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ABSTRACT Viral and bacterial pathogens can be transmitted through direct contact with contaminated
surfaces. Efficient decontamination of contaminated surfaces could lead to decreased disease transmission,
if optimized methods for detecting contaminated surfaces can be developed. Here we describe such a method
whereby thermal tracking technology is utilized to detect thermal signatures incurred by surfaces through
direct contact. This is applicable in public places to assist with targeted sanitation and cleaning efforts to
potentially reduce chance of disease transmission. In this study, we refer to the touched region of the surface
as a “touch-point” and examine how the touch-point regions can be automatically localized with a computer
vision pipeline of a thermal image sequence. The pipeline mainly comprises two components: a single-frame
and a multi-frame analysis. The single-frame analysis consists of a Background subtraction method for image
pre-processing and a U-net deep learning model for segmenting the touch-point regions. The multi-frame
analysis performs a summation of the outputs from the single-frame analysis and creates a cumulative map
of touch-points. Results show that the touch-point detection pipeline can achieve 75.0% precision and 81.5%
F1-score for the testing experiments of predicting the touch-point regions. This preliminary study shows
potential applications of preventing indirect pathogen spread in public spaces and improving the efficiency
of cleaning sanitation.

INDEX TERMS Image processing, health and safety, photothermal effects, sanitary engineering.

Clinical and Translational Impact Statement: The developed touch-point detection system aims to enable
efficient, targeted touch-point cleaning efforts and the completeness of sanitation in public spaces to reduce

the spread of viruses.

I. INTRODUCTION

Human infections can be caused by viruses and bacterial
pathogens that are transmitted through contaminates surfaces
[1], [2]. Previous research has shown that the virus particles
can stay at the surfaces for a relatively sufficient time and this
indicates the surface can play important role for viral spread-
ing [3], [4]. For example, in the global pandemic of coron-
avirus disease 2019 (COVID-19), the virus is most commonly
transmitted through respiratory droplets exchanged between
people, but a secondary means of transmission for the virus is
through contact with contaminated surfaces [5]. As with other
transmissible diseases, respiratory droplets emitted from a
contagious carrier can land on surfaces that are touched by

other people and can lead to infection through the eyes,
mouth, or respiratory system. Evidence shows that the virus
can live on the surface of skin for about 9 hours [6], about
5 times longer than the common influenza virus, and can exist
for days on common surfaces [7]. In public and shared spaces,
where surfaces are frequently touched by multiple people,
risk of transmission can be reduced with sufficient surface
sanitation [8]. However, exhaustive cleaning efforts are not
always attainable due to the cost, time, and workforce lim-
itations. The ability to determine which surfaces have been
touched could dramatically improve the efficiency of targeted
touch-point cleaning efforts and improve the completeness
of sanitation in public spaces (e.g classroom, office, airports,
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FIGURE 1. Touch-points at the surface with two touching patterns: bare
touching and wearing gloves. Touch-points are detected through their
thermal signatures that would decay over time.
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clinical settings) to reduce the spread of viruses. This paper
addresses this challenge through computer vision algorithms
with thermal imaging to detect and track touch-points.

A. THERMAL SIGNATURES OF TOUCH-POINTS

A salient feature of the touch-point is the thermal signature,
which is an indication of heat transfer through contacted
surfaces. When a person touches a surface (e.g. a table),
heat is transmitted into the surface leaving behind a thermal
signature. This process is a result of conductive heat transfer,
which is affected by the temperature difference among the
person, the surface and the surrounding air, the material
thermal properties and the time of contact [9]. The resulting
thermal signature can be seen as a ‘hot spot’ in a thermal
camera image. Over time, the heat dissipates into the surface
or surrounding air and the thermal signature disappears. For
regular surface materials such as wood, metal, fabric and
ceramics, the thermal signatures can leave at the surface for
several seconds (Fig. 1).

The thermal image consists of an array of pixels encoding
relative temperature, with greater pixel intensity denoting a
higher temperature value. However, a single image does not
contain temporal information, which can be used to distin-
guish between transient thermal signals (e.g. touch-points)
and persistent thermal signals. A video encodes both the
spatial and temporal information of the contacted surface and
hence it is capable of detecting a touch-point with greater
accuracy.

