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African swine fever (ASF) is an emerging viral contagious disease affecting domestic pigs

(DP) and wild boar (WB). ASF causes significant economic damage to the pig industry

worldwide due to nearly 100% mortality and the absence of medical treatments. Since

2019, an intensive spread of ASF has been observed in the Russian Far East region.

This spread raises concerns for epidemiologists and ecologists given the potential threat

to the WB population, which is an essential member of the region’s wild ungulates and

provides a notable share of food resources for predatory species. This study aims to

determine the genotype of ASF virus circulating in the region, reveal the spatio-temporal

patterns of the ASF outbreaks’ emergence, and assess the potential reduction of the

regional fauna because of expected depopulation of WB. The first historical case of ASF

in the study region was caused by an African swine fever virus (ASFV) isolated from DPs

and belonging to Genotype 2, CVR1; IGR-2 (TRS +). Sequencing results showed no

significant differences among ASFV strains currently circulating in the Russian Federation,

Europe, and China. The spatiotemporal analysis with the space-time permutations model

demonstrated the presence of six statistically significant clusters of ASF outbreaks with

three clusters in DPs and one cluster in WBs. DP outbreaks prevail in the north-west

regions of the study area, while northern regions demonstrate a mixture of DP and WB

outbreaks. Colocation analysis did not reveal a statistically significant pattern of grouping

of one category of outbreaks around the others. The possible damage to the region’s

fauna was assessed by modeling the total body mass of wild ungulates before and after

the wild boars’ depopulation, considering a threshold density of WB population of 0.025

head/km2, according to the currently in force National Plan on the ASF Eradication in

Russia. The results suggest the total mass of ungulates of the entire study region will likely

decrease by 8.4% (95% CI: 4.1–13.0%), while it may decrease by 33.6% (19.3–46.1%)

in the Primorsky Krai, thereby posing an undeniable threat to the predatory species of

the region.
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INTRODUCTION

African swine fever (ASF) is among the most dangerous diseases
of swine and is known to cause considerable damage to pig
production in many countries worldwide (1–5).

The ASF virus (ASFV) belongs to the Asfarviridae family and
affects both domestic pigs (DP) and wild boars (WB). At present,
the genetic characteristics of the ASFV are represented by 23
genotypes associated with geographical locations, characterizing
the complexity of the virus epidemiology (3, 6–9). ASF epidemics
currently occurring in Europe can be treated as two clusters
of outbreaks. One of the clusters is located in Sardinia (Italy),
where the disease was registered in 1978 and is represented by
ASFV strains belonging to genotype 1 (10). The second cluster is
widespread in North-Eastern Europe and the Russian Federation
caused by strains of the ASFV belonging to genotype 2 (4). The
latter is highly virulent, causing acute disease and resulting in
mortality rates of 94.5–100.0% in both WB and DP (11–15).

The transcontinental transmission of the ASFV in Georgia
in 2007, has resulted in the introduction of the disease into
the Russian Federation. The first outbreak of the region was
registered in WB in the Chechen Republic (November 2007),
with subsequent spread of the virus in the Russian Federation and
neighboring European countries (16). The nosoareal of the ASF
has recently expanded, reaching the Russian Far East (Figure 1)
and affecting many countries in South-East Asia (11, 17–21).
While insufficient biosecurity on pig farms is considered the
main factor in disease spread (22–26), the presence of WB in an
ecosystem plays an important role in virus transmission, which is
acknowledged by many countries (22, 27, 28).

In some countries with recorded ASF infections, WB
populations play the role of an epidemiological reservoir and
maintain the virus in the environment. The virus enters WB
populations mainly through the animals coming into contact
with DP and eating contaminated feed and swill (29, 30).

Wild boars and DP belong to the same species (Sus scrofa),
as WB are the ancestors of DP. Therefore, the transmission of
pathogens is likely bidirectional (31). Wild boars are susceptible
to many infections. Although ASF is associated with high
mortality, its prevalence in the population does not exceed
3% (32). Nevertheless, every year in the Russian Federation,
as in many countries in Europe and Asia, new cases of ASF
occur in WB. Proper disposal of infected carcasses (corpses) in
compliance with biosafety measures and proper diagnostics for
every infected animal are among the essential measures needed
to break the ASF transmission cycle (24, 33).

