Introduction

Copper-based metal–organic frameworks (MOFs) with polycarboxylate linkers have
recently attracted attention in the field of electrochemical sensors for the detection of
different analytes [1–4] due to their potential for increasing electrode/electrolyte interfaces
and reducing mass consumption by tuning single atomic metal centers. For example,
Cu(BTC) MOF (BTC: trimesic acid) has shown peroxidase-like activity for electrochemical
detection of H2O2 [5] and catechol [6], respectively. Cu-based MOFs, consisting of Cu2+ ions
and ligands such as TPA (TPA: terephthaic acid) and BTC, have shown good electrochemical
properties and excellent catalytic performance in electrochemical sensors for the detection of
analytes such as glucose, H2O2, etc. [7,8]. Though numerous studies have been conducted
in this field, there are mostly only empirical observations of electrocatalitical activity
towards target analytes [9,10], and the factors affecting the sensor properties of the different
types of materials with similar structures have not yet been fully identified. In this regard,
in this work the effect of an outer-sphere cation (Na+, K+, NH4

+) on structure and bonding
in alkaline di-o-phthalatocuprate dihydrates was studied in detail to reveal the major
factors that determine sensor activity of phthalatocuprates towards D-glucose.

2. Materials and Methods
2.1. Reagents

Copper(II) Carbonate Basic (>95%), Potassium Hydrogen Phthalate (>99.95%), Ph-
thalic Acid (>98%), Sodium Hydroxide (>99.5%), D-Glucose, Paracetamol, Dopamine Hy-
drochloride (all—European Pharmacopoeia (EP) Reference Standard), PBS buffer, Nafion
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(5 wt% solution) and Ammonia (32% aqueous solution) were purchased from Sigma-
Aldrich Ltd. (Darmstadt, Germany), Sodium Hydrogen Phthalate (> 99%) was supplied by
Advanced Technology & Industrial Co., Ltd. (Hong Kong, China). All the reagents were
used without further purification.

2.2. Synthesis of Alkaline di-o-Phthalatocuprates(II) Dihydrates

Disodium(I) and dipotassium(II) di-o-phthalatocuprates(II) dihydrates have been
synthesized according to the method described in [11]. Copper(II) carbonate basic was
dissolved in an aqueous solution containing a stoichiometric amount of alkaline hydrogen
phthalate. As no ammonium hydrogen phthalate was available, this was prepared in situ
simply by mixing equimolar amounts of ammonia and phthalic acid, and then stoichiomet-
ric amount of copper carbonate basic was added under stirring to obtain diammonium(III)
di-o-phthalatocuprate(II) dihydrate. The solutions were allowed to stay at room tempera-
ture for slow evaporation; as a result, blue elongated prismatic crystals suitable for X-ray
analysis were obtained for all three samples.

2.3. XRD Characterization

X-ray powder diffraction (XRD) measurements were performed on a D2 Phaser (Bruker, Bil-
lerica, MA, USA) X-ray diffractometer using Cu Kα radiation (λ = 1.54056 Å). Experimental
powder fiffractograms are compared with calculated ones at Figure 1. As no crystallographic
data for III are available so far, single-crystal X-ray diffraction analysis was undertaken. Data
were collected using Agilent Technologies «Xcalibur» diffractometer K using a monochromatic
radiation source (MoKα radiation, λ = 0.71073). The structure was solved using the ShelXT [12]
structure solution program by Intrinsic Phasing and refined with the ShelXL [12] incorporated in
the Olex2 refinement package [13]. Empirical absorption correction was applied in the CrysAl-
isPro (Agilent Technologies, Santa Clara, CA, USA, 2014) program complex using spherical
harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The carbon-bound H atoms
were placed in calculated positions and were included in the refinement in the riding model
approximation, with Uiso(H) set to 1.2Ueq(C) and C–H 0.93 Å for the CH groups, Uiso(H) set to
1.6Ueq(N) and N–H in the corresponding bond lengths for the NH groups, and Uiso(H) set to
1.5Ueq(O) and O–H 0.85 Å for the OH groups. The crystallographic parameters and the structure
refinement statistics for III at T = 293(2) K are as follows: C16H20CuN2O10, Mw = 463.88 g/mol,
space grou I2/a, a = 7.9889(3) Å, b = 21.2012(8) Å, c = 11.5131(4) Å, α = 90, β = 107.398(4), γ = 90,
V = 1860.81(12) Å3, Z = 4 (Z’= 1), T = 293(2) K, µ (MoKα) = 1.234 mm−1, Dcalc = 1.656 g/cm3,
20,109 reflections measured (5.678◦ ≤ 2Θ ≤ 64.758◦), 3093 unique (Rint = 0.0476, Rsigma = 0.0287)
which were used in all calculations, ρcalc = 1.656 g/cm3, F (000) = 956.0. The final R1 was
0.0280 (I > 2σ(I)) and wR2 was 0.0917 [14]. Fractional atomic coordinates, equivalent isotropic
displacement parameters, anisotropic displacement parameters, complete lists of bond lengths
and bond angles are summarized in Tables S1–S6 in Supporting Information. The structure is
presented at Figure 2 and the selected distances are reported in Tables 1 and 2.
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Figure 1. Comparison of powder diffraction pattern for synthesized samples (blue) with 
those calculated from single crystal X-ray data for disodium (CCDC number 1216797) 
and dipotassium (CCDC number 1200201) phthalatocuprates (red): top—compound I, 
bottom—compound II. 

