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In this review, we focus on gut microbiota profiles in infants and adults colonized (CDC)
or infected (CDI) with Clostridioides difficile. After a short update on CDI epidemiology
and pathology, we present the gut dysbiosis profiles associated with CDI in adults
and infants, as well as the role of dysbiosis in C. difficile spores germination and
multiplication. Both molecular and culturomic studies agree on a significant decrease
of gut microbiota diversity and resilience in CDI, depletion of Firmicutes, Bacteroidetes,
and Actinobacteria phyla and a high abundance of Proteobacteria, associated with
low butyrogenic and high lactic acid-bacteria levels. In symptomatic cases, microbiota
deviations are associated with high levels of inflammatory markers, such as calprotectin.
In infants, colonization with Bifidobacteria that trigger a local anti-inflammatory response
and abundance of Ruminococcus, together with lack of receptors for clostridial toxins
and immunological factors (e.g., C. difficile toxins neutralizing antibodies) might explain
the lack of clinical symptoms. Gut dysbiosis amelioration through administration of
“biotics” or non-toxigenic C. difficile preparations and fecal microbiota transplantation
proved to be very useful for the management of CDI.

Keywords: Clostridium difficile infection, gut microbiota, dysbiosis, biotics, fecal microbiota transplantation

INTRODUCTION

Clostridioides (formerly Clostridium) difficile is a Gram-positive, obligate anaerobe, spore-forming
bacteria, harboring a plethora of surface and secreted proteins responsible for the colonic
colonization and subsequent inflammation characteristic for C. difficile infection (CDI), among
which the most important are the clostridial toxins: toxin A (TcdA) and toxin B (TcdB), and in
some bacterial strains, the binary toxin CDT (Smits et al., 2016). Clinical symptoms range from
mild diarrhea to fulminant colitis, known as pseudomembranous colitis, with its complications –
toxic megacolon and large bowel perforation (McDonald et al., 2018; Dieterle et al., 2019). C. difficile
is the number one causative agent of nosocomial post-antibiotic colitis, associated with high
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morbidity and mortality (Ghose, 2013). In the last decade, both
frequency and severity of CDI have increased, largely due to
the emergence of a hypervirulent strain called NAP1 (North
American pulsed-field gel electrophoresis type 1 strain) (Depestel
and Aronoff, 2013). Moreover, in the last two decades, there
has been a significant increase in the incidence of CDI in
previously considered low-risk population categories, including
community-associated-Clostridioides difficile infections (CA-
CDI), with more than 30% of cases not showing typical CDI
risk factors, such as antibiotic treatment or recent hospitalization
(Wilcox et al., 2008; Hensgens et al., 2011). Although CDI is the
preserve of the elderly population, it can also affect other age
segments. In a retrospective survey performed by U.S. National
Hospital Discharge Surveys from 2001 to 2010 revealed that
CDI incidence was highest among elderly adults (11.6 CDI
discharges/1,000 total discharges), followed by adults (3.5 CDI
discharges/1,000 total discharges) and pediatrics (<12 years)
(1.2 CDI discharges/1,000 total discharges). The mortality rates
attributable to CDI in the elderly were significantly higher
(8.8%) compared to adults (3.1%) and pediatrics (1.4%) (Pechal
et al., 2016). Although there is not much information available
about the epidemiology of infection in infants, however, the
carriage rate of non-toxigenic C. difficile is very high in
newborns, suggesting the commensal status of this bacterium
in this population segment (Sammons et al., 2013; Borali
and De Giacomo, 2016). For this reason, C. difficile is not
considered an enteric pathogen in infants and children affected
by bloody diarrhea and younger than 12 months (Cama et al.,
2019). However, asymptomatic infants could be also infected
by toxigenic adult infectious strains both after hospitalization
and even in the community, thus, constituting a reservoir for
toxigenic strains (Rousseau et al., 2011; Ferraris et al., 2020).

This review aims to present some particular aspects of gut
microbiota in CDI infants and adults, taking into account
that the pathophysiology of this disease suggests that the
clinical manifestations occur in cases of an imbalance of the
intestinal microbiota, known as dysbiosis. In this purpose, studies
performing culture-dependent (C. difficile cultivation) and
independent (16S rRNA and metagenomics) have been analyzed.

Some of the underlying causes of intestinal dysbiosis are
antibiotic treatments (Kukla et al., 2020), advanced age (over
65 years), hospitalization (particularly in patients sharing the
hospital room with an infected patient, in intensive care units,
during prolonged hospitalization), nursing home stay, severe
associated diseases, immunological suppression, gastric acidity
suppression by proton pump inhibitors or histamine2-receptor
antagonists and prolonged use of elemental diet in the context of
enteral nutrition, inflammatory bowel diseases, gastrointestinal
surgery (in particular colectomy, small-bowel resection, and
gastric resection were associated with the highest risk while
patients undergoing cholecystectomy and appendectomy had the
lowest risk), all of these circumstances being associated with
characteristic changes in the configuration of the gut microbiota
and with an increased CDI risk (O’Keefe, 2010; Fashner et al.,
2011; Nitzan et al., 2013; Rodriguez et al., 2016; Sartelli et al.,
2019; Avni et al., 2020). A strong argument regarding the
impact of dysbiosis on CDI risk is offered by animal studies