Humans can affect the fluctuations in the numbers of WB,
ranging from the maximum possible protection of these animals
to their complete eradication. Hunting is the most important
risk factor for decline in the WB population, which not only
determines their population dynamics, but also has a significant
impact on the sex, age, and spatial structure of their populations.
Furthermore, WB are the most important hunting trophies and
the main prey of large predators (34–37).

One of the measures that has been proposed to control ASF
spread is the depopulation of WB, i.e., reducing their numbers
to a certain threshold at which the virus’ intra-population

transmission will stop or significantly slow down owing to the
decrease of contact ratio (4, 27, 38). As WB present a significant
share of the food resource for many wild predatory species,
a decrease in their numbers could disturb the equilibrium of
the entire ecosystem and lead to a corresponding decrease in
the predator population (39–41). Among the predators of the
Russian Far East, the Siberian tiger (Panthera tigris altaica) merits
mention as a rare protected species, whose population in the
region is currently estimated at around 500 individuals (https://
wwf.ru/en/regions/amur/amurskiy-tigr/).

Thus, the aims of this study were (1) to conduct an
epidemiological and genetic analysis of the ASF situation in the
Far Eastern region of Russia, from 2019–2020, and (2) to assess
a possible size of WB depopulation and its impact on the whole
wild ungulate population of the study region.

MATERIALS AND METHODS

Study Area
In this study, we considered the ASF epidemic situation in
the following four administrative divisions located in the Far
Eastern Russian Federation: Primorsky Krai, Khabarovsk Krai,
the Jewish Autonomous Oblast, and Amur Oblast (Figure 2).
These regions are part of the Far Eastern Federal District of
the Russian Federation and were selected because the ASF virus
was first detected in this region in 2019. The total area of the
study region exceeds 1,350,400 km2 with a mean population
density of about three people/km2. The natural conditions in
these areas vary significantly due to the vast extent of the territory
from North to South. The climate of the coastal strip in the
Far East is relatively warm, humid, and monsoonal. The winters
in the Far East are cold and dry, and the summers are hot
in continental areas and cool in coastal areas. The climatic
conditions in these regions have a huge influence on their
economic development. The four aforementioned areas have
a rich hydrographic network (http://assoc.khv.gov.ru/regions/
information/geography-climate). The leading economic sectors
are fishing, forestry, and ore mining. This territory in the Far
East contains the country’s main ecological reservoir; there
are 25 natural reserves and three national parks. A unique
feature of this region is the population of Siberian tigers,
which is an endangered species listed in the Red Book of the
International Union for Conservation of Nature (http://www.
nparks.ru/fareast_zapovednik.php).

Data and Sources
To analyze the epidemic situation, the data on ASF outbreaks
notified by the Russian Federation to the OIE from 2019 to 2020
were retrieved from the FAOEMPRES-i database (http://empres-
i.fao.org/eipws3g/). The database contains information on 205
ASF outbreaks in the study region for the period from 30 Jul 2019
to 27 Dec 2020, of which 71 (35%) were in WB and 134 (65%) in
DP (Figure 2).

Samples of biological material for the phylogenetic study of
the ASF virus were obtained from domestic pigs as a result of
monitoring studies in an individual private farm in the village of
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FIGURE 1 | The ASF-affected regions of the Russian Federation, 2007–2020 (source: OIE), and the study area.

Ust-Ivanovka, Blagoveshchensk District, Amur Oblast and site of
the third reported outbreak in the study area (Figure 2).

