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P H Y S I C S

Implementing graph-theoretic quantum algorithms 
on a silicon photonic quantum walk processor
Xiaogang Qiang1,2,3*, Yizhi Wang1, Shichuan Xue1, Renyou Ge4, Lifeng Chen4, Yingwen Liu1, 
Anqi Huang1, Xiang Fu1, Ping Xu1, Teng Yi2, Fufang Xu2,3, Mingtang Deng1, Jingbo B. Wang5, 
Jasmin D. A. Meinecke6,7,8, Jonathan C. F. Matthews9, Xinlun Cai4*, Xuejun Yang1, Junjie Wu1*

Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the 
particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, 
by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties 
in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, 
with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates 
single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite 
quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing 
for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on 
each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for clas-
sically intractable applications.

INTRODUCTION
In a classical random walk, a particle or “walker” moves stochasti-
cally around a discrete space. Quantum walks are the quantum an-
alog, where the walker is also governed by quantum effects such as 
superposition, quantum interference, and entanglement. They have 
attracted broad interest because of a growing range of applications 
in quantum information processing (1–4) and quantum simula-
tions (5, 6). Their markedly distinct properties provide a quantum 
speedup in solving problems, such as database search (7) and graph 
isomorphism (GI) (8, 9), that more broadly can be applied to pat-
tern recognition and computer vision (10), network analysis and 
navigation (11), and website traffic optimization (12) and could 
find application in the use and analysis of large but imperfect graph 
states in measurement-based quantum computing (13).

Further application of quantum walks can be explored using 
multiple quantum walkers (14). This is because the quantum state 
space increases exponentially with the number of walkers, and sce-
narios are emerging where the underlying particle properties are 
strongly influential. How distinguishable quantum particles are de-
termines the amount of nonclassical multiparticle interference and 
leads to rich and complex interference phenomena (15). Specifying 
particle exchange statistics can facilitate generation of high-dimen-
sional entangled states via multifermion quantum walks (16), enables 

study of braiding statistics with anyonic walks (17), and can dictate 
whether sampling from multiparticle quantum interference patterns 
is efficient (fermions) or intractable (bosons) to reproduce on a 
classical computer (18).

A range of physical systems (19–21) including photonics (22–24) 
have been used to implement analog simulations of quantum 
walks as well as digital simulations with quantum logic (19, 25, 26). 
By using arrays of evanescently coupled integrated waveguides, 
quantum walks of up to five photons (27) have been demonstrated, 
and using the inherent stability of integrated optics, linear graphs of 
hundreds of vertices could be realized (28). However, these planar 
devices are each limited to graphs defined by the layout of the pas-
sive underlying photonic circuit, requiring additional modified cir-
cuits to observe different variations in quantum walk parameters, 
such as time evolution (29). Increasing capabilities of integrated 
optics for implementing unitary transformation are demonstrated 
over the recent years (24, 26, 30, 31), including a silica nonreconfig-
urable multipath unitary that is fixed at the point of fabrication (30), 
reconfigurability over six paths in silica (31), programmable optical 
circuits in silicon (24), and multiple reconfigurable two-mode oper-
ations combined in silicon, together with pre-entanglement to im-
plement reconfigurable two-qubit processes (26).

Here, we present a fully programmable silicon photonic de-
vice capable of simulating quantum walk dynamics of correlated 
particles with full control over all important parameters including 
Hamiltonian structure, evolution time, particle distinguishability, 
and exchange symmetry. Specifically, we realize the device by im-
plementing two simultaneous reconfigurable five-mode operations 
acting on the two parties of a bipartite photonic entangled state: 
Two on-chip photon pair sources (32) generate spatially entangled 
photons that are manipulated to continuously tune the distinguish-
ability and exchange symmetry of two simulated particles (33, 34); 
they then undergo continuous-time quantum walks (CTQWs) on 
any graph of up to five vertices for arbitrary time evolution by using 
five-mode universal optical circuits (35, 31). By equating the state 
space of multiparticle quantum walks on one graph to a single par-
ticle undergoing a quantum walk evolution on another exponentially 