proving that correcting dysbiosis by administration of different
substances such as phytophenolic compounds or carvacrol
has been shown to decrease susceptibility to CDI. The gut
dysbiosis of 6-week-old C57BL/6 mice was induced by the oral
administration of an antibiotic cocktail in water simultaneously
with the intra-peritoneal injection of clindamycin. The mice
were infected with 105 CFU/ml of hypervirulent C. difficile
ATCC 1870 spores. Carvacrol supplementation significantly
reduced the incidence of diarrhea and improved mice’s
clinical and diarrhea scores. Microbiome analysis revealed
that carvacrol increased the abundance of Bacteroidetes and
Firmicutes. An increased abundance of Lactobacillaceae and
Lachnospiraceae was noticed among the beneficial taxa in
carvacrol treated mice. Also, carvacrol decreased the proportion
of pro-inflammatory microbiota, such as Proteobacteria (i.e.,
Enterobacteriaceae) and Verrucomicrobia, without significantly
affecting the gut microbiome diversity compared to the control
(Mooyottu et al., 2017).

Five clinical features (potential risk factors) predict
dysbiosis in CDI patients: antibiotic use within the previous
3 weeks, immunosuppression, multimorbidity, recent/multiple
hospitalization, and prior CDI (Battaglioli et al., 2018). In
individuals whose normal intestinal microbiota has been
disrupted, ingested C. difficile spores germinate in the presence
of bile salts in the small intestine and colonize the colon epithelial
cells, releasing the inflammatory enterotoxins, which are
primarily and largely responsible for the colonic inflammation
in C. difficile diseases, inducing cytoskeletal changes, disruption
of tight junctions, and induction of inflammatory cytokine
production (Shen, 2012; Winston and Theriot, 2016). The
C. difficile spores are released by the patient facilitating CDI
transmission to susceptible hosts (Czepiel et al., 2019).

Clostridioides difficile INFECTION AND
DYSBIOSIS IN ADULTS

The intestinal environment represents a complex network of
bacterial cells and metabolic products and/or other unknown
substances derived from their own structures or metabolisms,
which are in close and continuous interaction, both with each
other, as well as with the human intestinal cells and the host’s
immune system (Lazar et al., 2018, 2019).

The characterization of the baseline healthy microbiota and
differences that are associated with various diseases has been
possible with the contribution of large-scale projects, such
as Meta-HIT and the Human Microbiome Project (HMP),
using different omics technologies (Qin et al., 2010; Human
Microbiome Project, 2012).

During early development, the gut microbiota undergoes
subsequent changes until a stable adult state is reached. The
adult microbiota has three basic characteristics: diversity (a high
microbiota diversity defined by high species richness and high
functional diversity being generally associated with the health
condition), resilience (the property of the gut microbiota to resist
to an impact and to recover and to baseline after the disturbance
cessation; the capacity of a microbial community to reach a stable
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TABLE 1 | Gut microbiota dysbiosis associated with Clostridium difficile infection in adults and infants (proposed microbiota-derived biomarkers for CDI dysbiosis are
presented in bold).

Effect Taxonomic
level

Representatives Mechanism References

Adults

Depletion Gut
microbiota

Cultivable/non-cultivable microbiota Disrupted microbiota; decreased richness and
diversity

Amrane et al., 2019

Phylum Firmicutes Butyrate and short chain fatty acid production; role
in gut homeostasis and inhibition of C. difficile
germination

Antharam et al., 2013; den
Besten et al., 2013; Abt et al.,
2016

Bacteroidetes Carbohydrate digestion, producing substrates for
colonocytes

den Besten et al., 2013; Zhang
et al., 2015

Actinobacteria Amrane et al., 2019

Families Bacteroidaceae Lozupone et al., 2012

Bifidobacteriaceae Lozupone et al., 2012

Lachnospiraceae Colonization resistance Reeves et al., 2011, 2012;
Antharam et al., 2013;
Perez-Cobas et al., 2015

Clostridiales C. difficile spores germination inhibition and
colonization

Ruminococcaceae Franzosa et al., 2019; Lo Presti
et al., 2019; Wilson et al., 2019;
Berkell et al., 2021

Genera and
species

Faecalibacterium, Roseburia, Blautia, Dorea,
Prevotella, Megamonas, Subdoligranulum,
Anaerostipes, Pseudobutyrivibrio, Streptococcus,
Ezakiella, Odoribacter, Bacteroides sp., Alistipes,
B. ovatus, B. vulgatus, Bifidobacterium
adolescentis, B. longum, Oscillibacter
massiliensis, Clostridium scindens

Decrease of luminal pH by butyrogenic and
acetogenic bacteria, stimulation of mucin and
antimicrobial peptides production, maintaining
decreased permeability Primary bile acids
conversion Production of lantibiotics (nisin O)

Guilloteau et al., 2010;
Lozupone et al., 2012;
Antharam et al., 2013; Hamilton
et al., 2013; Solomon, 2013;
Gupta et al., 2016; Milani et al.,
2016; Theriot et al., 2016;
Winston and Theriot, 2016;
Hatziioanou et al., 2017; Vakili
et al., 2020

Increase Phylum Proteobacteria Rodriguez et al., 2020

Families Enterobacteriaceae Increased intestinal permeability Collins and Auchtung, 2017

Genera/
species

Finegoldia, Enterococcus, Lactobacillus,
Fusobacterium, Mycobacterium, Enterobacter,
Bacteroides, Parabacteroides, Escherichia coli,
Akkermansia muciniphila

Lactic acid bacteria Reeves et al., 2011, 2012; Na
and Kelly, 2011; Rea et al.,
2012; Rajilic-Stojanovic et al.,
2013; Gevers et al., 2014;
Milani et al., 2016; Ross et al.,
2016

Infants

Increase Genera/
species

Staphylococcus aureus, Enterococcus, Escherichia
coli, Shigella spp., Citrobacter spp., Klebsiella spp.