Data on the population size of WB and other ungulates in the
study area were obtained from the Ministry of Natural Resources
and Environment of the Russian Federation statistical reports
for 2019 (https://www.mnr.gov.ru/en/). Data on wild ungulates’
body mass were retrieved from Sokolov (42) and Danilkin (43).
The current number of Siberian Tigers in the study area is
estimated as ∼500 heads, of which 90% live in Primorsky Krai
(theWorldWildlife Fund (WWF) reports https://wwf.ru/species/
amurskiy-tigr/vsye-ob-amurskom-tigre-khozyaine-taygi/). The
population density of ungulates was calculated based on the
forestry area of the region, which has been retrieved from the
Unified Interdepartmental Information and Statistical System
UIISS (https://www.fedstat.ru/indicator/38194).

Sequencing and Phylogenetic Analysis of
ASFV
ASF virus “Amur Region/08/19/19,” identified in 2019 during
monitoring studies was used in this research. Phylogenetic
studies were conducted by the Laboratory for Diagnostics
and Monitoring of the Federal Research Center for Virology
and Microbiology (https://ficvim.ru/en/). Confirmation of the
presence of viral genome fragments in nucleic acid samples was
carried out by real-time PCR (44). DNA was extracted using a
commercial DNA sorb kit (Interlabservis, Russia) in accordance
with the manufacturer’s instructions. Then, the samples that
were identified as positive by real-time PCR were subjected to
sequencing of following fragments: B646L, E183L, I73R/I329L,

B602L, EP402R, andMGF 505-9R. Of these, the B646L and E183L
fragments were chosen as genotype determining genes. The other
gene fragments were recommended by the OIE ASF reference
laboratory (Madrid, Spain) for molecular characterization of ASF
virus strains and isolates (8, 45–49).

PCR was performed using specific primers and Quick-Load R©

Taq 2XMasterMix (NEB, USA). The PCR products were purified
using a MinElute Gel Extraction Kit (Qiagen, Germany). DNA
sequencing was performed using an ABI 3130 Genetic Analyzer
(Applied Biosystems, USA). The samples were prepared using
BigDye Terminator v.3.1 cycle sequencing kit followed by a
purification step with BigDye XTerminatorTM Purification Kit
(both from Applied Biosystem, Foster City, CA, USA) according
to the manufacturer’s instructions.

BioEdit v7.0.4.1. was used to obtain a consensus sequence (50).
The sequences were aligned using ClustalX (51). The sequence
data of an ASF virus isolate were subjected to BLAST analysis
using the NCBI BLAST tool (https://blast.ncbi.nlm.nih.gov/
Blast.cgi) and were compared with sequences of commonly used
reference strains and other strains represented in the GenBank
(https://www.ncbi.nlm.nih.gov/genbank). Phylogenetic trees
were constructed using the maximum likelihood method in
which phylogenetic distances were estimated using Kimura’s
two-parameter model (K2P) (52) in the MEGA 7 program (53).

Space–Time Data Analysis
A space–time cluster analysis using the space–time permutation
model (54) was applied to detect a potential clustering of ASF
outbreaks within the study area. This type of analysis allows
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FIGURE 2 | ASF outbreaks (OIE, 2019–2020) and revealed spatio-temporal clusters of outbreaks plotted against wild boar density in the Far East regions of Russia.

The black arrow points to the outbreak from which the biological material for ASFV phylogenetic analysis was sampled.

circular areas to be identified where the observed concentrations
of outbreaks over a certain time period are significantly higher
than would be expected based on the null hypothesis of the
random distribution of outbreaks in space and time. The
maximum radius and duration of the clusters were taken to be
50% of the whole study area and period, respectively. Clusters
where the observed distribution of outbreaks differed from the
hypothetical random distribution at levels of significance >95%
(p ≤ 0.05) were considered statistically significant. The ODE
value (observed/expected) expresses the ratio of the number of
outbreaks observed in a cluster to the expected one. Clusters were
detected for: (i) all outbreaks; (ii) DP outbreaks only, and (iii)WB
outbreaks only.