Analysis of the thermal video is similar to that of the
standard digital video, except there is only one channel of
information per pixel, i.e. the pixel intensity, much like a
grayscale image. The touch-point detection requires both spa-
tial (intraframe) and temporal (interframe) feature extraction.
In particular, we are interested in extracting the feature of the
residual thermal heat (or thermal signature) that remains after
a surface has been touched, assuming that the surface is cooler
than the person touching it and that the touch imparts heat
to the surface. Heat signature has been employed to monitor
hand gestures on interactive surfaces [10] and to track which
objects a dementia patient has recently touched in the absence
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of their caregiver [11]. Similar to these studies, this work
seeks to detect thermal signatures from thermal videos.

B. THERMAL VIDEO PROCESSING TECHNIQUES

In a thermal video, the human subject and the touch-points
are both thermal signatures that are transient and may be
moving, compared to the background image which is rela-
tively stationary and does not change temperature quickly.
The background image shows a very uniform pixel intensity
over time, since most of the objects have a temperature close
to the environmental temperature in a room. Therefore, one
method of separating a signal of interest (i.e. touch-point,
human subject and other background objects) is to perform
Background subtraction [12]. Background subtraction aims
to detect touch-point regions based on the difference between
the current and the reference image, which has been widely
used in visual analysis for human activities [13], [14] and
segmenting moving objects for video analysis [15], [16].
More importantly, Background subtraction is capable of seg-
menting the pixel regions with different intensity from the
background image, and hence the objects that are moved or
touched can be identified.

In this study, the main task is to distinguish between the
foreground (human subject) and ultimately any changes to the
background (e.g. touch-points) that occur, because the human
subject shows similar temperature distributions compared
with the touch-point. However, it is difficult to model this
process, since the physical interaction for a single contact
is related to various factors such as the time of contact, sur-
face temperature, ambient temperature and etc. This complex
physical interaction makes it difficult to design a precise fea-
ture extractor and a robust classifier for touch-point predic-
tion. Therefore, we consider the detection of touch-points as
a semantic segmentation problem and employ deep learning
tools for this computer vision task.

C. DEEP LEARNING IN THERMAL IMAGE SEMANTIC
SEGMENTATION

Classification of the touch-points and human subjects can be
modelled as a semantic segmentation problem, which aims to
assign a label to every pixel of an image as an indication of
a specific category. Semantic segmentation is a well-studied
problem and researchers have proposed various deep learning
model architectures in this field [17], [18]. Three of the most
powerful networks for semantic segmentation are U-net [19],
FCN [20] and SegNet [21], which leverage the benefits of
convolutional neural networks (CNN) to formulate the mod-
els. For semantic segmentation, FCN and SegNet are usually
initialized with a pre-trained model (e.g. Vgg16 model [22])
to speed up the training process, which can efficiently extract
the image features and adapt to new computer vision tasks
with less training data [23]. However, the task of touch-point
detection is very different from these pre-trained models.
If the FCN or SegNet models were to be trained from scratch,
the model would still require a large amount of data, while the
proposed study can only provide a small training dataset since
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it is a new dataset, namely thermal videos with touch-point
events. Compared with FCN and SegNet, U-net has the
advantages of high computational efficiency, trainable with
small datasets, and fewer model parameters.

In summary, most of the related studies focused on the use
of thermal signature for various applications such as surface
interaction in human computer interface [10], material detec-
tion through thermal signatures [24], [25] and touch gesture
detection [26]-[28]. None of these studies addressed the task
of using a thermal camera for touch-point region detection.
To the authors’ knowledge, this is the first study to achieve
touch-point detection by using thermal videos.

This paper is organized as follows. Section II presents
a computer vision pipeline that comprises a single-frame
analysis of using U-net for touch-point segments and a
multi-frame analysis of creating a cumulative probability
map of the touched regions; Section III shows the exper-
imental results; Section IV analyzes the performance of
the proposed method and discusses the applications of this
technology.

Il. METHODS

A. TERMINOLOGY AND ASSUMPTIONS

1) TERMINOLOGY

The following terminologies are defined below for clarity
throughout the paper:

o Human-subject: A person in the frame of the thermal
image and the source of the heat for the touch-points.
The Human subject is usually moving in the thermal
video.

o Touch-point: A connected pixel region that exhibits
a higher pixel intensity (i.e. temperature) compared
with the background object at the same pixel loca-
tions. The touch-point is a transient and time-decaying
target.

o Background: The pixel regions in the frame different
from the “Touch-point” and “human-subject” and gen-
erally refer to all surfaces in the environment that are
unchanging, both thermally and spatially.

