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Zika virus (ZIKV), which preferentially targets neural stem and progenitor cells (NSCs)
especially in developing brain, is causally associated with fetal microcephaly, intrauterine
retardation, and other congenital malformations in humans. However, there are, so far, no
effective drugs and vaccines against ZIKV epidemics, warranting an enhanced
understanding of ZIKV biology. Immune response is essential for neuronal cells to
combat viral invasion. In turn, neurotropic ZIKV has developed a complex strategy of
neuroimmune evasion to facilitate viral pathogenesis, especially developmental
impairment in embryonic brain. Here, we review not only overall knowledge of ZIKV-
related immune responses, but also current advances in our understanding of immune
evasion in ZIKV infection. We also review several specific mechanisms underlying ZIKV
protein-mediated immune evasion for viral pathogenesis.
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INTRODUCTION

Zika virus (ZIKV) is a single-stranded positive-sense RNA virus that belongs to the genus Flavivirus
of the family Flaviviridae. The RNA genome is translated directly into one large polyprotein, which
produces 10 viral proteins (3 structural and 7 nonstructural proteins) via proteolytic cleavage by
host and viral enzymes. The Flavivirus genus includes more than 50 arthropod-borne viruses with
public health importance including Dengue virus (DENV), West Nile virus (WNV), Yellow fever
virus (YFV), and Japanese encephalitis (JEV). ZIKV was originally isolated from a sentinel monkey
in the Zika forest or Uganda in 1947 (Dick et al., 1952). ZIKV infection in human was just
sporadically reported in a few African and Asian countries with mild symptoms (Weaver et al.,
2016) and associated with Guillain–Barre disease (Cao-Lormeau et al., 2016). However, ZIKV
unexpectedly emerged since 2015 and suddenly became a global public health threat due to its
explosive outbreaks in the Americas. In a short time, ZIKV was considered as the etiological agent
for fetal microcephaly and congenital Zika syndrome (CZS) (Rasmussen et al., 2016; Hoen et al.,
2018). In the following years, ZIKV spread to 86 countries or territories worldwide, and it was
estimated that ~3.6 billion people are living in areas at risk for transmission (Baud et al., 2017).
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ZIKV is able to lead to devastating fetal microcephaly in
infants born from infected pregnant mothers (Musso and Schot,
2016). Thousands of infants born from ZIKV-infected mothers
in the Americas had impaired neurodevelopment with thinner
cortical layers (Orioli et al., 2017). ZIKV is characterized by the
intrinsic tropism for neural stem and progenitor cells (NSCs) in
cell cultures, brain organoids, and fetal brain slices (Cugola et al.,
2016; Dang et al., 2016; Garcez et al., 2016; Liang et al., 2016;
Qian et al., 2016; Tang et al., 2016). ZIKV infection results in the
impairment of NSC proliferation and differentiation, induces cell
death, and ultimately causes cerebral developmental deficits
(Shao et al., 2016; Nielsen-Saines et al., 2019; Zeng et al., 2020).

Immune response is critical for antagonizing neurotropism
virus infection. The host utilizes multiple pattern recognition
receptors (PRRs) to patrol diverse pathogen-associated
molecular patterns (PAMPs), consequently activating antiviral
responses including the production of interferons (IFNs)
(Meylan et al., 2006). For example, retinoic acid-inducible
gene-I (RIG-I) senses ZIKV-RNA and triggers MAVS-TBK1-
IRF3 signaling and type I IFN production (Chazal et al., 2018). In
order to evade the IFN-mediated surveillance, ZIKV evolved
specific non-structural (NS) proteins for viral evasion, including
NS1 (Xia et al., 2018; Zheng et al., 2018), NS3 (Riedl et al., 2019),
and NS5 (Grant et al., 2016; Kumar et al., 2016). Notably,
mammalian multipotent stem cells including NSCs produce
little IFNs and respond poorly to IFN treatment compared to
somatic cells (Hong and Carmichael, 2013; Wu et al., 2019).
Instead, these cells rely on other antiviral machineries such as
RNA interference (RNAi) (Ding and Voinnet, 2007). Therefore,
this short review seeks to highlight recent advances in our
understanding of ZIKV protein-mediated neuroimmune
evasion, which contributes to virus pathogenicity.
ZIKV CAPSID TARGETS DICER TO
INHIBIT MIRNA BIOGENESIS IN
DEVELOPING BRAIN