To visualize the movement of the ASF epidemic since its first
emergence within the study area, we applied mapping of the ASF
outbreaks’ median centers by month using the Median Center
GIS (Geographic Information Systems) procedure (55). For each
month of the analyzed period, this tool calculates a median point
that provides a minimized overall Euclidean distance to all other
ASF outbreaks’ locations. This median center can be sought as a
conventional measure of central tendency less sensitive to spatial
outliers than a mean center.

To explore a potential relationship between the ASF outbreaks
in DP and WB, we applied a GIS technique named Colocation
Analysis. This technique measures local patterns of spatial
association between two categories of point features using the
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colocation quotient statistics (56–58). Given two categories of
interest in the study area, namely A and B, the colocation quotient
(CQ) expresses a local proportion of category B points within a
defined neighborhood of category A points. Category B points are
then randomly permuted within the whole study area to estimate
whether their observed distribution differs from a random one
and to obtain a p-value. If the above proportion is higher than a
global proportion of category B, the CQ will be >1. Otherwise,
the CQ will be below 1. The p-value obtained determines
the statistical significance of the revealed pattern. Given that
colocation analysis is not symmetric, we explored relationships
between (i) DP and WB, and (ii) WB and DP outbreaks. To
provide a neighborhood for the CQ calculation we tested circular
bands of the radius equal to the mean neighboring distance for
the whole set of ASF outbreaks (i), and of the radius equal to
150 km (ii) based on the previous studies on ASF outbreaks
clustering (59, 60). To add an epidemiological meaning to the
analysis of relationship between ASF outbreaks, we analyzed
colocation using space-time window accounting for a time span
of 2 weeks before and after the analyzed outbreaks that reflects
our assumption on the average duration of infectious period
in acute ASF course (https://www.oie.int/app/uploads/2021/03/
african-swine-fever.pdf). This method reflects an assumption
that a certain ASF outbreak might be epidemiologically related to
a previous outbreak of the other category within the allowed time
period (i.e., an outbreak in DP might be resulted by bringing the
virus by infected WB from close neighborhood; or WB outbreak
might be caused by contaminated waste or improperly utilized
pig carcasses from a preceding DP case).

Estimation of the Size of the Expected WB
Depopulation
According to some studies, decreases in wild boar (WB)
populations have been shown to be a requisite measure to prevent
the transmission of ASFV in these populations (3, 6, 24, 37). In
the currently in force national guidelines to prevent and eradicate
ASF in the Russian Federation (61), a value of 0.25 boars/1,000 ha
(0.025 boars/km2) is recommended as a threshold host density
that should be maintained in order to interrupt the circulation
of the ASF virus in the WB population within an infected area.
Assuming that such a measure may be undertaken in the study
region, in this paper we used the above value to estimate the
expected size of the WB depopulation.

Estimation of the Possible Decrease in the
Total Mass of the Wild Ungulates
To estimate the possible reduction of the food resource for
predatory species of the region, a total mass of ungulates living
in the study area was assessed: (1) in 2019, before the ASF
virus was introduced to this region; and (2) after the decrease
of WB number due to expected WB depopulation, considering
a threshold density of 0.025 head/km2. Wild boar, musk deer, roe
deer, wild reindeer, moose, and red deer are typical ungulates
of the region (39, 40, 62). The body mass of each animal was
modeled using a uniform distribution based on maximum and
minimum estimates taken from the literature (42). Modeling

was performed using a Monte Carlo simulation with 10,000
iterations, which allowed the mean and 95% confidence interval
of the ungulates’ summary body mass to be estimated. The
decrease in the total ungulate mass was assessed: (1) for the whole
study area and (2) for only Primorsky Krai, which is home to 90%
of the entire Siberian tiger population of the study area and has
the highest number of WB.

Software
The cluster analysis was performed using SaTScan software
(59). The statistical processing of the data was performed using
MS Office Excel application package (Microsoft, Redmond,
WA, USA) with @Risk simulation modeling add-on v.6.3
(Palisade Inc., Ithaca, NY, USA). The spatial analysis and results’
visualization were carried out using ArcGIS Desktop 10.8.1 and
ArcGIS Pro 2.6.3 (Esri, Redlands, CA, USA).