Triggering a pro-inflammatory response Heida et al., 2016

Decrease Phylum Bacteroidetes, Firmicutes Dobbler et al., 2017

Bifidobacteria Upregulation of IL-10 production Huurre et al., 2008

Genera/
species

Ruminococcus Morelli, 2008

state in response to chemical, physical or biological perturbations
of different intensities is achieved through genetically diverse
resident clonal populations and population-level dynamics) and
long-term stability of high taxonomic level components (Levine
and d’Antonio, 1999; Lozupone et al., 2012; McBurney et al.,
2019; Priya and Blekhman, 2019; Dogra et al., 2020).

Regarding the diversity, human microbiota displays a
remarkable heterogeneity within and between individuals, the
results of the culture-independent studies leading to the generally
accepted idea that we rather share a functional core microbiome,
than a core microbiota (Lozupone et al., 2012). The >1,000

estimated species-level phylotypes are belonging to few microbial
phyla, which are Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia; among these,
the two Firmicutes and Bacteroidetes phyla are representing 90%
of gut microbiota (Magne et al., 2020). Firmicutes comprises
more than 200 different genera, such as Lactobacillus, Bacillus,
Clostridium, Enterococcus, and Ruminococcus (Kachrimanidou
and Tsintarakis, 2020). Clostridium genera represent 95% of
the Firmicutes, while Bacteroidetes include as predominant
genera Bacteroidetes and Prevotella (Rinninella et al., 2019).
Actinobacteria are proportionally less abundant and mainly
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represented by Bifidobacterium species (Rinninella et al.,
2019). From the mentioned components, Ruminococcus and
Bifidobacterium have been reported to exhibit protective roles
against CDI (Seekatz and Young, 2014; Kho and Lal, 2018).

The gut microbiota community shows resilience to different
perturbations, such as those induced by different diets, antibiotic
administration, invasion by new species (called colonization
resistance) (Folke et al., 2004). Under the impact of a certain
disturbances, such as antibiotic administration, microbiota enters
an unstable state that progresses to a new stable state. When
the latter is highly similar to the pre-disturbance state, this
indicates a complete recovery. However, sometimes the post-
disturbance stable state is distinct and this unfortunately can be
both abnormal and resilient, as a response to the perturbation
persistence (e.g., poor diet, antibiotic treatments etc) (Dupont,
2011). An example of gut microbiota resilience is the success
of bacteriotherapy or microbiota transplantation in treating
recurrent CDI. In this case, the gut microbiota switches from
an initial dysbiosis state, favoring the CDI (e.g., increased
abundance of Veillonella and Streptococcus) to a baseline state,
in which the taxa from the healthy donor (e.g., Bacteroidetes)
persisted 1 month after transplantation (Gough et al., 2011).
A high diversity (high species richness, α-diversity) and
host immune effectors, e.g., nucleotide-binding oligomerization
domain (Nod2), an intracellular innate immune sensor involved
in the anti-infectious host defense, were linked to gut microbiota
resilience (Tap et al., 2015; Raymond et al., 2016; Goethel et al.,
2019). A low microbiota diversity was correlated with recurrent
CDI, but with unknown effects on microbiota resilience (Chang
et al., 2008; Khoruts et al., 2010). However, a comparable phylum-
level diversity was observed in individuals with initial CDI and
healthy controls, while in case of recurrent CDI the phylum-
level diversity switched to different highly divergent profiles very
different from the healthy state other (Chang et al., 2008).

The stability of gut microbiota is affected by different
factors, including genetic factors, early-life events, travel, dietary
changes, weight loss or gain, diarrheal disease, antibiotics,
immunosuppressants, premeditated interventions to influence
the microbiota by administration of prebiotics, probiotics,
postbiotics and symbiotics, as well as fecal transplantation (Faith
et al., 2013; Britton and Young, 2014).

Dysbiosis Profiles in Clostridioides
difficile Infection Patients
In this section, we will present some of the culture-dependent
and independent studies that have been performed to identify
the dysbiosis profiles (Table 1) and specific microbial derived
biomarkers in patients prone to CDI. A metagenomic and
culturomic analysis of gut microbiota dysbiosis during CDI
has shown a significant depletion of Bacteroidetes in C. difficile
patients compared with the control group (Amrane et al.,
2019). Diversity was significantly higher in the control group.
Proteobacteria were more common in the CDI group. Firmicutes
and Actinobacteria were less common in the CDI group
(Lozupone et al., 2012). Firmicutes are involved in butyrate, and
other short chain fatty acids (SCFA) production, these molecules