2) ASSUMPTIONS

Touch-point prediction is a complex process that is affected
by various factors such as moving objects in the image, tem-
perature difference and a variety of thermal targets. Hence,
we make the following assumptions and simplifications for
this study:

o The background objects (other than touch-points and
human-subjects) are static and should not be moved.

o The human subject is warmer than the room temperature
and the touched surfaces. The heat can be imparted to the
surface during contact, creating a touch-point of higher
intensity in the thermal image. This represents the vast
majority of use cases, particularly for sanitation related
efforts, since surfaces in a room are usually at ambient
room temperature.
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(a). Thermal camera (b). Touch-point (red region)

FIGURE 2. (a): Thermal camera for data collection. (b): Thermal image
includes a touch-point (red region) and a human-subject.

B. DATA COLLECTION

In preparation for algorithm development, we gathered ther-
mal videos from several representative environments and sce-
narios in which touch-points are commonly generated. The
data was collected in four locations: a shared 3D printing
studio, a common office room, a conference room, and a lab-
oratory space configured to mimic a clinical exam room. This
ensured that the videos contained touch-point events for a
variety of lighting conditions and surface material types. The
video was collected with the FLIR SC640 thermal camera
(FLIR Systems, Arlingong, VA) that has an IR image reso-
lution of 640 x 480 pixels at 30 frames per second (fps) and a
thermal sensitivity of 30 mK at room temperature (Fig. 2 (a)).
This camera setting can sufficiently record the change of
thermal signatures and automatically adjust the pixel intensity
to match the temperature range of 20 to 35 degrees Celsius.

A total of 30 videos, each about 60 seconds long, were

collected and each contained about 1 to 5 touch-point events.
The recorded videos were converted to image sequences and
re-sampled down to 15 frames per second for processing.
In each video, the human subject intentionally created several
touch-points on objects in the scene. The touch-points were
clearly visible immediately following the touch event and
some reference images were manually selected as represen-
tations of the touch-point regions in the video. The criteria
for choosing the reference image was that it contained at
least one touch-point region and one human subject, and that
the human subject was not occluding the touch-point. This
standard ensured that the features of the touch-points and
the human subject were included in the reference images.
In summary, we split the 30 videos into two datasets based
on the ratio of 70/30:

o The training dataset included 21 thermal videos. Each
video was first converted to an image sequence. The
reference images were selected from these images to for-
mulate a dataset for U-net model training and validation.
In addition, the evaluation of the touch-point detection
pipeline was also conducted in this dataset and the input
was the complete image sequence for each video.

o The testing dataset included 9 thermal videos. This
dataset excluded from model training and only used
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(a). Raw thermal image (b). Background subtraction

FIGURE 3. (a): The image before Background subtraction. (b): the image
after Background subtraction. The red region is noting the touch-point
feature. Except for the touch-point and human-subject, the other pixel
regions show very low pixel intensity after Background subtraction.

for the evaluation of the touch-point detection pipeline
performance after training.

C. IMAGE PREPROCESSING

The image preprocessing steps are applied to all the images
from the thermal videos. Each frame is a grayscale image
with pixel intensities ranging between 0 and 255. The videos
were collected in a room temperature around 25 degree
Celsius and each pixel intensity was scaled to this tem-
perature range. In order to amplify the signals of interest
(i.e. touch-points and human-subject), each frame was nor-
malized by pixel-wise subtraction of the background image
(i.e. Background subtraction), which was captured initially
when no human-subject occurs in the scene. Fig. 3 illustrates
the difference of the raw image and the image after Back-
ground subtraction.

Background subtraction is capable of filtering the pixel
regions with low intensity changes, thus highlighting the
differences, of which a touch-point is an important difference
to detect. The pixel regions being touched or blocked by a
human-subject will be highlighted in the frame, as shown
in Fig. 3. It is noted that the variations of background image
will affect the touch-point prediction when some background
objects are moving periodically. This is because the “mov-
ing object” will cause very unpredictable changes of pixel
intensity, and makes it difficult for touch-point detection.
Additionally, if a background image is captured when a
human object is in the scene, the variation caused by human
movement will inevitably affect the touch-point prediction.
However, these problems require a more complex design of
the computer vision method and are out of scope of this study.
As proof of concept, we have made an assumption that only
static background objects are considered.