Figure 1. Comparison of powder diffraction pattern for synthesized samples (blue) with those
calculated from single crystal X-ray data for disodium (CCDC number 1216797) and dipotassium
(CCDC number 1200201) phthalatocuprates (red): top—compound I, bottom—compound II.
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Hydrogen bonds are presented as dotted lines. 
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Mid-IR spectra have been recorded in the 400–4000 cm−1 spectral region by a Nicolet 

8700 (Thermo Scientific, Waltham, MA, USA) spectrometer by means of the ATR tech-
nique. Kramers–Kronig correction was applied to eliminate ATR distortions. Far-IR meas-
urements have been performed in the spectral range 65–700 cm−1 at the same equipment. 
The diffuse reflectance (DRFTS) technique was applied. Raman spectra were recorded by 
means of SENTERRA (Bruker, Billerica, MA, USA) express Raman spectrometer equipped 
with Peltier cooled CCD detector (Bruker, Billerica, MA, USA) at 488 nm excitation. For 
all the spectral measurements 128 scans were performed and averaged, 4 cm−1 spectral 
resolution was applied. All spectra were measured at an ambient temperature. Baseline 

Figure 2. Coordination of o-phthalate ligands to copper ion (left) and crystal packing (right) in III.
Hydrogen bonds are presented as dotted lines.
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Table 1. Bond Lengths for III.

Atom Atom Length/Å Atom Atom Length/Å

Cu1 O4 1 2.0060(8) O1 C1 1.2776(14)
Cu1 O4 2 2.0060(8) O3 C8 1.2523(13)
Cu1 O1 3 1.9474(8) O2 C1 1.2473(14)
Cu1 O1 1.9474(8) C1 C2 1.5073(15)
O4 Cu1 1 2.0060(8) C8 C7 1.4989(15)
O4 C8 1.2758(13)

Asymmetric units: 1 3/2 − X, 3/2 − Y, 1/2 − Z; 2 X, 3/2 − Y, 1
2 + Z; 3 3/2 − X, Y, 1 − Z.

Table 2. Comparison of selected bonds distances in compounds I–III.

Contact Distance, Å
I II III

Cu-O1 1.969(4) 1.999(5) 2.0060(8)
Cu-O4 1.936(3) 1.930(5) 1.9474(8)
C1-O1 1.273(6) 1.263(6) 1.2776(14)
C1-O2 1.237(6) 1.253(6) 1.2473(14)
C8-O3 1.237(6) 1.221(6) 1.2523(13)
C8-O4 1.288(6) 1.296(6) 1.2758(13)