playing a role in gut homeostasis and inhibition of C. difficile
germination (Kachrimanidou and Tsintarakis, 2020) and
Bacteroidetes are involved in carbohydrates digestion, producing
substrates for colonocytes (den Besten et al., 2013). Depletion
of these two major phyla of gut microbiota was detected in the
C. difficile group. The bacterial families conferring resistance to
CDI are Bacteroidaceae, Bifidobacteriaceae, and Lachnospiraceae
(Antharam et al., 2013). Studies in animals with CDI, revealed a
high abundance of Proteobacteria (especially Enterobacteriaceae)
and a numerical decrease of Lachnospiraceae (Firmicutes) in
diseased animals (Reeves et al., 2011). Lachnospiraceae strains
have been shown to be able to partially restore colonization
resistance, the mice inoculated with such strains showing
decreased C. difficile colonization, lower levels of cytotoxins
and lower clinical signs of severe infection (Reeves et al., 2012).
An increased relative abundance of Enterococcus, Lactobacillus,
Escherichia coli, Enterobacter, Bacteroides, Parabacteroides,
Akkermansia muciniphila, and decreased Faecalibacterium,
Roseburia, Blautia, Prevotella, Megamonas, Streptococcus, and
Bacteroides levels were evidenced in the gut microbiota of
CDI patients (Rea et al., 2012). The bacteria found only in
the control group, which may have a role against C. difficile,
were Bacteroides ovatus, Bacteroides vulgatus and Oscillibacter
massiliensis (Lozupone et al., 2012). Only three bacteria
with a potential role against C. difficile were detected both
by culturomics and metagenomics, namely Bifidobacterium
adolescentis, Bifidobacterium longum and Bacteroides ovatus
(Lozupone et al., 2012). Overrepresentation of Akkermansia
may be a predictive marker for the development of nosocomial
diarrhea, with a worsened CDI prognosis (Hernandez et al.,
2018; Vakili et al., 2020).

Dysbiosis-Associated Biochemical
Features in Clostridioides difficile
Infection Patients
The gut dysbiosis also results in biochemical and immunological
disruptions like decreased short chain fatty acids (SCFAs)
levels, the abundance of primary bile acids, high availability of
carbohydrates, suppression of immunological mechanisms and
absence of competitors, all resulting in increased colonization
capacity, favoring germination and growth of C. difficile (Ridlon
et al., 2014; Carding et al., 2015; Goh and Klaenhammer,
2015; Valdes et al., 2018; Hills et al., 2019; Toor et al., 2019).
Nosocomial diarrheal syndromes, including CDI, were associated
not only with decreased bacterial diversity, Firmicutes paucity,
low numbers of Ruminococcaceae, Lachnospiraceae but also
with low levels of butyrogenic (e.g., Roseburia, Faecalibacterium,
Subdoligranulum, Anaerostipes, and Pseudobutyrivibrio) and
acetogenic (e.g., Blautia and Dorea) genera and with high
levels of lactic acid bacteria (e.g., Enterococcus sp.) (Antharam
et al., 2013). A decrease in butyrate-producing bacteria and an
increase in lactic acid-producing bacteria were associated with
increased CDI risk (Vakili et al., 2020). The role of SCFAs
depletion in facilitating C. difficile infection is not yet elucidated,
yet however, SCFAs could act by reducing the luminal pH
(unfavorable for C. difficile) and stimulating the defensive barrier
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by production of mucin and antimicrobial peptides (defensins
and cathelicidins, secreted by specialized cells, Paneth cells and
leukocytes in the intestinal crypts) (Guilloteau et al., 2010;
Solomon, 2013; Gupta et al., 2016). Among SCFAs, butyrate
seems to have no effect on C. difficile colonization and toxin
production, but it can protect the intestinal epithelium from
the damage caused by C. difficile toxins by stabilizing hypoxia-
inducible factor-1 (HIF-1) and increasing tight junctions, and
thus decreasing intestinal epithelial permeability, inhibiting
intestinal inflammation and bacterial translocation. The addition
of butyrate to the drinking water of mice, administration of a
pro-drug of butyrate, tributyrin, or of an inulin-rich diet (inulin
can be fermented by gut commensal bacteria, which generate
short-chain fatty acids, mainly acetate, propionate, and butyrate)
resulted in the protection of mice against CDI (Fachi et al., 2019;
Song et al., 2020).

C. difficile spore germination is regulated by the detection
of bile salt and amino acid cogerminants by pseudoproteases
CspC and CspA, respectively (Weingarden et al., 2014;
Lawler et al., 2020). Although some cholate derivatives and
the amino acid glycine could act as co-germinant factors,
deoxycholate prevents vegetative growth (Sorg and Sonenshein,
2008), while chenodeoxycholate inhibits taurocholate-mediated
germination (Sorg and Sonenshein, 2010). Commensal members
of Clostridiales present in the gut contribute to the creation
of an inappropriate environment for C. difficile germination
and colonization by modulating the production of cogerminants
(Perez-Cobas et al., 2015). For example, Clostridium scindens, a
bile acid 7α-dehydroxylating intestinal strain, is associated with
resistance to C. difficile infection, and, upon administration, it
enhances resistance to infection in association with a secondary
bile acid (Buffie et al., 2015). Depleting specific gut microbes
responsible for converting primary bile acids into secondary
antimicrobial bile acids could be associated with increased risk
of CDI (Theriot et al., 2016; Winston and Theriot, 2016).

Clostridium species are among the best-described users of
free amino acids as energy sources. Amino acids regulate
in vitro toxin production and support colonization of C. difficile
in antibiotic-treated mice. Dysbiotic microbial communities
showed significantly decreased expression of multiple genes
related to amino acid uptake and metabolism, resulting in
increased concentrations of 12 amino acids, with proline
showing significant differences when compared to healthy mice
microbiota. The ability to utilize proline provides a competitive
advantage to C. difficile in germ-free mice transplanted
with healthy-like and dysbiotic human stool consortia. Fecal
microbiota transplant reduced free proline and decreased CDI
susceptibility in dysbiotic mice (Mooyottu et al., 2017).