D. TOUCH-POINT AND HUMAN-SUBJECT FEATURES

After preprocessing each frame, the next step is to iden-
tify the signals of interest between touch-points and human
subjects. The difference of touch-point and human subject
can be summarized into three categories: pixel intensity,
shape of the tracked object and temporal intensity changes.
Since different parts in the human body can show various
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(b). Average pixel intensity of
the spot pixels at Region B

(a). Average pixel intensity of
the spot pixels at Region A

(d). Pixel Observation spots at
Region B

(c). Pixel observation spots at
Region A

FIGURE 4. Average pixel intensity at the observation spots. Fig. (a) and
Fig. (b) describe different touch-point events. A: Subject enters to the
frame. B: Touch-point starting. C: Pixel intensity decays. D: Subject enters
to the frame again and the decay of pixel intensity is interrupted. Fig.

(c) and Fig. (d) show the corresponding observation spots (red dots)

in Fig. (a) and Fig. (b), respectively.

temperatures ranged from 25 to 35 degrees Celsius, the pixel
intensity between the touch-point and the human subject is
overlapped and thus cannot provide valuable information for
segmentation. The main difference between the touch-point
and human subject signals is the spatial relation between
pixels. The touch-point is usually a small pixel region while
the human subject is a larger one. These features can be easily
learned by the convolutional layers in the U-net model.

There are usually three distinct periods or events by track-
ing temporal intensity of a single pixel in a thermal video.
Fig. 4 shows the average pixel intensity of the observation
spots in the same touch-point region. In Fig. 4 (a), Event
A shows that a subject (with higher temperature) enters the
frame and block the spot, resulting in the rise of pixel inten-
sity; Event B shows that a subject touches surface and the
pixel intensity increases; Event C shows that a subject leaves
the frame and the pixel intensity begins to decrease, because
the heat source (human-subject) leaves the surface and the
surrounding air has lower temperature. The magnitude of the
pixel intensity between event A and B are similar, which
makes a simple threshold-based image segmentation difficult
to be applied. Furthermore, the data between the 1 to 100"
frames (in Fig. 4 (a)) demonstrates a non-touching period,
where the pixel intensity remains at a stable value without
temperature changes. Event C shows that even during the
decay period after the touching behaviours, the pixel intensity
is higher than the background pixel intensity. The thermal
signature can still be visually detected in the thermal video
for a relatively long time.
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FIGURE 5. The touch-point detection pipeline. The blue box shows a single frame analysis using the U-net deep learning model. The U-net outputs are
three segments (Human subject, Touch-point and Background). The yellow box shows the multi-frame analysis of summing the touch-point segments
from the U-net outputs, which can formulate a cumulative probability map for touch-points prediction. T;, T,, T3 and T, are the notation of different

time steps in the video (not in order). “U-net semantic segmentation” (in Single-Frame analysis) refers to the generic deep learning model in [19].

Another problem is that human subject moving in the
thermal video will greatly affect the temporal feature. It is
likely that the human subject will occupy a pixel position at
the observation spot. The pixel intensity will first increase for
a period of time and decay again. The effect of the human
subject is usually unpredictable and a feasible solution is
to use the semantic segmentation method to segment the
human target in the image frame and highlight the touch-point
regions. For example in Fig. 4 (b), Event D denotes a situation
where the human subject accidentally moves close to the
camera and blocks the view of the pixel spot, resulting in
two intensity peaks. This unpredictable behavior will greatly
change the temporal feature of the pixel intensity and makes
it difficult to detect the touch-point by model-based methods.

In summary, the analysis of temporal pixel features indi-
cates the complexity of the touch-point detection and the
difficulty of using model-based methods, and this motivates
the use of deep learning tools, such as the U-Net model, for
touch-point region segmentation.