For phylogenetic analysis, BioEdit v7.0.4.1 software (50) was
used to obtain a consensus sequence. Nucleotide sequences
were aligned with ClustalX (51). To build a phylogenetic
tree, the MEGA 7 package (53) was used. To perform a
phylogenetic analysis, the analyzed sequences were compared
with homological ASFV gene sequences from GenBank database
with BLASTN (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

RESULTS

Spatio-Temporal Analysis of ASF in the Far
East
The analysis of the ASF spread within the study area from
its introduction in July 2019 to December 2020, showed that
the disease has become widespread over a large territory in
Primorsky Krai, the Jewish Autonomous Oblast, Amur Oblast,
and Khabarovsk Krai, and mainly concentrated along the
Russian–Chinese border. Distribution of outbreaks shows certain
spatial heterogeneity across the study area. Outbreaks in WB
weremainly observed in Primorsky Krai and Jewish Autonomous
Oblast, both of which have the highest density of WB population,
while outbreaks in DP were more evenly distributed across
the study region, demonstrating a high concentration in Amur
Oblast with no WB outbreaks in the same area.

Space–time cluster analysis revealed six statistically significant
clusters of ASF outbreaks; three statistically significant clusters
of outbreaks in DP, and just one cluster of outbreaks in WB
(Table 1 and Figure 2). Two of all ASF outbreaks’ clusters
demonstrate full spatio-temporal coincidence with clusters in
DP (#1 and 7 in Amur oblast, #3 and 9 in Jewish Autonomous
Oblast and Khabarovsk Krai) suggesting that those clusters are
formed only by the outbreaks in DP. The clustering pattern
is more heterogeneous in Primorsky Krai where four spatio-
temporal cluster are formed by a mixture of DP and WB
outbreaks, with just single clusters in DP and WB, respectively.
The latter clusters do not coincide but demonstrate some spatial
and temporal overlap. However, moving north-west along the
Russian–Chinese border, DP, and WB outbreaks become more
spatially separated with the dominance of DP cases.

Calculation of the outbreaks’ median centers by month
demonstrates that ASF almost simultaneously emerged in
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TABLE 1 | Characteristics of spatiotemporal clusters of ASF outbreaks in domestic pigs and wild boar in the Far East of Russia, 2019–2020.

Cluster # Territorial

coverage

Cluster radius,

km

Observed

number of

outbreaks (in

population)

Observed to

expected rate

ODE

Start

date

End

date

Cluster duration,

days

P-value

1 and 7 Amur oblast 138 26* (DP) 4.1 for all

outbreaks, 2.8 for

DP cluster

16.08.2019 26.09.2019 41 <0.001

2 Primorsky Krai 86 17 (DP+WB) 5.8 28.02.2020 30.07.2020 153 <0.001

3 and 9 Jewish

Autonomous

Oblast and

Khabarovsk Krai

175 29* (DP) 3.0 for all

outbreaks, 2.5 for

DP cluster

31.07.2020 17.09.2020 48 <0.001

4 Primorsky Krai 110 10 (DP+WB) 8.5 16.10.2020 10.12.2020 55 <0.001

5 Primorsky Krai 44 10 (DP+WB) 6.8 06.12.2019 20.02.2020 76 0.002

6 Primorsky Krai 44 10 (DP+WB) 6.2 21.08.2020 15.10.2020 55 0.007

8 Primorsky Krai 88 12* (DP) 5.9 29.05.2020 30.07.2020 62 <0.001

10 Primorsky Krai 96 10 (WB) 5.0 28.02.2020 15.10.2020 230 <0.001

DP, domestic pigs; WB, wild boars. Cluster numbers correspond to Figure 2.