Recent studies have found increased indole levels (tryptophan
metabolite involved in microbial growth, virulence induction,
acid resistance, biofilm development) in the intestinal lumen
of CDI patients, suggesting that C. difficile, which cannot
produce this metabolite itself, would stimulate the production
of indole by other bacteria to stop the growth and the
development of indole-sensitive strains, including protective
gut microbiota representatives, thus ensuring an intestinal
environment conducive to its survival (Darkoh et al., 2019).

A recent study evaluated the relationship between the
composition of the intestinal microbiota and level of fecal
calprotectin in C. difficile asymptomatic and symptomatic
patients. The asymptomatic patients have shown a modified
microbiota, comparatively with the non-colonized patients,
harboring significantly lower levels of Ruminococcaceae,
Bilophila, Blautia, Faecalibacterium, Ruminococcus, and
Sutterella, and higher levels of Enterobacteriaceae. In
symptomatic patients the main devations of gut microbiota
were represented by higher levels of Bacteroides and lower levels
of Blautia, Phascolarctobacterium, Prevotella, and Succinivibrio.
These gut microbiota changes in symptomatic patients were
accompanied by significantly higher levels of fecal calprotectin,
comparatively with asymptomatic patients and controls. These
data suggest that association of microbiota and inflammatory
markers could be used to differentiate C. difficile colonization
(CDC) from CDI (Han et al., 2020).

Knowledge regarding the gut microbiota in C. difficile
colonized patients may elucidate the mechanisms that allow
for colonization whilst protecting against infection (Crobach
et al., 2020). To this end, a recent study by Crobach et al.
(2020) analyzed the bacterial signatures associated with resistance
and susceptibility to CDC and CDI. Both CDC and CDI were
associated with decreased gut microbial diversity and differences
in the relative abundance of taxa such as Lachnospiraceae,
Ruminococcaceae, Fusicatenibacter, Bacteroides, Veillonella, and
Eubacterium hallii (Crobach et al., 2020).

INFANT GUT MICROBIOTA
CHARACTERISTICS AND POSSIBLE
EXPLANATIONS FOR THE LOW
PATHOGENICITY OF C. difficile IN
NEONATES

During childhood, the intestinal microbiota is subject to many
factors that shape the microbiota on short- and long-term.
Apart from the maternal-fetal transmission of certain bacterial
components, the microbiota is influenced by the type and
the time of birth, the place of birth (hospitals or home
births), the type of feeding (breastfeeding or artificial feeding),
administration of probiotic and prebiotic supplements, dietary
factors, antibiotics and other drugs, sex, and other genetic
differences and environmental factors, such as exposure to pets,
number of family members, rural or urban environment, hygiene,
geographical factors (Combellick et al., 2018; Mohammadkhah
et al., 2018; Akagawa et al., 2019).

Taking into account the numerous factors that could
influence the intestinal microbiota of the newborns, the healthy
profile of this age group is considered to be represented
by the types of gut bacteria and the abundances found in
vaginally delivered, exclusively breastfed and not exposed to
antibiotics neonates (Arboleya et al., 2015; Combellick et al.,
2018; Mohammadkhah et al., 2018; Akagawa et al., 2019).
It has been hypothesized that bacterial colonization of the
digestive tract begins in utero, the healthy placenta bearing
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FIGURE 1 | Comparison of C. difficile infection in neonates versus adults. The presence of postnatal microbial species (Bifidobacteria and Enterobacteriaceae) and
immaturity of the immune system as well as the lack of receptors for clostridial toxins helps to protect babies from the deleterious effects of C. difficile toxins, which
occur in dysbiotic adults. In individuals with disrupted microbiota, ingested C. difficile spores germinate in the presence of bile salts in the small intestine and target
the colon epithelial cells, releasing the inflammatory toxins, which subsequently induce disruption of tight junctions, and production of inflammatory cytokines.
Targeting the microbiota using various strategies-probiotics, prebiotics, synbiotics, postbiotics, non-toxigenic C. difficile (NTCD), fecal transplant (FMT)-has proven to
be effective in alleviating CDI.

a low biomass microbiome, composed of non-pathogenic
species belonging to the Tenericutes, Firmicutes, Bacteroidetes,
Proteobacteria, and Fusobacteria phyla, while in the amniotic
fluid predominate Proteobacteria. However, the results reported
by different studies are contradictory and depend on the sampling
method and the culture-based or molecular-based approaches.
Recent metagenomic studies conclude that the placenta does
not harbor a specific, consistent and functional microbiota
(Gschwind et al., 2020). The meconium harbors a cultivable
microbiota, initially dominated by Bacteroides-Prevotella. The
digestive contamination of the fetus occurs most probably by
swallowing the amniotic fluid, starting with the 10th week after
conception (Chong et al., 2018). The transfer of Enterococcus
faecium from pregnant female mice into meconium was also
demonstrated experimentally (Jimenez et al., 2008). All these
lead to the conclusion that changes in the maternal internal
environment may affect both fetal and newborn development
(Zhuang et al., 2019).

C. difficile Colonization in Infants
Neonates are uniquely susceptible to C. difficile colonization
because of the neonatal intestine’s immaturity and intestinal
microbiota instability (Lees et al., 2016). The main source
of colonization seems to be the environmental exposure to
C. difficile spores within the nursery or healthcare environment
rather than the mother, the rates of C. difficile detection
increasing with the length of stay in these units.