E. TOUCH-POINT DETECTION PIPELINE

This section describes a touch-point detection pipeline that
consists of a single-frame and a multi-frame analysis.
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The single-frame analysis comprises a Background subtrac-
tion for preprocessing and a U-net deep learning frame-
work for touch-point segmentation. U-net consists of an
encoder-decoder architecture that can be used to capture
image features and perform precise localization based on the
convolutional operation [19]. Based on the unique features
between touch-point and human subject signals, U-net is
capable of distinguishing different pixel regions with vari-
ous pixel intensity distributions and classify the segments
appropriately. Once trained, it can identify the touch-point
feature apart from the human subject in a single frame. For
the multi-frame analysis, the outputs from the U-net based
single frame analysis can be summed across the entire video
image sequence to achieve our final touch-point prediction.
The touch-point detection pipeline is summarized in Fig. 5.
Specifically, given an image sequence of N frames from

a thermal video referred as 7 = {l1, >, -, Iy}, the goal
is to train a function that maps / to an image mask /"% to
show the pixel-wise location of the touch-points. The relation
between /; and I can be represented as:

N
Imask :fthresh(ZfUnet(Ii —1n)) M
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(a) Touch-point Segment

(b) Human subject segment

FIGURE 6. Manual labelled touch-point and human-subject.

where fyner(Ii — Ip) is the i-th U-net output with the
touch-point semantic label after the Background subtraction
between the current frame /; and the background image Ij.
va Sfunet(Ii — Ip) is the summation of the touch-point seg-
ments from each U-net output. This can be regarded as a
“confidence’ score of a touch-point label or a duration time
for a single spot observation. fiesn 1S used to filter the pixels
with small intensity values, i.e. less likelihood of being a
touch-point. The threshold of fi.s, is set as 50 pixels for
precise detection and this shows that the thermal signature of
the touch-point should stay at the surface at least 3.3 seconds.
Finally, "% is the final output and each pixel location
denotes the binary classification of the touch-point.

1) LABELLED DATASET FOR U-NET

The reference images were selected from the image
sequences created by the 21 thermal videos. This set of
images formulated a training and validation set for U-net
evaluation, which was split with a ratio of 70/30 per standard
practice [29]. A total of 90 images formed a basic dataset and
27 images were separately used for the validation. Although
this was a relatively small dataset, these reference images
encoded the features of touch-points and human-subjects
well, and were manually labelled for semantic segmentation,
as shown in Fig. 6. The labelling procedure required a precise
pixel-wise segmentation by observing the difference of the
pixel intensity in the image after Background subtraction.

2) U-NET TRAINING

A generic U-net in [19] was implemented with Pytorch and
trained on a GeForce RTX 2070 SUPER Graphics Cards. The
cross-entropy was used as the loss function for multi-classes
semantic segmentation [19]. The U-net was trained with
0.0005 learning rate and 40 epochs. The output of U-net is
a tensor with shape H x W x L, where H and W represent
the size of the image and L is the number of semantic labels.
The labels for touch-point, human subject and the background
can be acquired from the 3 x 480 x 640 output tensor map
in U-net [30]. The U-net model weights were selected at the
epoch with the optimal touch-point prediction performance.
An example of U-net segmentation is shown in Fig. 7.
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(a) Image: Background subtraction (b) Image: Semantic segmentation

FIGURE 7. (a): The image after Background subtraction. (b): The result of
semantic segmentation. Red segment denotes the human subject. Green
segment denotes the touch-point. Blue segment denotes the background.

SFLIR

FOV 24 Dist = 0.5 Trefl = 20.0 £ = 0.98

(a). Labelled touch-points
with bounding box

(b). Green: Predicted touch-points
Red: Labelled touch-points

FIGURE 8. (a): Original image with touch-point bounding box labels.
(b): Predicted (green) and labelled (red) touch-point regions.

3) CUMULATIVE OPERATION IN IMAGE SEQUENCES

The output of fyue:(I; — Ip) is a semantic map where each
pixel value is 0 (background), 1 (touch-point) and 2 (human-
subject). Therefore, va Sfunet(Ili — Ip) can be defined as a
summation of all the touch-point segments from each image.
This cumulative operation can count the time of duration
for the touch-point, i.e. how long a touch-point can last at
a specific location.

F. EVALUATION METRIC FOR TOUCH-POINT

DETECTION PIPELINE

Each frame in a video is processed through the touch-point
detection pipeline and the output is an image mask that
shows the regions of contact. To evaluate the pipeline, all
the touch-points in each thermal video are labelled, as shown
in Fig. 8 (a). It is noted that the labelling target is a ‘“‘bounding
box” instead of a segment, since the predicted result for the
pipeline is a binary image with multiple small touch-point
segments that can be grouped in a larger region. Instead of
labelling the segments in the image, the ‘“‘bounding box”
can provide more effective information for cleaning and
sanitation.