In many eukaryotes, RNAi is a critical cellular mechanism by
which short RNA oligos specifically pair with targeted mRNAs to
regulate or inhibit their translation or gene expression, thereby
maintaining homeostatic function in cells. Dicer as a critical
microRNA (miRNA) biogenesis enzyme, is indispensable for the
RNAi pathway, where it functions to cleave double-strand RNAs
(dsRNAs) or stem-loop structure of pre-miRNAs into short
dsRNAs, which are then loaded on the RNA-induced silencing
complex (RISC) and processed into ~22-nucleotide (nt) mature
miRNAs (Jinek and Doudna, 2009). Consequently, the mature
miRNA pairs with the targeted complementary sequence in the
3’ untranslated region (UTR) of an mRNAmolecule and causes a
cleavage by Argonaute 2 (Ago2), the catalytic factor in the RISC,
consequently resulting in the post-transcriptional gene silencing.
Disruption of cellular miRNA homeostasis has been shown to be
closely related to numerous diseases such as neurodevelopment
deficits while miRNAs participate in almost every cellular
process. Although type I IFN response provides a main
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
protection against microbial invasion in most somatic cells,
anti-viral RNAi especially miRNAs remains dominantly active
in mammalian multipotent stem cells (Li et al., 2013; Maillard
et al., 2013) since these stem cells have intrinsically less ability to
respond to IFN treatment than other somatic cell types (Hong
and Carmichael, 2013; Wu et al., 2018). ZIKV infection has been
reported to disrupt the host miRNA profile in mammalian cells,
and importantly neuronal Dicer deficient mice exhibit
neurodevelopment disorders including microcephaly (Davis
et al., 2008), strongly suggesting the potential correlation
between Dicer dysfunction and ZIKV pathogenesis.

In a screening of the required host factors of ZIKV protein
partners in NSCs to uncover the roles of the viral proteins in the
context of ZIKV infection, ribonuclease III-like enzyme Dicer is
the top hit within the resulted ZIKV–host interactome (Zeng
et al., 2020). While Dicer is proven to be necessary for ZIKV
replication by utilizing Dicer knock-outed mouse NSCs, it is
intriguing that viral capsid-mediated interaction with Dicer
exists only in ZIKV, but not in other flaviviruses including
DENV2, WNV, JEV, YFV, JEV, HCV, OHFV, and TBEV.
Such specific interaction also expectedly leads to the phenotype
that only ZIKV capsid is able to suppress Dicer enzymatic
activity by utilizing common Dicer substrates like shRNA, pre-
miRNA, or double-strand RNA. In alignment comparison
analysis of viral capsid between ZIKV, DENV2, WNV, and
JEV, one capsid mutant (H41R) was successfully selected and
completely abolished capsid–Dicer interaction, consequently
losing the ability to inhibit Dicer enzymatic activity. Dicer is
responsible for miRNA biogenesis in mammalian cells (Zeng
et al., 2020). As a result, wild-type ZIKV (ZIKV-WT) infection
led to significant reduction of total miRNA reads, and, however,
such phenotype was absent in rescued ZIKV-H41R mutant
virus-infected NSCs. Importantly, ZIKV-WT infection resulted
in the downregulation of a panel of miRNAs including let-7a,
miR-9, miR-17, and miR-19a, which has been shown to be
important for neurogenesis and neurodevelopment. Similar
miRNA biogenesis phenotype was also observed in an animal
model of in utero ZIKV injection (Zeng et al., 2020). As expected,
utilization of this mouse model also helps confirm that ZIKV
capsid protein enabled to induce neurogenic deficits and
corticogenesis impairment by directly targeting Dicer in
developing brains. It has been known that the dysfunction to
regulate miRNA homeostasis is closely linked to a large group of
human diseases (Mendell and Olson, 2012). One example is that
Dicer knockdown is associated with microcephaly-like
phenotypes in an animal model (Davis et al., 2008). It has been
proven that fetal brain development required the critical
individual miRNAs like let-7a, miR-9, miR-17, and miR-19a
(Rajman and Schratt, 2017). Accordingly, ZIKV infection-
induced impairment of cellular miRNA homeostasis has been
reported in human NSCs (Dang et al., 2019), astrocyte-like SVG-
A cells (Kozak et al., 2017), and mosquitoes (Saldana et al., 2017).
On the one hand, ZIKV-capsid specific association with Dicer
represents a unique mechanism on why only ZIKV in flavivirus
is related to microcephaly in clinic. On the other hand, miRNAs
not only have antiviral function especially in neural stem cells
but also are essential for normal neurogenesis, and thus ZIKV
October 2021 | Volume 11 | Article 662447
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capsid achieves these two tasks by specifically targeting Dicer
(Zeng et al., 2020).