2.4. Vibrational Spectroscopy

Mid-IR spectra have been recorded in the 400–4000 cm−1 spectral region by a Nicolet
8700 (Thermo Scientific, Waltham, MA, USA) spectrometer by means of the ATR technique.
Kramers–Kronig correction was applied to eliminate ATR distortions. Far-IR measurements
have been performed in the spectral range 65–700 cm−1 at the same equipment. The diffuse
reflectance (DRFTS) technique was applied. Raman spectra were recorded by means of
SENTERRA (Bruker, Billerica, MA, USA) express Raman spectrometer equipped with
Peltier cooled CCD detector (Bruker, Billerica, MA, USA) at 488 nm excitation. For all the
spectral measurements 128 scans were performed and averaged, 4 cm−1 spectral resolution
was applied. All spectra were measured at an ambient temperature. Baseline correction
and deconvolution of spectral contours were made using the GRAMS32 package (Galactic
Industries, Salem, NH, USA). The experimental spectra are shown in Figures 3–5, with
experimental frequencies summarized in Table S7.
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Figure 5. Raman spectra of o-phthalatocuprates.

Vibrational bands that appear only in the spectra of compounds I–III and are absent
in spectra of neat acid were assigned to copper–oxygen stretchings. They were observed as
weak to medium intensity bands at 306–307 cm−1 (Raman) and 317–319 cm−1 (IR). As the
geometry of the copper ion coordination sphere is very close to the square planar, we
assigned the Raman active frequency to symmetric and another to asymmetric stretching.

To understand in more detail the bonding in alkaline phthalatocuprates, we have
undertaken force-field calculations. Though the force constant reflects the slope of the po-
tential energy surface near equilibrium points, for similar molecules, the close relationship
in trends for stretching force constants and bond energies is well known. C6H4(COOCu)2
and Cu(OC(O)C)4 moieties were considered to analyze both intraligand bonding and the
coordination effect. Wilson’s GF matrix method was used for the calculation of vibrational
frequencies using a symmetrized valence force field. The PC-based program package,
written in FORTRAN, is developed by J. Mink and L. Mink [15]. Initial force constants were
adopted from Colombo et al. [16] and refined to obtain a good coincidence of calculated
and experimental data (within 1–2 cm−1). The average experimental frequencies were
taken because of the interligand interactions. The experimental and calculated vibrational
frequencies of the carboxylate group together with potential energy distribution and refined
force constants for this moiety are summarized in Tables 3 and 4 below.



Materials 2021, 14, 5548 6 of 12

Table 3. Experimental and calculated vibrational frequencies (cm−1) of carboxylate moieties together with potential energy
distribution (%) in I–III.

I II III PED Ass.

Exp. Calc. Exp. Calc. Exp. Calc.

1640 1639 1629 1629 1630 1630 75 ν(C=O),
24 ν(C-O)

νoop(C=O)
1612 1613 1611 1611 1610 1611 νip(C=O)
1263 1263 1270 1268 1259 1269 63 ν(C-O), 21

δ(CO2)
νoop(C-O)

1265 1263 1258 1260 1252 1260 νip(C-O)
660 660 661 660 658 657 68 δ(CO2), 13

ν(C-O)
δoop(CO2)

653 654 651 652 653 653 δip(CO2)
317 317 319 319 318 317 70 ν(CuO),

30 δ(CuOC)
νa(CuO)

305 305 307 307 306 306 νs(CuO)
277 275 272 273 271 269

90 τ(CO)
τoop(CO)

267 268 260 261 260 260 τip(CO)

Table 4. Refined force constants for I–III. Stretching force constants are given. 102 N m−1, bending—10−18 N m.

Force Constant I II III Acid [16]

Stretch
Cu-O 1.465 1.460 1.462
C-O 6.022 6.071 6.057 5.93
C=O 8.409 8.621 8.616 8.5
C-C 2.503 2.541 2.539 2.6
Stretch-stretch
Cu-O, Cu-O (trans) −0.132 −0.167 −0.175
C-O, Cu-O 0.116 0.125 0.112
Bending
CO2 1.654 1.578 1.589 1.65
CO—torsion 0.266 0.277 0.263 0.21