1Institute for Quantum Information and State Key Laboratory of High Performance 
Computing, College of Computer Science and Technology, National University of 
Defense Technology, 410073 Changsha, China. 2National Innovation Institute of 
Defense Technology, AMS, 100071 Beijing, China. 3Beijing Academy of Quantum 
Information Sciences, 100193 Beijing, China. 4State Key Laboratory of Optoelectronic 
Materials and Technologies and School of Electronics and Information Technology, 
Sun Yat-sen University, 510275 Guangzhou, China. 5Department of Physics, The 
University of Western Australia, Perth, WA6009, Australia. 6Max-Planck-Institut für 
Quantenoptik, Hans-Kopfermann-StraBe 1, 85748 Garching, Germany. 7Department 
für Physik, Ludwig-Maximilians-Universität, Schellingstr. 4, 80799 München, Germany. 
8Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 
München, Germany. 9Quantum Engineering Technology Labs, H. H. Wills Physics 
Laboratory and Department of Electrical and Electronic Engineering, University of 
Bristol, BS8 1FD Bristol, UK.
*Corresponding author. Email: qiangxiaogang@gmail.com (X.Q.); caixlun5@mail.
sysu.edu.cn (X.C.); junjiewu@nudt.edu.cn (J.W.)

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

mailto:qiangxiaogang@gmail.com
mailto:caixlun5@mail.sysu.edu.cn
mailto:caixlun5@mail.sysu.edu.cn
mailto:junjiewu@nudt.edu.cn


Qiang et al., Sci. Adv. 2021; 7 : eabb8375     26 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 9

larger graph (14, 36), we can program particle properties to access 
geometries of larger single-particle Hamiltonians that are otherwise 
beyond the capabilities of a fixed-size universal linear optics circuit 
acting on single photons or coherent light. With the full program-
mability of the device and the inherent subwavelength stability of its 
monolithic integration, we are able to experimentally implement 
quantum walk–based algorithms of hundreds of graph configura-
tions on a single device—we search for marked vertices in graphs 
and distinguish nonisomorphic graph pairs. These demonstrations 
physically explore the suitability of simulating quantum walk phe-
nomena and applications in silicon photonics, as the scale and capa-
bility of the technology grow.

RESULTS
Silicon photonic chip for quantum walks with tunable 
particle properties
Particle exchange symmetry and indistinguishability are critical to 
the dynamics of multiparticle quantum walks (33, 34)—for exam-
ple, the antisymmetry associated to fermions leads to the Pauli ex-
clusion principle, while the symmetry associated to bosons enables 
bunching. Exchange symmetry refers to a wave function acquiring 
a phase  after interchanging two indistinguishable particles. This 
effect is characterized by the creation operator   a j  †   and annihila-
tion operator aj of mode j satisfying   a i  

†   a j  †  =  e   i   a j  †   a i  
†   and   a  i    a j  †  =  

e   i   a j  †   a  i   +    ij   , where  is 0 for bosons and  for fermions. Indistin-
guishability, which we denote as  (0 ≤  ≤ 1), decides the strength of 
multiparticle quantum interference in the quantum walk evolution. 
For example, a pair of partially distinguishable photons in the po-
larization degree of freedom can be represented as  ∣  H  1  ⟩(γ ∣  H  2  ⟩+  
√ 
_

 1 −  γ   2    ∣  V  2  ⟩) , where H and V represent the horizontal and vertical 
polarizations in modes 1 and 2, respectively.

We extend the protocols of (33, 34) to simulate the CTQW evo-
lutions of multiple particles with tunable  by adding control over 
both  and . The protocol works by sending each particle of an 
entangled pair of photons through identical copies of the target 
CTQW evolution and then measuring the corresponding correlated 
detection probabilities (Fig. 1A)—controlling parameters of the en-
tangled state tunes the properties of the simulated particles. For two 
particles parameterized by  and  evolving in a unitary CTQW 
evolution U, the probability to measure two particles occupying 
vertices r and q is

    r,q  ,  =   1 ─ 2    ∣( U  r,j    U  q,k   +  e   i   U  r,k    U  q,j   ) +  √ 
_

 1 −     2     U  r,j    U  q,k   ∣   
2
   (1)

with the inputs j and k of a given graph. Now, consider two photons 
in an entangled state  () = (  a j  †   b k  †  +  e   i    a k  †   b j  † )∣ 0〉 , with ,  ∈ ℝ 
and 2 + 2 = 1, and pass each photon into a copy of U, denoted Ua 
and Ub, respectively. The correlated detection probability   P r,q       of 
measuring a photon at output r of Ua and q of Ub is

   P r,q      =  ∣   U r,j  a    U q,k  b   +  e   i    U r,k  a    U q,j  b   ∣   
2
   (2)