ZIKV capsid hijacks host Dicer and suppresses its enzymatic
activity to facilitate immune evasion and consequently disrupt
cortical development (Figure 1A). As a viral structural protein,
capsid is packaged into mature virion particle during virus
assembly and is released right after virus entry. As a result, the
capsid protein may not only wrap ZIKV RNA genome and
protect it from outside the cells, but also initiate immune evasion
by targeting Dicer-related RNAi pathway preceding the
translation of viral genes. Therefore, ZIKV capsid targeting
Dicer represents an elegant mechanism for ZIKV immune
evasion in developing brain.
ZIKV INFECTION INDUCES ANTI-VIRAL
SMALL INTERFERING RNAS IN
PLURIPOTENT CELLS

RNAi is an evolutionarily conserved post-transcriptional gene
silencing mechanism. Besides host microRNAs (miRNAs)
regulating mRNA homeostasis and fine-tuning gene
expression, virus-derived small interfering RNAs (vsiRNAs)
can also be produced in infected host cells (Guo et al., 2019).
In fact, vsiRNA production is an ancient innate immune
response, defending the plants and animals from virus
infection (Maillard et al., 2013; tenOever, 2016). In mammals,
the physiological importance of vsiRNAs in somatic cells
perhaps is still under investigation. It has been proposed that
canonical vsiRNAs are generated by Dicer from double-stranded
viral replicative intermediates, as evidenced by complementary
pairs of vsiRNAs mapped successively to the viral RNA genome
(Maillard et al., 2013). Once produced, vsiRNAs are loaded onto
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
AGO family proteins of the RISCs to initiate the cleavage of host
target genes and cognate viral RNAs (Guo et al., 2019). ZIKV
infection has been demonstrated to induce abundant vsiRNAs in
NSCs and hNPCs (Xu et al., 2019; Zeng et al., 2021). Zeng et al.
reported not only that vsiRNA is a limiting factor for ZIKV
infection in NSCS, but also that the total 29 vsiRNAs across the
ZIKV genome through AGO-associated RNA-seq. More
importantly, the production of these vsiRNAs is demonstrated
to be dependent on Dicer. The vsiRNA-p18, the most abundant
one within the identified 29 vsiRNAs, was detectable in ZIKV-
infected NSCs while its physiologically antiviral effect remains
unknown (Zeng et al., 2021). Similar evidence was also shown by
Xu et al. that ZIKV infection induced abundant vsiRNA
productions in human neural progenitors by direct deep RNA
sequencing on ZIKV-infected cells. Similarly, the vsiRNAs’
physiological importance was uncovered by the fact that the
ablation of key RNAi machinery components greatly facilitates
ZIKV replication, and that increased anti-ZIKV activity in
hNPCs was observed in the treatment of the enoxacin, a
known RNAi enhancer (Xu et al., 2019). Although the
advances described above have been achieved, further studies
are needed to investigate how these vsiRNAs are produced and
what are the physiological functions of these vsiRNAs.
ZIKV NS3 ANTAGONIZES RIG-I-/MDA5-
MEDIATED INNATE IMMUNITY