*Several WB outbreaks within the cluster do not belong to the cluster time period.

different regions of the study area adjoining the People’s Republic
of China: in WB of Primorsky Krai (July 2019) and in DP
of Amur Oblast (August 2019). The former region presents a
forestry area with the highest density of WB in the region, while
the latter is a suburb of Blagoveschensk city that features a
direct transport connection with China by a bridge across the
Amur River. The direction of median centres’ spread suggests
consequent epidemic movement from both initial areas north
and east with the concentration of most recent outbreaks
in Khabarovsk Krai. The direction coincides with the main
transportation routes in the region (Figure 3).

The mean neighboring distance between all ASF outbreaks
within the study area calculated with The Mean Nearest
Neighbor GIS tool was found to be 15 km. The colocation
analysis of the ASF outbreaks in DP with outbreaks in WB
(i.e., testing for an elevated concentration of WB outbreaks
in close vicinity to DP outbreaks within 2-weeks time period)
showed that:

- Within a neighborhood of 15 km radius, no DP outbreaks were
statistically significant collocated with WB outbreaks; only
3 out of 134 (2.2%) DP outbreaks demonstrated statistically
non-significant (p > 0.05) colocation with WB outbreaks,
while 70 (52.2%) DP outbreaks were found to be statistically
non-significant isolated;

- Within a neighborhood of 150 km radius, three (2.2%) DP
outbreaks were statistically significant (p < 0.05) collocated
with WB outbreaks (in Primorsky Krai), while 53 DP
outbreaks were found to be statistically significant isolated
throughout the study area (Figure 4).

The colocation analysis of WB outbreaks with DP outbreaks
(i.e., testing for an elevated concentration of DP outbreaks in
close vicinity to WB outbreaks within 2-weeks time period)
demonstrated that:

- Within a neighborhood of 15 km radius, no WB outbreaks
were found to be statistically significant collocated with DP
outbreaks, while three (4.2%) and 17 (23.9%) of WB outbreaks
were statistically non-significant collocated and isolated with
DP outbreaks, respectively;

- Within a neighborhood of 150 km radius only one (1.4%)
WB outbreak was statistically significant collocated with
DP outbreaks (in Jewish Autonomous Oblast), and six
(8.5%) WB outbreaks were statistically significant isolated
(in Primorsky Krai), while 10 (14.0%) and 43 (60.6%) WB
outbreaks were statistically non-significant collocated and
isolated, respectively (Figure 5).

Sequencing and Phylogenetic Analysis for
ASFV
TheB646L, E183L, I73R/I329L, B602L, EP402R, andMGF 505-9R
gene sequences of the Amur/19.08.19 strain were deposited in
GenBank under the accession numbers MT840357, MT840356,
MT840354, MT840352, MT840355, andMT840353, respectively.

The phylogenetic analysis of ASFV isolates of the
Amur/19.08.19 strain was based on a fragment of the B646L
gene sequence, which encodes the P72 protein. The analysis
revealed that this strain belongs to the second genotype. This
genotype was initially widely spread in Eastern Europe, when it
was first reported in Georgia, in 2007. Genotypic affiliation of
the Amur/19.08.19 strain was also confirmed by calculating the
phylogenetic tree using the nucleotide sequencing of the E183L
gene, encoding the P54 protein (Figure 6).

No changes were detected in the central variable region
(CVR) of the genome, which includes the B602L gene. Thus,
studied ASFV isolates belong to the CVR1 variant (according
to OIE ASF reference laboratory classification [Madrid, Spain]).
Moreover, these isolates belonged to the TRS+ (IGR2) variant
by classification, based on I73R/I329L sequence (Figure 7).
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FIGURE 3 | Median centers of ASF outbreaks in the Far East region of Russia by month from July 2019 to December 2020. Arrows indicate the apparent direction of

the epidemic movement.

Nucleotide substitutions in the sequences of the EP402R and
MGF 505-9R genes were also not detected.

Assessment of the Decrease in Wild
Ungulates’ Mass After WB Depopulation
The number of wild ungulates, including the WB, based on the
administrative divisions of the study area is shown in Table 2 (as
of 2019). The table also presents the estimates of total mass of
all ungulates for 2019 as well as after the expected depopulation
of WB until a threshold density of 0.025 head/km2. The results
suggest that the WB population may potentially be reduced
by 93% in Primorsky Krai, by 91% in the Jewish Autonomous
Oblast, by 46% in Amur Oblast, and by 8% in Khabarovsk Krai.