In infants <1 month of age, C. difficile has an average
colonization rate of 37%, ranging between 0 and 61%. Between
1 and 6 months of age, the colonization rate is still high at
30% and drops to about 10% by the end of the first year of life
(Kuiper et al., 2017). However, the colonization rates reported by
different studies vary from 14 to 71% in children <12 months
of age. This age group is most commonly colonized with non-
toxigenic strains and they are asymptomatic (Khalaf et al., 2012).
The asymptomatic carriage rate continues to drop until about
3 years of age, when it stabilizes to carriage rates of 0–3%,
similar to those found in adults, together with a progressive raise
in serum IgG antibody concentrations against toxins A and B
between birth and 24 months of age (Antonara and Leber, 2016).
Around 3 years of age, the intestinal microbiota of the child is
stabilized, acquiring the characteristics of the adult microbiota,
which might explain the increase of symptomatic CDI starting
with this age.

Moreover, other studies are assuming that asymptomatic
carriage of C. difficile is common in the young individuals
of many other species, including dogs, pigs, and cattle (Deng
and Swanson, 2015). In puppies, the association between lower
bacterial community diversity and C. difficile colonization
was statistically significant, and certain bacterial taxa were
preferentially associated with C. difficile colonization (Berry
et al., 2019). Similar associations have also been found in
human studies. Unweaned puppies that were not colonized
with C. difficile had higher relative abundance of taxa from the
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clostridia genera than unweaned puppies that were colonized
with C. difficile (Berry et al., 2019).

Many studies have found higher colonization rates with
C. difficile in formula-fed infants than in breastfed infants
(Cooperstock et al., 1983; Jangi and Lamont, 2010). Also, the
breastfed infants colonized by C. difficile had significantly lower
colony counts than formula-fed infants, probably because the
human colostrum contains neutralizing antibodies to toxins A
and B (Rolfe and Song, 1995; Jangi and Lamont, 2010).

There are no studies comparing C. difficile carriage rate
regarding the delivery mode, but it might have persistent
effects on microbiota beyond infancy. The lack of “bacterial
baptism” of vaginal birth or other confounding factors associated
with cesarean delivery, as well as maternal obesity, antibiotic
administration, gestational age and breastfeeding pattern, could
influence the C. difficile carriage rate (Kyne et al., 2000; Liu et al.,
2019). However, there were found a significantly higher number
of Clostridia in the stool of children vaginally delivered (VD)
than in those delivered by C-section (CS) (Reyman et al., 2019).
No association was found with prematurity as a risk factor for
C. difficile infection (Lees et al., 2016).

The question arises whether the newborns and adults, which
are asymptomatic carriers of C. difficile, might have a particular
gut microbiota composition that allows colonization to occur
without any clinical manifestations. Lack of disease has also
been related to immature or diminished receptor sites for
toxin A along the intestinal epithelium (Keel and Songer,
2007). In exchange, CDI may be more likely to manifest in
certain populations of infants harboring pathological intestinal
conditions, such as those with Hirschsprung’s disease, all these
demonstrating the link between C. difficile colonization and
intestinal homeostasis (Sammons et al., 2013).

In conclusion, the high carriage rate of C. difficile colonization
in neonates can be explained by the immaturity of the neonatal
intestine and the presence of a less complex intestinal microbiota,
as compared to adults. However, postnatal microbial species,
together with the lack of receptors for clostridial toxins protect
help babies from the deleterious effects of C. difficile toxins.

Neonate Gut Microbiota Signatures
Associated With C. difficile Colonization
Considering that C. difficile only occasionally produces clinical
manifestations in infants, one can state that a specific microbiota
composition probably consolidating a specific environment in
newborns helps protect babies from the deleterious effects of
C. difficile toxins, which occur in dysbiotic adults.

The newborn microbiota is dominated by Gram-positive
cocci, Enterobacteriaceae or Bifidobacteriaceae, with a sequential
transition to a microbiota dominated by Bifidobacteriaceae. It is
well known that Bifidobacteria upregulate IL-10 production by
intestinal dendritic cells explaining the lack of clinical symptoms
in infants colonized with C. difficile (Huurre et al., 2008). In CS
neonates, decreased levels of T cells and CD4+ helper T cells
were noticed, probably due to the failure of the immature infant
immune system to activate an inflammatory response (Jangi and
Lamont, 2010; Collins and Auchtung, 2017; Francino, 2018).

Prematurity might not be a risk factor for C. difficile
infection (Lees et al., 2016), probably due to the fact that
in general, the intestinal microbiota of the premature child
is dominated by Proteobacteria, even if breastfed, and the
species of Clostridium and Veillonella appear later. However,
the microbiota of the premature infant is strongly influenced
by pre- and postnatal antibiotic therapy (Staude et al., 2018).
Hospitalization and antibiotic exposure induce indigenous
microbiota imbalance (McFarland et al., 2016). Antibiotic
treatment in neonate’s intensive care units (NICU) was associated
with a lower C. difficile colonization rate, but colonization with
C. difficile occurred rapidly after cessation of antibiotics. In
children in the NICU, born prematurely, the colonization with
Bifidobacteriaceae is delayed.

Breast milk protects against infections in infants due to the
presence of immunological factors such as immunoglobulin A
(IgA), including neutralizing antibodies to C. difficile toxins A
and B (Jangi and Lamont, 2010). Ruminococcus (which is more
commonly found in the gut of breastfed infants) is thought to
inhibit the growth of Clostridia, thereby preventing colonization
by C. difficile (Morelli, 2008).