Comparing    r,q  ,   and   P r,q      , we obtain    r,q  ,   by measuring   P r,q       as be-
low (see section S1)

    r,q  ,  =   P r,q       (3)

where   =  1 _ 2 (1 +  + 2  √ 
_

 1 −     2   ) , by creating the two-photon entan-
gled state as

   ∣ (, )⟩=   1 ─ 
 √ 
_

 2  
   
(

     
 +  √ 
_

 1 −     2   
 ─  √ 

_
       a j  †   b k  †  +  e   i     ─  √ 

_
       a k  †   b j  †  

)
   ∣ 0⟩   (4)

To generate the entangled state (Eq. 4) and apply the unitary 
evolutions, our device consists of two main parts: entangled photon- pair 
generation and universal linear optical transformation (Fig. 1, B and C). 
The 11 × 3 – mm2–sized chip comprises mainly 2 spontaneous four 
wave mixing (SFWM) photon sources, 22 simultaneously running 
thermo-optic phase shifters, 32 multimode interferometer beam 
splitters, and 16 optical grating couplers (not shown). The two 
SFWM sources used to create possible (signal-idler) photon pairs 
are pumped with a laser that is launched into the chip and split 
across the two sources. The spatially bunched photon pairs are co-
herently generated in any of the two sources. By postselecting the 
cases that the signal photons exit at the top of the device (as orien-
tated in Fig. 1C) and the idler photons exit at the bottom, respec-
tively, the required path-entangled state ∣(, )⟩ is created with 
success probability of one-quarter. The two five-mode universal 
linear optical networks are designed to implement unitary transfor-
mation of up to five dimensions with fixed inputs and can be recon-
figured at ≈kHz rates with thermal phase shifts (37).

Harnessing particle properties to simulate CTQWs 
on complex graphs
The CTQW evolution on a graph G is governed by the adjacency 
matrix A of G, whose elements are Ajk = 1, if vertices j and k are 
connected by an unweighted edge (Ajk = w for an edge of weight w), 
and Ajk = 0 otherwise. The unitary time evolution at time t can be 
derived as

  ∣ (t )⟩ =  e   −iAt  ∣    ini  ⟩  (5)

where ∣ini⟩ and ∣(t)⟩ are the initial and evolved states in the or-
thonormal basis {∣1⟩, ∣2⟩, ⋯, ∣N⟩} corresponding to the vertices 
of G. With our device, we first experimentally simulated the CTQW 
dynamics of two particles with continuously tunable particle 
exchange symmetry and indistinguishability. For this, the two 
Reck et al.–style networks are configured to implement the same 
CTQW evolution of a specific time, and the particle property 
parameters  and  are controlled by creating the corresponding 
two-photon entangled state ∣(, )⟩.

As shown in Fig.  2A, we implemented CTQW evolution on a 
four-vertex circle graph and obtained the two-particle interference 
statistics for different cases of exchange symmetry and indistin-
guishability. The results show substantial changes of the particle 
correlations in the same unitary evolution depending on the parti-
cle properties. With particle exchange symmetry changing, the 
two-particle interference statistics ranges from corresponding 
to the Bose-Einstein statistics ( = 0), to the intermediate fractional 
statistics (  =   _ 4  ,   _ 2  ,  3 _ 4   ), and to Fermi-Dirac statistics ( = ). With 
indistinguishability increasing from 0 to 1, the particle correlations 
are gradually changing from being governed by classical effects ( = 
0) to the case that quantum interference becomes dominant (  =  
1 _ 2 ,   √ 

_
 2   _ 2  ,   √ 

_
 3   _ 2   ), and lastly, quantum interference completely determines 

( = 1). For example, diagonal terms are still reduced for the fermi-
onic case when  < 1, but the Pauli exclusion principle does not hold 
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anymore. The dynamics of CTQW evolution of correlated particles can 
also be easily simulated on our device by reconfiguring the on-chip net-
works to implement different time evolutions (see section S4).

Multiparticle quantum walks can simulate a single-particle walk 
on an exponentially increasing sized graph, whose size and geome-
try depend on the particle properties. A multiparticle quantum walk 
of P fully distinguishable particles on a graph of N vertices can sim-
ulate a single-particle walk on the Cartesian product graph of NP 
vertices, while P fully indistinguishable particles can simulate a single- 

particle walk on a graph of    (   N + P − 1  P   )     vertices (for bosons) or    (   N  P   )     

vertices (for fermions). Given the adjacency matrix of a graph G, the 
simulated larger Hamiltonians corresponding to multiparticle 
CTQWs on G can be obtained explicitly, according to the specific 
particle indistinguishability and exchange symmetry (see section 
S2). For example, as shown in Fig. 2 (B and C), two indistinguishable 
fermion CTQWs on a 4-vertex star graph simulate a single-particle 
walk on a 6-vertex circle graph—such quantum walks were previ-
ously implemented physically using a passive three-dimensional 
direct-write waveguide chip (38), and two indistinguishable boson 
CTQWs on the same 4-vertex star graph simulate a single-particle 
walk on a 10-vertex graph (see additional results in section S5).