As a result of WB number decline, the total mass of all wild
ungulates may decrease by 8.4 % (95% CI: 4.1–13.0%) in the
whole study area, while the reduction may be as high as 33.6 %
(19.3–46.1%) in Primorsky Krai, which is home to the majority
of the Siberian tiger population.

DISCUSSION

The observed pattern of the ASF outbreaks’ clustering within
the study area likely reflects the multiple ways through
which the virus may have entered this region. The initial
spread started simultaneously in two distant parts of the
study region (Primorsky Krai and Amur Oblast) and resulted
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FIGURE 4 | The results of local colocation analysis of ASF outbreaks in domestic pigs (DP) and wild boar (WB). (Left) With 15 km as a neighboring distance; (Right)

with 150 km as neighboring distance.

FIGURE 5 | The results of local colocation analysis of ASF outbreaks in wild boar (WB) and domestic pigs (DP). (Left) With 15 km as a neighboring distance; (Right)

with 150 km as neighboring distance.

in a large epidemic involving both DP and WB. The
current epidemic situation demonstrates a predominance of
DP outbreaks in Amur Oblast, Jewish Autonomous Oblast
and Khabarovsk Krai. These outbreaks are mainly concentrated

along the Russian—Chinese border and main transportation
routes with just several cases of ASF in WB that do not
influence the outbreak clustering patterns in these three
regions. In contrast, Primorsky Krai shows a mixture of ASF
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FIGURE 6 | Evolutionary relationships of African swine fever virus strains based on the neighbor-joining phylogeny of the partial p72 gene sequences. The

phylogenetic analysis was performed using MEGA7. Bootstrap values (based on 1,000 replicates) for each node are given. GenBank accession numbers, country,

and year of collection are indicated for each strain. Corresponding genotypes are labeled I–XXIV. The black circle indicates the African swine fever sequence from

Russia, Amur region, 2019. The scale bar indicates nucleotide substitutions per site.

FIGURE 7 | Nucleotide sequence alignment of the partial I73R and I329L intergenic region of the representative African wine fever virus strains. GenBank accession

numbers, country, and year of collection are indicated.

outbreaks both in WB and DP, which are widely spread across
its area.

Since the first ASF introduction in the Russian Federation,
discussions have been conducted in scientific literature as well as

in the media on the leading role of either DP or WB population
in the spread of the disease (3, 37, 63). To shed some light on
this question using the example of the new epidemic in Far East
of Russia, we explored the space-time relationships between DP
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and WB outbreaks by conducting colocation analysis. This type
of analysis looks at the elevated concentration of one category
of outbreaks within a close proximity to another and may help
to reveal a predominant tendency of DP outbreaks emergence
after preceding WB cases, or vice versa. However, our results did
not indicate any clear pattern of ASF outbreaks’ colocation. The
most pronounced results are revealed when taking 150 km as an
analysis neighborhood. Most of DP outbreaks, especially in the
south-west part of the study area are treated as “isolated” that
means an absence or low concentration of WB cases nearby, thus
rebutting the hypothesis about the ASF transmission from WB
to DP. In Primorsky Krai, the outbreaks’ relationships are more
heterogeneous, though no obvious pattern is detected as well.