Innate immune sensors along with other critical transcription
factors involved in interferon (IFN) signaling are necessary to
restrict ZIKV pathogenesis (Serman and Gack, 2019). Upon viral
RNA sensing, RIG-I and MDA5, both of the RIG-I-like receptor
(RLR) family, translocate from the cytosol to the mitochondria
A B C

FIGURE 1 | Representative ZIKV protein mediated immune evasion for facilitating viral pathogenesis. (A) ZIKV capsid interacts with Dicer, the host endoribonuclease
responsible for producing mature miRNA from pre-miRNA, and dampens global miRNA production in neural stem cells. Because miRNA is necessary for both
neurogenesis and antiviral function, the capsid-mediated miRNA inhibition causes neurogenesis impairment and reduced miRNA-mediated antiviral activity in
developing brain. (B) ZIKV NS3 encodes a highly conserved 14-3-3-binding motif, which enables it to interact with 14-3-3ϵ/h required for translocation of RNA
sensor RIG-I and MDA5, respectively, from cytosol to mitochondria. Such interaction prevents the translocation and thus RIG-I- and MDA-mediated antiviral
interferon responses. (C) mTOR is a host factor necessary for neurogenesis and autophagy inhibition. ZIKV NS4A and NS4B inhibit Akt-mTOR signaling with
unknown mechanisms and consequently impair neurogenesis and promote autophagy, thereby contributing to ZIKV pathogenesis in developing brain.
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and chemically activate kinase transcription factors including
TBK1, IRF3, and IRF7. These transcription factors enter the
nucleus to initiate IFN response, upregulate a large panel of IFN-
stimulated genes (ISGs), and finally trigger to form antiviral
status (Bowen et al., 2017; Chazal et al., 2018; Hertzog et al.,
2018). Thereof, 14-3-3 family contains several immune-related
protein members and translocates the RLR sensors to the
targeted organelles in innate immunity. For example, 14-3-3ϵ
facilitates the translocation from cytosol to mitochondria of the
RIG-I, and 14-3-3h promotes the translocation of MDA5 to
mitochondria and consequently enhances antiviral IFN response
(Liu et al., 2012; Lin et al., 2019). ZIKV has been developed to
inhibit or postpone IFN production and IFN-induced signaling
such as ISG expression. One delicate study (Riedl et al., 2019) has
shown that the ZIKV NS3 protein antagonized RIG-I- and
MDA5-mediated anti-viral cascades via disguising itself to
competitively associate with the 14-3-3 (Figure 1B).
Interestingly, a NS3 mutation that fails to bind 14-3-3ϵ/h was
defined and, as a result, the rescued NS3 mutation-containing
recombinant ZIKV triggered enhanced anti-viral IFN response
and consequently displayed the reduced replication capacity in
SVGA cells. Interestingly, the viral protein-mediated mechanism
targeting 14-3-3 is also present in other flaviviruses including
DENV and WNV (Liu et al., 2012), and further delicate
investigation of this immune evasion mechanism helps to look
for molecule-targeting therapies or develop novel attenuated
virus as a targeting strain for new vaccines.
ZIKV NS4A/4B DEREGULATES AKT-MTOR
SIGNALING TO INHIBIT NEUROGENESIS