Particle properties are important factors affecting the efficiency 
of classical simulation of multiparticle quantum interference, e.g., 
simulation of multiparticle interference with bosonic symmetry is 
classically inefficient (18), but with fermionic symmetry, it is effi-
cient, and partial indistinguishability reduces the hardness of boson 
sampling task (39). This implies that some simulated exponentially 
sized quantum walk evolution in our scheme can be simulated clas-
sically efficiently, depending on the specific properties of particles 
undergoing physical quantum interference, while most would in-
clude both classically tractable and intractable aspects, giving rise to 
complicated analysis of complexities. On the other hand, controllable 

particle properties enable experiments regarding fundamental in-
terest: Tunable distinguishability enables investigation of the non-
monotonicity of the quantum-to-classical transition (40) and the 
full spectrum of multiphoton nonclassical interference (41); the 
ability to tune continuously between bosonic and fermionic quantum 
interference with a single device may be essential for verification of 
boson sampling (34, 42).

On our device, CTQW evolution operators are calculated classi-
cally and then configured to the optical circuits; this nevertheless 
does not eliminate the potential quantum computational advan-
tage. When the underpinning structures and even processes of 
quantum walks can be classically described and simulated, there are 
known examples that indicate that the properties of the resulting 
output quantum state are difficult to reproduce classically—in (25), 
it was shown that for quantum walks on circulant graphs, it is likely 
to be inefficient on a classical computer to sample from the output 
distributions, while research into boson sampling (18) is revealing 
that the probability distributions associated with the output states 
of multiboson quantum interference in large unitary processes are 
also inefficient to sample from with classical resources, even when 
the underpinning unitary process acting on the modes is complete-
ly understood. While in our scheme, for example, a sample from the 
output states of P-boson quantum walk can be obtained via P pho-
tons entering P copies of N-dimensional optical circuits (34), with 
polynomial complexity [i.e., O(N3 + PN2)] in total for calculating 
the underpinning unitary externally and configuring the circuits, 
which, by contrast, is classically intractable as the size of experiment 
increases.

Implementing quantum walk–based search
The quantum walk model provides a framework for solving the 
search problem, able to achieve a quadratic speedup over classical 
algorithms in the same way as Grover’s algorithm (7, 43). Quantum 

Fig. 1. Schematic of the multiparticle simulation scheme used, the photonic device, and experimental setup. (A) Left: Quantum interference of P particles launched 
into a network implementing unitary process U leads to quantum correlated detection events at the output. Right: An entanglement-based approach for simulating 
quantum interference by sharing P-particle entanglement across P copies of U. The simulated particle exchange symmetry and indistinguishability can be configured by 
controlling the symmetry of the entanglement state. (B) Schematic of the device with the external setup. EDFA, erbium-doped fiber amplifier; DAC, digital-to-analog 
converter; PC, polarization controller; OS, optical switch; SNSPD, superconducting nanowire single-photon detector; DWDM, dense wavelength division multiplexing; CC, 
counting logic. (C) The device includes two functional parts: (i) generating spatial-entangled photons and (ii) implementing universal five-dimensional unitary process 
(with fixed inputs) (see Materials and Methods and section S3 for details of the device and setup).
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walk–based search is attractive because it is expected to have useful 
properties with regard to their robustness to noise and ease of phys-
ical implementation (44). To find one marked element aw in an un-
sorted database {a1, a2, ⋯, aN}, the quantum walk–based algorithm 
constructs a search Hamiltonian from the adjacency matrix of the 
graph G of N vertices and performs a continuous-time evolution. 
The element aw can be found by measuring the position of the 
evolved quantum walker on the graph (43).