The predicted touch-point segments are usually not com-
plete regions, and some touch-points are localized closely
but not connected mutually. The effective touch-points are
defined based on the following criteria:
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c,: New center
¢q: Region 1 center
C,: Region 2 center

(a). The small segment is
removed (Area < T;)

(b). Two segments are grouped
since |[c; — 3] < T2

¢q: Region 1 center
¢,: Region 2 center

Cpred: Predicted center
Cgy: Labelled center

(c). Two segments are grouped
since c; is also located at
the region of ¢;

(d). Two regions are matched
since [|cgt — Cpredl| < T3

FIGURE 9. Criteria of effective touch-points.

1) REMOVE SMALL REGIONS

The area of an effective touch-point should be greater than
a threshold, in order to differentiate other small regions that
are caused by incorrect U-net predictions or sensor noise. The
region with area less a threshold r; = 100 (unit: pixel?) is
removed from the list of effective touch-points (Fig. 9 (a)).

2) CRITERIA OF A UNIFIED CLUSTER REGION

The result of I”** includes a lot of small pixel regions
that are classified as touch-points. However, most of these
regions belong to the same touching region and this makes
the grouping necessary. The centroid of each touch-point seg-
ment is computed by averaging the pixel coordinates inside
the region. The regions with centroids less than the threshold
7> = 30 (unit: pixel) are grouped to formulate a new region.
The new touch-point includes a rectangular area whose width
and length are computed by the maximum and the minimum
pixel coordinates within the region (Fig. 9 (b)).

It is likely that two bounding boxes on separate
touch-points will overlap, since they are usually labelled to
be slightly larger than the touch-points themselves. If one of
the region centers is located at the region of another region,
the two touch-points are grouped as one region (Fig. 9 (c)).

3) CRITERIA OF SUCCESSFUL MATCHING

Given a predicted region and a labelled region, with cor-
responding touch-point centroids calculated, a successful
match is defined when the centroid distance between the two
regions is smaller than a threshold 73 = 30 (unit: pixel),
as shown in Fig. 9 (d).

Ill. EXPERIMENTS AND RESULTS
A. U-NET MODEL PERFORMANCE

The Dice similarity coefficient is used to evaluate the U-net
performance for each epoch. Dice refers to two times the
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FIGURE 10. U-net model performance. (a): The training and validation
loss of the U-net model. (b): The training and validation accuracy
measured by average DICE coefficients. “val” denotes the validation.

(a) Thermal image-1 (b) Thermal image-2

(c) Thermal image- 3

(e) U-net segment 2 (f) U-net segment 3

(d) U-net segment 1

FIGURE 11. The result of U-net single image analysis. (a), (b) and (c) are
the thermal images after Background subtraction. (d), (e) and (f) are
U-net segmented images. Different colors indicate different semantic
labels. Red: subject foreground, Green: Touch-point, Blue: Background.

overlapping area divided by the total pixels of the two regions,
which is measured between the predicted result and the
ground truth [31]. A higher Dice coefficient indicates a better
segmentation performance.

Fig. 10 (a) illustrates the decrease of training and validation
loss along epochs, which indicates the successfully training
of the U-net model. Fig. 10 (b) illustrates the average Dice
coefficient of the touch-point and human-subject calculated
in training and validation datasets. The mean Dice for the
validation data begins with 0.50 and increases to around
0.80 at the third epoch. The average Dice finally stabilizes
at around 0.8 for the rest of the epochs. Even with a small
training set, the U-net can quickly learn to segment the
human-subject based on the features of the pixel intensity
(relative to background) and the unique shape of the contour.

The U-Net from the 36” epoch was chosen for the
touch-point detection pipeline because of the best validation
performance. At this epoch, the average Dice coefficients
for touch-point and human-subject prediction are 67.1%
and 86.4%, respectively. Fig. 11 illustrates the examples of
U-net segmenting touch-points and human-subjects in several
frames of the thermal videos.