2.5. Electrochemical Measurements

The electrochemical studies (CorrTest CS300, OhmLiberScience, Saint-Petersburg,
Russia) were conducted in a standard three-electrode cell: modified GCE (d = 3 mm) was
used as the working electrode, a platinum mesh as a counter electrode and an Ag/AgCl
as reference electrode. Modified GCEs were prepared by sequential drop-casting of 10 µL
water-based suspension of alkaline di-o-phthalatocuprates (1 mg/mL) and 5 µL of Nafion
solution (0.02 wt%); after that, modified electrodes were dried under ambient conditions
for further electrochemical experiments. The cyclic voltammetry measurements (CV) were
performed within the potential range −0.2–0.8 V vs. Ag/AgCl with scan rate of 50 mV/s.
The differential pulse voltammograms (DPV) were recorded within the potential range
0–0.6 V, with an amplitude of 0.05 V and step potential of 0.004 V. The solutions of analytes
(Gl—glucose, DA—dopamine, AP—paracetamol) of different concentrations were added
to the corresponding background solutions (0.1 M sodium hydroxide for Gl and 0.1 M PBS
for DA and PA).

3. Results and Discussion
3.1. Crystal Structure

The powder diffraction patterns of synthesized I and II compounds (Figure 1) con-
firmed their phase purity [11]. As ammonium salt (III) was obtained for the first time,
single-crystal diffraction study was undertaken. The results have shown that the copper ion
in this compound is surrounded by four o-phthalate ligands in a nearly square-planar coor-
dination (Figure 2), similar to that in compounds I and II. Copper–oxygen bond lengths in
III are equal to 1.9474(8) Å and 2.0060(8) Å that is rather similar to those in potassium com-
pound II (1.930(5) Å and 1.999(5) Å [11]) and a little higher than in sodium salt I (1.936(3) Å
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and 1.969(4) Å [11]). These bond distances are close to those found in other square-planar
copper complexes with o-phthalate ligands (1.9336–1.9935 [17,18]). Bond distances in the
benzene ring remain the same in all three compounds. As for carboxylate groups, some
shortening of C-O bonds is observed in the order of K-NH4-Na.

The crystal packing in the compounds under study is somehow different. In all
three substances, copper ions together with o-phthalatoligands form 1D polymeric chains.
Water molecules and alkaline cations (or NH4

+) are located between adjacent chains and
associated 1D chains into 2D layers via hydrogen bonds or electrostatic interactions with
phthalate-ions (Figure 2). In (I), the outer-sphere cation (Na+) is small enough to be able to
be inserted into the hollows of the crossed linear polymeric chains, whereas the increase in
ion size prevents this insertion and, as a result, potassium and ammonium ions interpose
between adjacent zigzag chains. That results in less distance between the copper ion and
non-coordinated oxygen ions from carboxylate groups (2.533 (5) Å and 2.5474 (5) Å in II
and III vs. 2.755 (5) Å in I). One can mention that despite the ammonium ion being capable
of forming hydrogen bonds with oxygen atoms of carboxylic groups (see Figure S1), which
does not effect on the crystal packing in compound III—the effect of ionic size dominates.

3.2. Vibrational Spectroscopy

Vibrational spectroscopy is a powerful tool that enables us to compare bond strengths
in chemical compounds without destroying the sample. The assignments of vibrational
bands for phthalic acid, the o-phthalate ion and the hydrogen o-phthalate ion have been
undertaken by several researchers: Colombo et al. [16], Arenas et al. [19,20], Martinez
et al. [21] and Loring et al. [22]. However, Arenas and Lorig only took into account bands
above 1000 cm−1 and Martinez has not analyzed C-H stretchings and carboxylic group
vibrations. Therefore, our analysis was based mostly on that performed by Colombo as all
vibrational bands of phthalic acid have been taken into account, and the assignment was
also supported by quantum chemical calculations and by force field calculations.

That results in values rather similar to those obtained for other benzenedicarboxylic
acids (e.g., terephthalic acid and its derivatives [19,20,23–25]). We have only re-assigned
an intense band at 832 cm−1 to totally symmetric ring-breathing vibrations instead of
OH out-of-plane mode—breathing mode should be the strongest one in Raman spectra.
The problem with intensity in the measurements of Colombo et al. [16] can originate
from single-crystal (not powdered) Raman measurements. An increase in the number of
vibrational modes for alkaline di-o-phthalatocuprates(II) is due to the increase in number
of o-phthalate moieties in the unit cell and interaction between ligands. The complete list
of vibrational frequencies and their assignment is given in Table S5.