The intensive spread of the ASF virus in the Far Eastern
areas of the Russian Federation might have resulted, in part,
from insufficient preparedness of the veterinary services and
agricultural producers of the region in terms of protection against
the virus entry into DP populations. This region has large
numbers of poorly protected pig farms, which often practice
free range farming techniques, thus with an increased chance
for pigs to come into contact with the wild population (64, 65).
Therefore, according to the “Cerberus” information system at the
Federal Service for Veterinary and Phytosanitary Surveillance,
284 out of 289 registered pig-breeding farms in the Primorsky
Krai belong to the first or second biosafety level1 suggesting low
or no biosecurity; in the Khabarovsk Krai, this number is 32
out of 33 farms; in the Jewish Autonomous Oblast, it is 45 out
of 45 farms; and in Amur Oblast, it is 2 out of 2 farms. For
comparison, in the European part of the Russian Federation,
where measures to control the ASF spread have been in place
since 2007, the situation is diametrically opposed. In the Belgorod
Region (one of the largest agricultural producers in Russia), only
4 out of 371 farms belong to the first or second biosafety level;
in the Nizhny Novgorod Region, this number is 22 out of 118
farms; in the Saratov Region, it is 114 out of 183 farms; and
in the Volgograd Region, it is 145 out of 235 farms. Although
compartmentalization is currently applied to pig producers on a
voluntary basis, the above numbers reflect only a part of all pig
farms while still being indicative of the ratio between low- and
high-biosecurity holdings in the region.

Although some researchers suggest the threshold density of
WB that can stop the ASF spread within the population (4, 27,
66, 67), other authors advocate that achieving this level does
not guarantee the cessation of the epidemic chain (24, 37, 68).
Currently in force national legislation on the ASF prevention and
control supposes the WB density reduction in the ASF affected
areas till the threshold of 0.025 head/km2, which may result in an
intensive depopulation ofWB in the study regions. As a side effect
of such a depopulation, a decreased availability of food resources
for wild predators of the region can be expected. Particularly, it

1According to the agricultural producers’ biosafety regulations currently in
force, all pig-breeding facilities are categorized into four biosafety levels (or
compartments). The first and second compartments are considered low or no
biosafety holdings, while the third and fourth compartments are large farms with
strict biosecurity measures (https://cerberus.vetrf.ru/cerberus/compartment/pub)
(Article in Russian).
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may affect the population of a protected species, Siberian tigers,
for which WB present a significant and easily available food
source (39, 40, 69, 70). In our study, we aimed to estimate a
possible decrease in the wild ungulates’ biomass in a case of the
reduction of WB numbers. Such approach is based on several
assumptions, which are potential limitations of the study. Other
possible limitations include the following:

First, the numbers of all the animals were considered at a
regional level, with no differentiation according to the various
municipal districts (because of a lack of district-level data).
Second, the average weight of each animal was estimated
using a uniform distribution (i.e., all values from minimum to
maximum were considered to be equally possible), while the
real distributions may be quite different.
Third, not all of an animal’s mass is edible meat. In reality, no
more than 70% of its mass can be considered a food resource
(62, 69, 71).
Fourth, we did not account for the age structure of the animal
populations, which was partly compensated for by a simulated
variation in body mass.
Fifth, according to some studies a prey’s population may
survive a 1-year withdrawal of 15% to 25% of individual
animals with no a long-term impact to its numbers (68). This
may indicate that a potential impact of depopulation will be
most pronounced in the regions with above 25% estimated
depopulation proportion (Table 2).

To carry out a more detailed assessment of the possible impact
of a presumable WB depopulation on the equilibrium of the
ecosystem, it would be necessary to first have detailed data
on the numbers of all animal species at a finer scale (at
least the municipal district level), and second, to apply more
complex dynamic population models that allow accounting for
interactions between the predators and all potential preys.

CONCLUSIONS

Our results demonstrate the emergence of the ASF virus to
the Far Eastern areas of the Russian Federation has led to
the rapid spread of the disease over a large territory and
support a hypothesis of multiple routes of viral introduction
into the region. The ASF virus circulating in the study region
demonstrates a close homology with corresponding viruses that

have been isolated in Europe, Russia, and China. Due to the

very dense WB population in this region, the ASF virus can
be expected to persist in this population, which may entail the
artificial regulation of this WB population to prevent the spread
of the disease. The possible reduction of the WB population
in Primorsky Krai may lead to a 33.6% (19.3–46.1%) decrease
in the total mass of all ungulates, which may pose a threat to
the population of predatory species of the region including the
protected population of Siberian tigers.
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