Specifically, the search Hamiltonian for finding the vertex w in 
the graph G is defined as

   H  sh   = − ∣ w⟩⟨w ∣ − A  (6)
where − ∣w⟩⟨w∣ is the “oracle Hamiltonian” to identify the marked 
vertex, A represents the adjacency matrix of G, and  represents the 
jumping rate between adjacent vertices. Starting with an equal super-
position state over all vertices as  ∣s⟩=   1 _ 

 √ 
_

 N  
   ∑ i=1  N    ∣i⟩ , the search evolves 

with the unitary operator of e−iHsht. The probability of finding the ver-
tex w at time t is obtained as

   P  w   =  ∣ 〈w ∣  e   −i H  sh  t  ∣ s〉 ∣   
2
   (7)

It has been shown that Pw can achieve O(1) with an evolution 
time of  t = O( √ 

_
 N  ) , for searching on complete graphs, hypercubes 

(7), and even almost all graphs (43).

The optimality of the quantum walk–based search holds even for 
more general cases. Suppose that finding nw marked vertices of G 
(denoted as {w1, w2, ⋯, wnw}) and starting with an initial superposi-
tion state over nr chosen vertices (denoted as {r1, r2, ⋯, rnr}), i.e., 
 ∣    ini  ⟩=   1 _  √ 

_
  n  r       ∑ i=1   n  r      ∣  r  i  ⟩ , we can define the search Hamiltonian to be

   H  sh   = −   ∑ 
i=1

  
 n  r  

    ∣  r  i   〉 〈  r  i   ∣ −   ∑ 
j=1

  
 n  w  

    ∣  w  j   〉 〈 w  j   ∣ − A  (8)

The probability of finding one marked vertex is then obtained by

   P  w   =   ∑ 
i=1

  
 n  w  

     ∣ 〈 w  i   ∣  e   − iH  sh  t  ∣    ini   〉 ∣   
2
   (9)

when nr = nw ≪ N, Pw can also achieve O(1) with an evolution time 
 t = O( √ 

_
 N  ) , holding quadratic speedup over classical algorithms 

(see section S6).
Full programmability of our device enables implementation of 

quantum walk–based searches on a diverse variety of graph struc-
tures and in various scenarios with different initial states and tar-
gets. By first using a single-photon CTQW, we realized the search 
over a five-vertex complete graph (Fig. 3A) to find one marked ver-
tex, starting with a uniformly superposition state (Fig. 3D) or with a 
single-vertex state (Fig. 3E) and to find two marked vertices with an 

Fig. 2. Experimental simulation of quantum walks using correlated particles. (A) Example of quantum interference of two particles evolving in a CTQW on a four-vertex 
circle graph at the evolution time of     _ 8  , with different     (   ∈  {  0,    _ 4 ,    _ 2 ,  3 _ 4  ,  }   )     and     (   ∈  {  0,  1 _ 2 ,   √ 

_
 2   _ 2  ,   √ 

_
 3   _ 2  , 1 }   )    . For each case,    r,q  ,   (refer to Eq. 1) is measured. The average fidelity 

between experimental and theoretical results is 98.11 ± 1.89%. (B and C) Experimental simulated probability distributions of a single-particle walk on a 6-vertex graph (B) 
via two-fermion CTQW and a 10-vertex graph (C) via two-boson CTQW. Both walks start from the vertex 1. The obtained average classical fidelities between experimental 
and theoretical distributions are 96.96 ± 0.03% and 97.33 ± 0.03%, respectively. All error bars represent the SD estimates from Poissonian statistics (see sections S4 and S5 
for details).
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initial superposition state over two vertices (Fig. 3F). With the capa-
bility of simulating multiparticle CTQWs with controllable particle 
properties, our chip allows realization of the quantum walk–based 
search over graphs larger and with higher connectivity than a 
single-photon CTQW does. By using a two-fermion CTQW on a 
four-vertex circle graph, we realized the search over a six-vertex 
graph (Fig. 3B) to find two marked vertices, starting with a single- 
vertex state (Fig. 3G). We also realized the search over a 15-vertex 
graph (Fig. 3C) to find two marked vertices via two-boson CTQW 
on a five-vertex complete graph, starting with a single-vertex state 
(Fig. 3H). We show the experimentally obtained probability of find-
ing the marked vertices evolving in time for each case in Fig. 3, with 
the classical fidelities between experimental and theoretical results 
(see additional results in section S6). Note that the targets are previ-
ously known in these search implementations; however, this does 
not imply that the algorithmic dynamics of quantum walk search 
can also be classically tractable—example exceptions include search-
ing on circulant graphs (25) and searching via multiboson CTQWs 
(18). Compared to the implementations of search in pre-engineered 
systems (28), our programmable device makes it possible to investi-
gate rich behaviors in quantum walk search on graphs with dynam-
ical structure (45) and target and with the presence of noise and 
disorder (44).