The comparison of the spectra of o-phthalic acid and o-phthalatocuprates under study
allowed us to assign the modes originating from the carboxylate group (as they are the
most affected by coordination to metal ions instead of hydrogen) and metal–ligand modes.
Strong to medium intensity bands in the region of 1600–1640 cm−1 were assigned to the
C=O stretching mode; lower-frequency modes are more intense in Raman and correspond
to in-phase, whereas higher-frequency bonds are more intense in IR and corresponds to
out-of-phase stretching. The positions of these bands coincide well with those in neat
o-phthalic acid (1637 and 1640 cm−1). Weak bands at 1250–1270 cm−1 were assigned to
C-O stretchings (1263 and 1280 cm−1 in neat acid); a lower frequency compared to acid can
result both from the decrease in bond strength and also from the mass difference between
hydrogen and copper atoms bonded with the C-O group. The comparison of these data
with those for metal ion complexes with terephthalate ligands studied earlier [24,25] shows
far less splitting of carboxylate group vibrational frequencies in o-phthalate complexes
because of non-centrosymmetric position of CO2 groups.

CO2 deformations in complexes were found as medium intensity bands at 650–660 cm−1,
and C-O twist as a weak to medium intensity band at 265–277 cm−1. As to the bands around
3500 cm−1, they can be attributed to OH stretching modes; the difference in H-bonding in I
and II-III can be clearly observed from IR spectra.
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As one can see from the obtained results, the force constants obtained are similar to
those for phthalic acid. Some increase in C-O stretching force constants reflects a lower
polarization effect of copper ions compared to hydrogen. As for copper–oxygen bond
strengths, the results are rather similar to those for another complex with oxygen-donor
ligands [26]. It should be mentioned that no obvious effect of outer-sphere cations on metal–
ligand bond strengths is observed in o-phthalatocuprates, in contrast to that found in halide
complexes [26,27]. The polymeric structure of complexes and large size of ligands leads to
the smoothing of the effect of polarization ability of outer-sphere ions. Intraligand force
constants vary to a greater extent, which is probably due to the difference in interaction of
outer-sphere cations with the oxygen atoms of carboxylate groups [11].

3.3. Sensor Properties

The monitoring of various analytes in body fluids plays a crucial role in the diagnosis
and treatment of many disorders. The changes in glucose level in human blood is closely
related to diabetes; in turn, variations in neurotransmitter concentrations (such as DA)
are associated with Parkinson disease, Huntington’s chorea, addiction, etc. [28,29]. In this
regard, the selective determination of bioanalytes in the presence of the most commonly
used drugs worldwide (for example AP) is of great importance not only for clinical practice,
but also for biomedical and biochemical research. Electrochemical methods offer a unique
combination of expensiveness, flexibility and high performance, and have a great potential
in non-enzymatic detection of aforementioned analytes.

The electrocatalytic activities of the synthesized o-phthalatodicuprates towards D-glucose
oxidation were investigated using CV and CA techniques (Figure 6). Figure 6a,b demonstrate
that sensor response toward addition of 3 mM D-glucose is decreased in the order of I > II > III.
Therefore, the sample I was chosen for further studies by chronoamperometry, and the typical
CA curve recorded during consecutive additions of D-glucose aliquots to 0.1 M NaOH at
potentials of 0.55 V presented on Figure 6c. The linear range of dependence of the Faraday
current on the D-glucose concentration lies between 1 µM and 3 mM, wherein sensitivity
and the limit of detection (LOD) were equal to 8.95 µA/mM and 0.26 µM, respectively.
Thereby, sodium salt I exhibits sensor properties comparable with those of another copper-
based MOFs known from the literature [30–33]. Table 5 presents the comparison between
fabricated glucose sensor and other recently reported ones. Notably, the proposed electrode
exibits comparable characteristics with a wide range of MOF-based sensors including complex
composite materials.
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Table 5. Electrochemical performance of the sodium o-phthalatocuprate/GC electrode and similar
materials for enzyme-free glucose sensing.

Electrode Material Linear Range (µM) LOD (µM) Refs.