The PI3K-Akt-mTOR pathway is one of the cellular signaling
pathways indispensable for neurogenesis and migration (Lee,
2015). Prenatal development is the most active stage regarding
neurogenesis that populates the developing brain with neurons
(Gotz and Huttner, 2005). Dysfunction in neurogenesis and
differentiation could cause neurodevelopmental disorders such
as microcephaly in humans (Ming and Song, 2011). Specifically,
genetic mutations in the PI3K-Akt-mTOR pathway may be
present in brain overdevelopment syndromes including
megalencephaly-capillary malformation (MCAP), and
megalencephaly-polydactyly-polymicrogyria-hydrocephalus
(MPPH) (Mirzaa et al., 2013). Instead, mechanistic target of
rapamycin (mTOR)-targeted suppression in developing brain
caused microcephaly (Cloetta et al., 2013). Akt is an upstream
molecule of mTOR and is the central player of the PI3K pathway.
Interestingly, non-functional Akt mutation also caused
microcephaly in humans, and instead, activating Akt mutation
led to megalencephaly (Nellist et al., 2015). Viral pathogens have
been reported to target the PI3K-Akt-mTOR pathway for their
multiplication and pathogenicity in mammals (Buchkovich
et al., 2008).

ZIKV, DENV, and HCV have been reported to hijack host
cellular autophagy for viral multiplication (Heaton and Randall,
2010; Hamel et al., 2015). The mTOR kinase is the central player
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
for autophagy induction, with activation of mTOR by Akt and
MAPK inhibiting autophagy. Instead, AMPK and p53 signaling
induced mTOR inactivation and facilitates autophagy (Jung
et al., 2010). mTOR inactivation triggers downstream serine/
threonine kinase UNC-51-like kinase-1 (ULK1), the mammalian
homolog of yeast Atg1, which facilitates class III PI3K complex
formation and finally induces autophagosome formation (Kim
et al., 2011). Consistently, autophagy provides host protection
against viral infection. Herpesviruses such as Kaposi’s sarcoma-
associated herpesvirus (KSHV) and Epstein–Barr virus (EBV)
inhibit cellular autophagy, utilizing viral proteins for their
persistent infection establishment (Lee et al., 2009; Williams
and Taylor, 2012; Liang et al., 2013).

Human neural stem cells and iPSC-derived neural organoids
are known to be vulnerable to ZIKV infection (Garcez et al.,
2016; Qian et al., 2016; Tang et al., 2016). This suggests the causal
link between ZIKV infection and human microcephaly through
neurogenesis suppression. Via two primary isolates of fetal
neural stem cells (fNSCs), the study showed that the
mechanism underlying ZIKV infection might destroy fetal
brain development (Liang et al., 2016). Specifically, impairment
of neurosphere growth and neural differentiation as well as
aberrant autophagy were induced by ZIKV infection of human
fNSCs. In the screening of individual ZIKV protein, it is
interesting that both NS4A and NS4B synergistically inhibited
host Akt-mTOR signaling, impaired the neurogenesis of human
fNSCs, and upregulated autophagy (Figure 1C). The resulting
promotion of viral replication in turn caused more impairment
of neural development. Thus, ZIKV NS4A and NS4B are
potential virulence determinants of viral neuroimmune evasion
and viral pathogenesis, discovering the promising targets for
anti-ZIKV therapeutic interventions.
ZIKV INHIBITS THE CGAS-STING
PATHWAY

cGAS-STING as a critical innate immunity pathway has been
shown to antagonize flavivirus infection (Schoggins et al., 2015;
Aguirre et al., 2017; Sun et al., 2017) and accordingly flaviviruses
also evolved multiple strategies to evade this pathway. cGAS-
generated cGAMP-mediated IFN signaling in response to ZIKV
infection in human fibroblasts was reduced while this reduction
could not be observed in mouse fibroblasts. Mechanistically,
ZIKV NS2b3 protein utilizes its enzymatic activity to cleave
human but not mouse STING (Ding et al., 2018). However,
although fibroblasts from rhesus macaque and chimpanzee are
permissive to ZIKV infection, STING protein from these species
can be cleaved by ZIKV NS2b3, suggesting the existence of
another unknown mechanism. An interesting study reported
that ZIKV NS1 not only triggered NLRP3 inflammasome
activation but also contributed to caspase-1 stabilization, which
facilitated caspase-1-mediated cleavage of cGAS in human THP-
1 cells (Zheng et al., 2018). The further investigation on how
NS2b3 or other ZIKV proteins modulate cGAS-STING signaling
pathway is needed in future studies.
October 2021 | Volume 11 | Article 662447
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ZIKV ANTAGONIZES THE JAK-STAT
SIGNALING PATHWAY