Increased levels of immunoglobulin-producing cells in
peripheral blood have been observed in CS infants, probably due
to excessive exposure to antigens at the level of the vulnerable
intestinal barrier. In addition, breastfeeding contributes to the
maturation of the infant’s immune system and modulates
microbiota development. The microbiota of breastfed children
is less diverse but contains more Bifidobacterium spp., also
explaining the protection against deleterious pro-inflammatory
responses triggered by CDI (Derrien et al., 2019). However,
Bifidobacteria significantly decrease in abundance upon cessation
of breastfeeding.

In the clinical cases of neonate necrotizing enterocolitis
(NEC), a decrease of bacterial diversity and of Bacteroidetes and
Firmicutes phyla, as well as of Bifidobacteria, were observed, with
the more frequent presence of potentially pathogenic organisms,
such as Staphylococcus aureus, Enterococcus, Escherichia coli,
Shigella spp., Citrobacter spp., Klebsiella spp. (Dobbler et al., 2017).
Among the strictly anaerobic bacteria that have been associated
with NEC, the majority belong to the Clostridium genus (e.g.,
C. butyricum, C. neonatale, C. perfringens, C. paraputrificum, and
C. difficile have been associated with NEC in preterm neonates)
(Zhou et al., 2015; Rozé et al., 2017; Schönherr-Hellec et al.,
2018; Schönherr-Hellec and Aires, 2019). Moreover, a NEC-
associated microbiota, such as C. perfringens has been identified
in meconium samples (Heida et al., 2016).

MANIPULATION OF GUT MICROBIOTA
AS ADJUNCTIVE THERAPY OF
C. difficile INFECTION

The first step in C. difficile treatment is the de-escalation of
antibiotic treatment. Depending on the degree of C. difficile
risk induction, the antibiotics were divided into three
groups: high (fluoroquinolones, 2nd and 3rd generation
cephalosporins, clindamycin, ampicillin, broad-spectrum
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TABLE 2 | Microbiota-centered therapeutic approaches with proven beneficial effects in CDI.

Type of microbiota-targeted intervention Administration methods Effects References

Probiotics/prebiotics/synbiotics

Lactobacillus plantarum Inducia Use of xylitol as symbiotic to enhance the
probiotic engraftment and effects

Total inhibition of C. difficile spores
germination in vitro; reduction of mouse
mortality

Ratsep et al., 2017

Bifidobacterium longum Bifidobacterium breve Use oligo-fructosaccharides as a carbon
source (symbiotic effect)

Reduction in toxicity Valdes-Varela et al.,
2016

Bacillus clausii O/C Administered alone Neutralization of C. difficile toxin inhibition
of C. difficile toxins by bacterial secreted
compounds (serine protease,
M-protease)

Ripert et al., 2016;
Aktories et al., 2017

Bacillus thuringiensis Administered alone Production of bacteriocin direct inhibition Mills et al., 2018

Enterococcus durans Administered alone and with bacteriocins
(reuterin, nisin)

Production of durancin Hanchi et al., 2017

Lactobacillus reuteri Administered alone Direct inhibition production of
antibacterial substances such as reuterin
obtained through fermentation of glycerol

Spinler et al., 2017

Multi-strain capsule (Lactobacillus acidophilus
NCFM, ATCC 700396; Lactobacillus paracasei
Lpc-37, ATCC SD5275; Bifidobacterium lactis
Bi-07, ATCC SC5220; B. lactis Bl-04, ATCC
SD5219)

Administered as multi-strain capsule Probiotic adjunct therapy was associated
with a significant improvement in diarrhea
outcomes

Barker et al., 2017

Spores of Firmicutes phylum (e.g., SER-109;
SER-262)

Administration of purified spores Repopulation the gut microbiota Khanna et al., 2016;
Gnocchi et al., 2020

Postbiotics

Filtered fecal supernatant Administration of microbe-free fecal filtrates Rapid shifts in gut microbial composition Kelly et al., 2016; Hota
et al., 2017; Ott et al.,
2017

Competition for resources

Non-toxigenic C. difficile (NTCD) Gerding et al., 2015

Fecal microbiota transplantation

Consortia of fecal bacteria quality-controlled
and semi-standardized (e.g., RBX2660)

Use of fecal derivatives for the treatment of CDI Repopulation of the gut microbiota Orenstein et al., 2016

penicillins with inhibitors, except for ticarcillin with clavulanate,
and piperacillin with tazobactam), moderate (macrolides,
trimethoprim/sulfamethoxazole, other penicillins, and
sulfonamides) and low risk (aminoglycosides, bacitracin,
carbapenems, chloramphenicol, daptomycin, metronidazole,
rifampicin, teicoplanin, tigecycline, tetracycline, and
vancomycin) (Kukla et al., 2020). Current standard treatment for
CDI involves treatment with antibiotics such as metronidazole,
vancomycin, or fidaxomicin (Mills et al., 2018; Gnocchi et al.,
2020). Vancomycin is the first-line antibiotic therapy for both
first episode of infection and fulminant infections in adults
(Esposito et al., 2015; Wang et al., 2020). Unfortunately,
vancomycin is a strong disruptor of gut microbiota, while the
rate of CDI recurrence after treatment cessation occurs in 20–
30% of patients (Lessa et al., 2015; Winston and Theriot, 2016).
On the other hand, metronidazole is used especially in the first
episodes of mild acute CDI and less for severe disease because
the concentrations in the colon become readily undetectable
due to the fact that it is absorbed very quickly (Gnocchi et al.,
2020). The rapid absorption from the gut is also reflected in
a negligible effect on normal microbiota (Lessa et al., 2015;
Chilton et al., 2018). Fidaxomicin can be used in C. difficile
non-severe and also severe infections treatment due to the fact