Implementing quantum walk–based GI algorithm
The GI problem is to determine whether two graphs can be made 
identical by relabeling their vertices, and it plays an important role 
in the fields of pattern recognition and computer vision. For graphs 
of polynomial size M, there are, in total, M! possible permutations 
over M vertices, which makes it hard to solve GI for polynomial- 
sized graphs using a brute force approach. GI is thought to be 
possibly nondeterministic polynomial (NP)-intermediate (neither 
NP-complete nor polynomial time) problem, and currently, the best 

proven general algorithm is in quasi-polynomial time (46). To ex-
plore the potentials of quantum computation in solving GI, a number of 
algorithms have been proposed on the basis of various quantum 
models (47–49), and most of them use quantum walk evolutions to 
calculate “graph certificates” to distinguish nonisomorphic graphs 
(8, 9, 50–52). The quantum walk (QW)-based GI algorithms are 
mainly different in the aspects of the used model (i.e., discrete or 
continuous time), the particles involved, the presence of particle inter-
actions and localized inhomogeneities, and the way of constructing 
graph certificates (see section S7). Although none of the proposed 
QW-based GI algorithms have been proven analytically to be able 
to distinguish all graphs in polynomial time, their capability of distin-
guishing nonisomorphic graphs has been tested by abundant 
numerical simulations on wide classes of graphs including the 
strongly regular graphs (SRGs) that are difficult to distinguish.

Here, we present a single-particle CTQW-based algorithm for 
tackling the GI problem, aiming to distinguish two nonisomorphic 
polynomial-sized graphs in polynomial time. The algorithm is spe-
cifically tailored for the implementation in linear optics using en-
tangled photons together with reconfigurable optical circuits. It 
obtains its distinguishing power by circularly adding phases to the 
edges of vertices of the graph, which adds local inhomogeneities 
into the graphs to break the symmetry with respect to the walk evo-
lution that exists between two similar graphs. Specifically, we con-
struct a hierarchical graph certificate C for each of the two graphs 
and distinguish graphs by comparing two certificates CG and CH: If 
CG ≠ CH, the algorithm determines that the two graphs are noniso-
morphic; if CG = CH and an isomorphism between graphs is found 
by running an extension to the algorithm in polynomial time, the 
two graphs are determined to be isomorphic; otherwise, the algo-
rithm cannot distinguish the graphs down to their isomorphism 
classes (Fig. 4A). C = {C(s)} (s = 0, ⋯,4) consists of the sorted lists 
defined as

Fig. 3. Experimental demonstration of quantum walk–based search. (A to C) Examples of graphs tested for search. Respectively, 5-vertex complete graph K5, con-
structed 6-vertex graph  [ C 4  (F) ]  via two-fermion CTQW on 4-vertex circle and 15-vertex graph  [ K 5  (B) ]  via two-boson CTQW on K5. (D to H) Experimental probability distribu-
tions of finding the marked vertices during the search. The marked vertices    → w   , initial state ∣ini⟩, and average fidelity F between experimental and theoretical distributions 
are listed for each case. (D)    → w   = {1}  in K5, ∣ini⟩ = ∣s⟩, F = 99.72 ± 0.01%. (E)    → w   = {2}  in K5, ∣ini⟩ = ∣ 1⟩, F = 99.35 ± 0.01%. (F)    → w   = {3, 4}  in K5,  ∣    ini  ⟩=   1 _  √ 

_
 2   (∣ 1⟩ + ∣ 2⟩) , F = 99.64 ± 

0.01%. Red (blue) bar chart depicts the probability to find vertex 3 (4). (G)    → w   = {1, 3}  in   C 4  (F)  , ∣ini⟩ = ∣ 5⟩, F = 96.43 ± 0.03%. Red (blue) bar chart depicts the probability to 
find vertex 1 (3). (H)    → w   = {1, 6}  in   K 5  (B)  , ∣ini⟩ = ∣2⟩, F = 94.95 ± 0.06%. Red (blue) bar chart depicts the probability to find 1 (6).
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    C   (s)  = sort (   {  ∣ 〈i ∣  e   −i A j  (s) t  ∣    ini   〉 ∣   
2
 , for all  A j  (s) } )     (10)