B. EVALUATION RESULTS OF THE TOUCH-POINT
DETECTION PIPELINE

For system testing, the touch-point detection pipeline is
evaluated on both the training (21 videos) and testing sets
(9 videos). The output of the detection pipeline is an image
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Reference Image Ground Truth Predicted Result

Map of Summation Map of Touch-points Color Image

FIGURE 12. Five examples of touch-point detection in different scenes. Column 1: the reference thermal images with the touch-point features (only
for visualization); Column 2: the ground truth of the touch-point regions; Column 3: the predicted touch-point regions; Column 4: the map of
summation refers to the summation of the touch-point segments; Column 5: the binary mask of the summation map after filtering the small intensity
pixels (low duration time); Column 6: the color image for visualization (the thermal image and the color image are not aligned). Particularly, row 2,

3 and 4 shows the special examples where some objects in the frame were moving during the video collection, which were also classified as the

touch-points.

mask that shows the touch-point segments, which are grouped
to formulate the rectangular regions. Each detected region
is assigned with a label (1 or 0) as an indication of the
touch-point detection. The ground truth information and the
predicted results can be used to create a confusion matrix.
Since the untouched regions cannot be labelled in this study,
the definitions of True Positive (TP), True Negative (TN),
False Negative (FN) and False Positive (FP) are slightly
different from the generic definition of a classification
model:

o TP (True positive): Successful match between the pre-
dicted and labelled touch-point.

o TN (True negative): Successful match between the pre-
dicted un-touch-point regions. This is not measured in
this study as the untouched regions cannot be labelled.
In fact, all the pixel regions that are not labelled
can be considered as TNs and this should not be
counted.

« FN (False negative): The labelled touch-point exists but
not correctly predicted by the method. High FNs indi-
cates a greater risk event as many touch-points are not
predicted by the system.
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Predicted labels

True labels True labels
Touch- | Non Touch- Touch- | Non Touch-
point (+1) | point (-1) point (+1) | point (-1)
o)
Touch- _ _ @ | Touch-point _ _
point (+1) TP=74 FP=18 o (+1) TP=33 FP=11
el
pd]
Non Touch- _ _ 5 | Non Touch- _ _
point (-1) FN=8 TN=n/a 2| point (1) FN=4 TN=n/a
(a) Training dataset (b). Testing dataset

FIGURE 13. Confusion matrix of the touch-point detection model. The
true negative (TN) is not reported since the cases of TN are the
non-matched touch-points regions that cannot be counted for this study.

o FP (False positive): The predicted touch-points exist

but the labels does not. High FP ratio is an indication
of many regions being classified as touch-points but
actually not being touched.

Fig. 13 illustrates the confusion matrix for the touch-point
prediction. Since the use case for this system is for targeted
cleaning, clearly FNs should be minimized and FPs are less
of a problem. For both datasets, the TP is much higher than
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T=18s

T=20s T=25s

T=30s T=35s T=40s

FIGURE 14. The changes of thermal images, segmented images and cumulative probability maps at different time steps. The first row shows the thermal
image sequence. The touched surface shows higher pixel intensity compared with the non-contacted surfaces. The second row illustrates the segmented
touch-points at each time step. The third row shows the cumulative probability map of the touch-point segments. The color intensity indicates the time

of duration for the touch-point detection.

TABLE 1. Statistical measurements of the touch-point prediction model.

Training dataset  Testing dataset

Precision 80.4% 75.0%
F1-score 85.1% 81.5%
FNR 9.8% 10.8%
FDR 19.6% 25.0%

FP and FN, and FP is higher than FN. This indicates that the
model can predict the touch-points with good precision and
is more prone to FPs rather than FNs. In addition, the five
example results in Fig. 12 also validate the conclusion that the
proposed method tends to predict more touch-point regions
that are actually not labelled, i.e. high False positive ratio.

Table. 1 summarizes the statistical measurements of
the touch-point prediction model including the precision,
Fl-score, False negative rate (FNR) and False discovery
rate (FDR). Precision refers to the percentage of the correct
touch-points out of the total predicted cases. F1 score is a
weighted average of precision and recall (True positive rate).
These two measurements are commonly used to measure the
effectiveness of our model.