ZIKV infection has been demonstrated to regulate IFN response
and its downstream signaling (Grant et al., 2016; Van der Hoek
et al., 2017; Wu et al., 2017). JAK1, an important molecule in IFN
signaling downstream, was decreased in ZIKV-infected A549
cells. A preliminary study showed that ZIKV NS2b3 protease was
responsible for such decrease of JAK1 protein and JAK1 protein
was stabilized by proteasome inhibitor MG132, suggesting the
proteasome-mediated JAK1 degradation. However, details of
relevant mechanisms are needed to uncover how ZIKV NS2b3
modulates JAK1 protein physiology. STAT1 and STAT2
phosphorylation is additionally a critical event in IFN
downstream signaling. Strikingly, ZIKV infection prevented the
phosphorylation of STAT1 at residue Tyr701 and STAT2 at
residue Tyr689 in human A549 and dendritic cells. Specifically,
ZIKV NS5 protein has been shown to not only inhibit
endogenous STAT1 phosphorylation in HEK293T cells upon
IFN-b stimulation but also degrade human STAT2 molecule in
multiple cell lines. Further evidence showed that such
degradation was mediated by the proteasome because the
MG132 can inhibit STAT2 degradation (Grant et al., 2016).
However, it is still unknown so far how ZIKV NS5 modulates the
JAK-STAT signaling pathway for viral pathogenesis.
ZIKV MODULATES TBK1-MEDIATED
IMMUNE SIGNALING

There are multiple lines of evidence supporting the modulation
of immune molecule TBK1 by ZIKV infection (Wu et al., 2017;
Xia et al., 2018; Lin et al., 2019). Endogenous TBK1
phosphorylation and thus IFN response was tremendously
inhibited by ZIKV NS1 and NS4B expression in Sendai-
infected A549 cells (Wu et al., 2017). ZIKV NS1 and NS4B
were shown to associate with TBK1 to reduce TBK1
oligomerization; however, the consequence of such reduction
remains unknown. ZIKV NS5 was associated with TBK1 and
TRAF6, the latter being a TBK1-binding partner, and thus
caused compromised TBK1–TRAF6 association. However, the
detailed effect on such NS5-mediated modulation on
physiological ZIKV infection remains to be investigated.
Additionally, the residue 181 in ZIKV NS1 protein was critical
for NS1-TBK1 binding and inhibited RIG-I mediated IFN
signaling and production, because the mutation from valine to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
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mediated phosphorylation of RIG-I-2CARD at Ser-172 and Ser-
396 respectively, thereby resulting in the inability of RIG-I-
mediated IFN response. It was reported that ZIKV NS5 not
only decreased phosphorylation IRF3 at Ser-396 by TBK1 in
HEK293 cells but also interacted with endogenous IRF3 through
MTase domain (Xia et al., 2018), which together inhibited IRF3-
mediated IFN response.
CONCLUDING REMARKS

ZIKV became a terrible pathogenic agent since 2015 due to its
ability to cause neurogenesis impairment in developing brain
and, consequently, microcephaly. Importantly, delayed
childhood neurodevelopment and neurosensory alterations in
ZIKV-exposed macaques or children have been documented
(Nielsen-Saines et al., 2019; Valdes et al., 2019; Raper et al.,
2020). Therefore, the existence of short-term and long-term
effects of ZIKV infection is calling for further understanding
ZIKV biology. Embryonic development, the stage in which ZIKV
prefers to invade, is accompanied with complicated
neuroimmune regulation involved interactively in mother,
placenta, and embryo. The efficient evasion of innate immune
defenses by ZIKV is indispensable to facilitate viral infection.
Thus, investigation on how ZIKV could evade the host innate
immune defenses is an essential topic to understand how ZIKV is
able to invade fetal brain. More delicate studies on how ZIKV
exerts neuroimmune evasion not only contribute to
understanding ZIKV pathogenesis but also offer useful basis
for anti-viral drug development.
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