where i ∈ {1,2, ⋯, N} represents the N vertices of the graph, and A(s) 
is the CTQW Hamiltonian that is obtained by adding phases to the 
elements of the adjacency matrix A: A(0) is equal to the original A; 
A(1) is obtained by iteratively adding phases to each edge of a single 
vertex; and A(2), A(3), and A(4) are obtained by iteratively adding 
phases to two, four, and six edges from two distinct vertices, respec-
tively. Numerically, we have tested the algorithm for more than 
226 million pairs of nonisomorphic graphs, including 46,119 pairs of 
SRGs with same parameters, and all nonisomorphic graphs were 
successfully distinguished by using up to C(4) certificate (Fig. 4B). 
The numerical results indicate that the distinguishing ability is in-
creasing with the level of certificates, i.e., phase additions to more 
edges. However, it remains to be proven whether the algorithm us-
ing up to C(4) certificate or even some higher level can distinguish all 
graphs, and further analytical investigations are required. There could 
be a fraction of graphs on which the algorithm fails to distinguish—a 
possible direction for further investigation is to explore whether the 
unique certificates constructed were sufficient for the number of 
nonisomorphic SRGs of Latin square group with particular param-
eters (52) that have not been tested here. Thus, our algorithm does 
not hold the overall theoretical superiority over the best proven GI 
algorithm (46); it can nevertheless find potentials in applications 
such as discriminating graphs and measuring graph similarity, due 
to its distinguishing ability for broad classes of graphs.

On a classical computer, a CTQW on an N-vertex graph can be 
simulated via approximating the exponential of the adjacency ma-
trix, which has the complexity of O(N3) for a general, unstructured 
matrix (53); and thus, our algorithm has an overall classical com-
plexity of up to O(N11) for constructing C(4)—which requires N8 
times of CTQW evolutions (see section S7). Although our algorithm 

can be implemented on a classical computer for polynomial-sized 
graphs, potential quantum computational advantage can be achieved 
when implementing the algorithm using quantum systems for par-
ticular kinds of graphs. Using a digital quantum computer, CTQWs 
on families of graphs [e.g., circulant graphs (25)] can be implement-
ed efficiently, i.e., via O[poly (log N)]-sized quantum circuits; the 
proposed algorithm could accordingly have a much reduced com-
plexity, e.g., O[N8poly (log N)] for constructing C(4). Using our device, 

a sample of CTQW on the graph of    (   N + P − 1  P   )     vertices can be 

obtained by a P-photon CTQW on an N-vertex graph with O(N3 + 
PN2) complexity, which suggests that a sample of polynomial-sized 
CTQW could be obtained with logarithmic complexity via multi-
photon walk. Therefore, for the polynomial-sized graphs that are 
constructed via multiphoton walks, the proposed GI algorithm can 
be implemented using our device, achieving a potential quantum 
speedup compared to the complexity cost of using a classical com-
puter. In addition, here we use phase addition to edges as the way to 
introduce local inhomogeneities, and there could also be other ways 
that induce possibly different complexities.

With our device, we experimentally demonstrated the proposed 
CTQW-based algorithm for distinguishing graphs. In total, 763 
pairs of graphs were tested, including 85 pairs of isomorphic graphs 
and 678 pairs of nonisomorphic graphs. By using two-particle 
CTQW evolutions with fermionic or bosonic symmetry, we are able 
to test graphs of up to 15 vertices. In the experiments, we construct-
ed the graph certificates CG, CH of the given graphs and distin-
guished them by investigating the classical fidelity between the two 
experimentally obtained certificates defined as   F  C   =  ∑ i      √ 

_
  C  G  (i) C  H  (i)   . 

Isomorphic graphs have ideally unity fidelity, while nonisomor-
phic graphs can only achieve a theoretical fidelity less than 1. As 
shown in Fig. 4C, the experimental and theoretical results achieve 

Fig. 4. Experimental demonstration of quantum walk–based GI algorithm. (A) Proposed CTQW-based GI algorithm. (B) Groups of SRGs numerically tested. All graphs 
in each group were compared pairwise. (n, d, , ) defines a group of SRGs, representing the numbers of vertices, degree, and common neighbors between all adjacent 
and nonadjacent vertex pairs. (C) Examples of applying the GI algorithm to graph pairs. The experimentally obtained fidelities between certificates of two graphs are 
presented, with their theoretical value overlaid. Blue bars indicate isomorphic pairs, while red bars indicate nonisomorphic pairs. The tested 30 graph pairs range from 
4- to 10-vertex. (D) Example of the similarity measure through graph certificates for comparing a five-vertex graph (embedded) with one weight edge and the original 
unweighted graph. With the weight p changing from 0.99 to 0.19, the experimentally obtained fidelity curves show obvious distinctions. (E and F) Examples of graphs 
tested on the device, respectively, pair 8 (isomorphic) and pair 20 (not isomorphic) (see section S7 for additional results).
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high agreement. Furthermore, the fidelity between the proposed 
graph certificates can be further used for applications of practical 
interest, such as measuring the similarity between two graphs. Con-
sider, for example, an unweighted five-vertex graph and the same 
graph but with only one weighted edge, then the obtained fidelities 
show clear distinctness changing with the weight (Fig. 4D), suggest-
ing a possible way for ranking similar graphs.