that it is poorly absorbed at the intestinal level, ensuring the
persistence of killing concentration in the gut and has a narrow
antimicrobial spectrum (e.g., Gram-positive and Gram-negative
anaerobes and facultative aerobes) unaffecting the equilibrium
of the normal intestinal microbiota (Tannock et al., 2010;
Louie et al., 2011, 2012; Gnocchi et al., 2020). Moreover, in
another study, vancomycin and metronidazole treatment, but
not fidaxomicin were associated with the potentially pathogenic
fungal operational taxonomic units’ emergence as well as with
bacterial functions enriched for xenobiotic metabolism that
could contribute to dysbiosis that could favor the occurrence,
persistence and recurrence of CDI (Lamendella et al., 2018).

Adjunctive therapies are frequently used due to the important
role of gut microbiota disturbances in C. difficile pathogenesis
(Table 1 and Figure 1). Thus, specific manipulation of the
microbiota to ameliorate dysbiotic changes and restore intestinal
microbiota homeostasis could represent an essential part of the
therapy (Table 2).

One way to modulate microbiota is using “biotics”
with beneficial impact on resident microbiota that confer
health benefits for the host, such as probiotics (e.g.,
Saccharomyces boulardii, Lactobacillus, Bifidobacterium,
and probiotic mixtures), prebiotics, symbiotics or postbiotics
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(Surawicz et al., 2000; Na and Kelly, 2011; Maziade et al.,
2015; Collins and Auchtung, 2017). According to International
Scientific Association for Probiotics and Prebiotics (ISAPP)1,
prebiotics are substrates different from fibers, that are
selectively metabolized by host microorganisms. Synbiotics
are complementary/synergistic mixtures comprising live
microorganisms (probiotics) and prebiotics. In case of
synergistics synbiotics the two components taken individually
do not have to meet criteria for prebiotic or probiotic. Postbiotics
are cellular fractions or structures prepared from inactivated
microbes. The postbiotic preparations exclude filtrates or live
cultures individual components, while inactivated probiotics are
not considered automatically postbiotics, unless a health benefit
is demonstrated.

Most data regarding the protective role of commensal bacteria
against C. difficile infection were obtained by studying the
effects of different probiotics. For example, Bifidobacterium breve
(YH68), widely used in the field of food fermentation and
biomedicine, has shown antibacterial activity against C. difficile,
by inhibiting the growth, spore production, toxigenesis and
virulence gene expression (Valdes-Varela et al., 2016; Yang and
Yang, 2019), potentiating the effect of anti-C. difficile antibiotics
in vitro (Yang and Yang, 2018) or preventing the occurrence of
clinical manifestations in vivo (Yun et al., 2017). Probiotic use has
been shown to decrease CDI incidence in high-risk populations
by as much as 50%, especially when they are combined with
prebiotics (Shen et al., 2017).

It was demonstrated that the administration of non-living
bacteria or microbial components (e.g., proteins, lipids, or
nucleic acids) has an immunostimulatory effect proving that
the beneficial impact on the host health is due to the physical
interaction of specific microbial components, but in order to be
effective for a long period, these need continuous administration.

Many bacterial strains such as Bacillus clausii and
Lactobacillus reuteri have been shown to secrete soluble
compounds that directly inhibit C. difficile (Khalaf et al.,
2012; Deng and Swanson, 2015; Antonara and Leber, 2016).
Organisms that produce secondary bile acids, such as
Clostridium scindens, enhance C. difficile colonization resistance
(Winston and Theriot, 2016).

Fecal microbiota transplantation (FMT) is considered the
most effective microbiota-targeted intervention for the treatment
of antibiotic-refractory CDI (Arbel et al., 2017), but however, the
long-term effects, including the risk of other diseases, are not
known (Schaffler and Breitruck, 2018).

1 https://isappscience.org/a-roundup-of-the-isapp-consensus-definitions-
probiotics-prebiotics-synbiotics-postbiotics-and-fermented-foods/

Another therapeutic approach is the administration of
non-toxigenic C. difficile strains or a mixture of spore-
forming commensals, which act by providing nutritional
niche competition. Despite their efficiency in decreasing CDI
recurrence, there is the risk of switching to the toxigenic
phenotype (Brouwer et al., 2013; Khanna et al., 2016).

CONCLUSION

The available studies suggest that C. difficile colonization
and infection are influenced by the presence, absence or
abundance of certain bacteria in the human gut, which could
generate favorable conditions for germination, proliferation
and production of clostridial toxins which, on their turn,
will alter the integrity of the intestinal mucosa. Therefore,
the clinical manifestations and severity of CDI are linked to
gut dysbiosis, that could have multiple causes, among which
the administration of high-risk antibiotics. The presence of
protective microbial species, together with the particularities
of the immune system and lack of receptors for clostridial
toxins could explain the fact that in children, despite the
high carriage rate, the symptomatic and severe cases are rare.
However, if there is a gut microbiota composition predisposing
to C. difficile asymptomatic carriage or clinical infection still
needs clarification. Also, the mechanisms involved in C. difficile
crosstalk with the commensal microbiota and/or particular
soluble compounds remain only partially explained. Adjunctive
microbiota-targeting therapies based on probiotics, prebiotics,
postbiotics, synbiotics, non-toxigenic bacteria or fecal microbiota
transplantation proved to be very useful for the therapeutic
management of CDI.
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