Cu-
MOF/CNHs/GCE 0.25–1200 0.078 30

Multiplayer films of
Cu-MOF/MWNTs 0.5–2340 0.4 9

Cu-in-ZIF-8 Up to 700 2.76 31
NiCu-MOF-6 20–4930 15 32
Ni@Cu-MOF 5–2500 1.67 33
Cu-MOF 10–3500 2.4 10
Sodium o-
phthalatocuprate/GCE 1–3000 0.26 This work

This difference in sensor properties of the compounds under study cannot be explained
by the difference in copper–ligand bonding: both metal–oxygen distances and stretching
force constants do not differ so much. According to [9,30], the reaction mechanism involves
two steps:

Cu(II) − MOF + OH− = Cu(III) − MOF + e− + H2O (1)

Cu(III) − MOF + Glucose = Cu(II) − MOF + Glucolactone, (2)

so, the availability of copper ion for nucleophilic attack can play a crucial role. Probably, the
major factor affecting the sensor properties of these compounds is more steric hindrance
of copper ion in compounds II and III, where the distance between the copper ion and
non-coordinated oxygen ion of phthalate ligands is approximately 10% less compared to
that in I. As for the difference in properties of potassium and ammonium salts that can
result from a different kind of bonding between outer-sphere cations and the ligand—an
electrostatic one in II and hydrogen bonding in III. The formation of hydrogen bond
networks should prevent the penetration of the analyte into a complex and its interaction
with the metal center that determines the activity according to the established mechanism
of glucose oxidation on copper-based electrode materials [34,35].

Furthermore, the determination of AP and neurotransmitter DA in binary mixtures was
studied using CV and differential pulse voltammetry techniques (DPV). Figure 7a shows cyclic
voltammograms of the I/GCE electrode in 0.1 M PBS (pH 7.4); as one can notice, there are
two distinct peaks around 0.23 V and 0.49 V corresponding to the oxidation of DA and AP,
respectively (Figure S2). DPVs for AP and DA at the sodium di-o-phthalatodicuprate–based
electrode was obtained by changing the concentration of DA with a fixed concentration of
AP (Figure 7b), and vice versa (Figure 7d). The current responses of both substrates increase
linearly with their concentrations (Figure 7c,e). The linear regime of AP detection is provided
within the range of 3–1500 µM, while there are two linear regions of DA concentration (3–60
µM and 60–500 µM). The calculated limits of detection were equal to 0.95 and 1.17 µM for DA
and AP, respectively (LOD = 3S/b. Here, S is the standard deviation of ten blank measurements
and b is the calibration curve slope). The analytical curve equations were found to be:
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Figure 7. (a) CV of disodium di-o-phthalatocuprate–based electrode in background electrolyte and in
presence of DA and AP; (b) DPVs of I/GCE recorded in mixture containing 50 µM AP with different
concentrations of DA; (d) 20 µM DA with different concentrations of AP; the linear relationship
between peak currents and the concentrations of (c) DA and (e)AP.

DA:
(I) I (µA) = 0.589 [DA] (µM) + 7.669

(II) I (µA) = 0.096 [DA] (µM) + 38.700

AP:
I (µA) = 0.017 [AP] (µM) + 2.951

4. Conclusions

In summary, the crystal structure of diammonium di-o-phthalatocuprate(II) dihydrate
was determined for the first time. This structure is nearly identical to that of dipotassoum
di-o-phthalatocuprate(II) dihydrate, which points to the domination of ionic size effect
onto possible hydrogen bond formation in alkaline o-phthalatocuprates. The vibrational
spectroscopic and force field study of disodium, dipotassium and diammonium di-o-
phthalatocuprates has shown the minor dependence of copper–ligands in intraligand bond
strengths on outer-sphere cations in contrast to the complexes with monoatomic ligands
that can be explained by rigid polymeric structure of di-o-phthalatocuprates under study.
Synthesized alkaline di-o-phthalatocuprates, especially disodium di-o-phthalatodicuprate,
exhibit electrocatalytic activity towards a range of substrates, among them Gl, DA and AP.
Better sensor properties of disodium di-o-phthalatocuprate are determined by less steric
hindrance of copper ions in this compound compared to potassium and ammonium salts
that enable the attack of the metal center by incoming ligands. The choosing of proper
analytical methods and the optimisation of techniques allow one to fabricate universal
electrode material for the selective detection of biosubstances of great importance with
decent sensitivity.
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