IV. DISCUSSION

For touch-point detection, the precision of 80.4% (train-
ing) and 75.0% (testing) indicate that the proposed system
can robustly predict touch-point regions with a relatively
good success rate. The achieved precision of the touch-point
detection can demonstrate the feasibility of using thermal
videos for touched regions tracking. In addition, the F1-scores
of 85.1% (training) and 81.5% (testing) suggest a stability of
the pipeline in predicting touch-point regions. It is noted that
the False discovery rates (FDR) for training (19.6%) and test-
ing (25.0%) are about twice as high as the false negative rates
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(FNR). This indicates that the proposed approach is more
prone to false positive than false negative. This is preferable
from a sanitation control standpoint, since the system can find
the regions that matches the ground truth information, as well
as more regions that are not labelled. A low ratio of false
negative detection validates the feasibility of our system in
touch-point detection, with a small probability of missing a
touched region.

The U-net evaluation result shows that the model can
achieve 67% average Dice coefficient for touch-point seg-
mentation. This indicates that a U-net model with relatively
low Dice coefficient can still achieve 75% precision for the
testing experiments of the touch-point detection. High FPs
and low FNs validates this founding because the U-net is
prone to classifying all the moving objects and targets with
high intensity changes as touch-points. Nevertheless, more
FPs is much better than more FNs since this shows a lower
probability of missing touch-point regions.

A. LIMITATIONS

This study models the touch-point detection problem as a
semantic segmentation task and only uses the spatial fea-
tures (e.g shape of the segments) without explicit consid-
eration of the temporal features, other than aggregating
touch-points over the length of the video. This summation of
all the resulted image mask from the single-frame analysis
(Fig. 5.(a)) can only use part of the temporal features in
the video and more features should be extracted based on
the relations among consecutive images. Furthermore, mod-
elling the thermal signature is another important problem,
and studying the effects of temperatures among the contacted
objects, material thermal property and the time of contact
will be beneficial for developing a more accurate touch-point
detection method.
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(a). Thermal Image

(b). Touch-point Map

(c). Color Image

FIGURE 15. Thermal to color mapping after rough registration. (a): Raw thermal image, (b). Final mask showing touch-points.
(c). Logged surface touch-points (red regions) aligned with the color image to delineate the cleaning targets.

Though deep learning provides powerful tools for com-
puter vision problems, the physical modelling can be useful
for designing robust feature extraction metrics and classifiers.
The temporal features can be easily measured by the thermal
videos and this can provide guidance for better machine
learning approaches. The future work should focus on the
temporal feature extraction and using machine learning tools
to develop a robust touch-point classifier.

B. APPLICATIONS

1) APPLICATION 1: TOUCH-POINT RISK ASSESSMENT BY
THE TIME OF CONTACT

One important application is to count the time of duration
for the touch-point, with longer time assumably correlating
with high probability of infection transmission to or from the
surface. For example, Fig. 14 shows three image sequences of
the thermal images, the touch-point segments and the cumula-
tive probability map of the touch-point. With increasing time,
the confidence of the touch-point detection can be described
by the cumulative probability map and the users can assess the
risk of virus transmission by observing the color intensity.

2) APPLICATION 2: TOUCH-POINT VISUALIZATION

Another useful application of the touch-point detection
pipeline is to improve the efficiency of cleaning and sanitation
in shared spaces. This technology can notify the cleaning staff
of high-risk surfaces that are in need of cleaning, which can
be achieved through calibration of the thermal camera and
the color camera to create a thermal-to-color registration. For
this to be user-friendly, the results of the touch-point regions
can be displayed in a color image. For example in Fig. 15,
the touch-points regions can be registered to the color image
for visualization.

V. CONCLUSION

This paper introduces a novel approach to detect the touched
positions at contaminated surfaces in order to prevent indi-
rect viral transmission. We propose a touch-point detection
pipeline by using a thermal image sequence, which consists of
a single-frame analysis of touch-point segmentation with the
U-net deep learning framework, and a multi-frame analysis
of cumulative touch-point segments. The experiments were
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conducted and evaluated from a new dataset of 30 thermal
videos, with 21 for U-net training and validation, and 9 videos
keeping separate for the test of the touch-point pipeline. The
result shows a 75.0% precision and a 81.5% F1-score for
the testing experiments of the touch-point detection. Future
work includes improving the touch-point detection pipeline
by considering the temporal features and collecting more data
for model training. This study can show potential applications
of preventing the indirect spreading of the viral and bacterial
pathogens by detecting and reporting the touched surfaces.
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