DISCUSSION
We have shown that a photonic circuit design consisting of recon-
figurable linear optical networks together with controllable entan-
gled photons can implement universal quantum walks and thus 
allows the simulation of thousands of CTQW evolutions for quan-
tum walk dynamics and quantum walk–based algorithms on a sin-
gle device. This approach provides full programmability and control 
over the properties of quantum walks and thus has more flexibility 
and capability than analog systems. It is more likely to be achievable 
in the short term compared to a digital quantum computer. The 
entanglement structure can be scaled up: on the one hand, by in-
creasing the size of the optical networks, where an alternative de-
sign having shorter optical depth and more robustness to losses 
could also be used (54), and on the other hand, to the simulation of 
P-particle quantum walks with tunable particle correlations, by 
subjecting a generalized P-partite entangled photonic state to P 
copies of the optical networks (34). The complementary metal- 
oxide semiconductor (CMOS)–compatible silicon photonics shows 
promise in satisfying the requirements of the scheme scaling-up—
for its great potential in implementing large-scale optical networks 
(24, 26) and multiphoton sources (55), as well as developing inte-
gration with on-chip detection (56). Our range of quantum walk 
simulation and quantum walk–based algorithms obtained high fi-
delities with the theoretical prediction, while it is still an open ques-
tion if such an analog approach can have error correction or fault 
tolerance techniques to tolerate the discrepancy with perfect agree-
ment with the theory. To this end, some technical approaches may 
be helpful, such as pushing the limits of the precision of photonic 
manipulation by using the optimized block designs of interferome-
ters (57) and compensating for fabrication errors via numerical op-
timization techniques (58). This work paves a feasible path for 
engineered photonic processors for implementing classically in-
tractable quantum walk applications and also for simulating large-
scale quantum many-body systems with various particle types, 
which could be further used in studying many-fermion behaviors 
(59), and fractional quantum interference phenomena (60).

MATERIALS AND METHODS
Device fabrication
The presented chip is designed and fabricated on a silicon-on-insulator 
(SOI) platform with top silicon thickness of 220 nm and buried 
oxide layer of 2 m. First, a shallowly etched 70-nm grating coupler 
was defined by e-beam lithography (EBL) and inductively coupled 
plasma (ICP) etching. After that, a second EBL and ICP etching 
were used to define the waveguide pattern on the SOI wafer. Then, 
a 1.5-m-thick layer of SiO2 was deposited on top of the chip by 
plasma-enhanced chemical vapor deposition. The surface of the top 
SiO2 was polished and thinned down to 0.9 m, which is used as an 
isolation layer between the silicon waveguides and the microheaters 

to avoid potential optical losses. Afterward, a 150-nm-thick NiCr 
heater and a 250-nm-thick Au pad were defined by the standard 
ultraviolet lithography, metal deposition, and liftoff process. Last, 
the chip was cleaved and wire-bonded to a printed circuit board.

Experimental setup
A tunable continuous-wave laser of 1549.3 nm is amplified with an 
optical erbium-doped fiber amplifier, spectrally filtered by a dense 
wavelength division multiplexing (DWDM) module and launched 
into the device through a V-groove fiber array (VGA), which is 127-m 
spacing and 8° angle polished from top to bottom. Photons emerg-
ing from the device are collected through the same VGA, and two 
five-channel optical switches are used to choose the output chan-
nels for photon detection, controlled from a computer. Two off-
chip DWDM module filters (200-GHz channel spacing and 1-nm, 
0.5-dB bandwidth) are used to separate the signal (red) and idler 
(blue) photons. Photons are detected by two fiber-coupled super-
conducting nanowire single-photon detectors. The polarizations of 
input/output photons are optimized by in-line polarization control-
lers. Coincidence counting logic records the two-photon coinci-
dence events. Phase shifters on the device are configured through a 
digital-to-analog converter, controlled from a computer. A Peltier 
cell controlled by a proportional integrative derivative controller is 
used to actively keep the device temperature constant.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/9/eabb8375/DC1
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