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Assessment of photoacoustic 
tomography contrast for breast 
tissue imaging using 3D correlative 
virtual histology
Gurneet S. Sangha1,2, Bihe Hu3, Guang Li3, Sharon E. Fox4,5, Andrew B. Sholl6, 
J. Quincy Brown3 & Craig J. Goergen2,7*

Current breast tumor margin detection methods are destructive, time-consuming, and result in 
significant reoperative rates. Dual-modality photoacoustic tomography (PAT) and ultrasound has the 
potential to enhance breast margin characterization by providing clinically relevant compositional 
information with high sensitivity and tissue penetration. However, quantitative methods that 
rigorously compare volumetric PAT and ultrasound images with gold-standard histology are lacking, 
thus limiting clinical validation and translation. Here, we present a quantitative multimodality 
workflow that uses inverted Selective Plane Illumination Microscopy (iSPIM) to facilitate image 
co-registration between volumetric PAT-ultrasound datasets with histology in human invasive ductal 
carcinoma breast tissue samples. Our ultrasound-PAT system consisted of a tunable Nd:YAG laser 
coupled with a 40 MHz central frequency ultrasound transducer. A linear stepper motor was used 
to acquire volumetric PAT and ultrasound breast biopsy datasets using 1100 nm light to identify 
hemoglobin-rich regions and 1210 nm light to identify lipid-rich regions. Our iSPIM system used 
488 nm and 647 nm laser excitation combined with Eosin and DRAQ5, a cell-permeant nucleic 
acid binding dye, to produce high-resolution volumetric datasets comparable to histology. Image 
thresholding was applied to PAT and iSPIM images to extract, quantify, and topologically visualize 
breast biopsy lipid, stroma, hemoglobin, and nuclei distribution. Our lipid-weighted PAT and iSPIM 
images suggest that low lipid regions strongly correlate with malignant breast tissue. Hemoglobin-
weighted PAT images, however, correlated poorly with cancerous regions determined by histology 
and interpreted by a board-certified pathologist. Nuclei-weighted iSPIM images revealed similar 
cellular content in cancerous and non-cancerous tissues, suggesting malignant cell migration from the 
breast ducts to the surrounding tissues. We demonstrate the utility of our nondestructive, volumetric, 
region-based quantitative method for comprehensive validation of 3D tomographic imaging methods 
suitable for bedside tumor margin detection.

Approximately one in eight women will develop invasive breast cancer during their  lifetime1, highlighting a 
clinical need to develop advanced imaging methods that improve breast cancer characterization and diagnosis. 
Generally, lumpectomy is the gold standard for breast cancer removal. However, this lengthy and expensive 
surgical procedure results in a reoperative rate of 10–70%, depending on the surgeon’s experience and tumor 
 complexity2–6. The breast tissue excised during lumpectomy typically undergoes histological analysis to charac-
terize the tissue margin. Cancerous tissue with less than 2 mm of healthy tissue surrounding the edge, referred 
to as a close margin, or cancerous tissue touching the edge of the resection specimen, referred to as a positive 
margin, commonly results in the patient undergoing another lumpectomy procedure to remove all tumor tissue. 
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Cytological examination and frozen sectioning are the current gold standards, but both methods are time-
consuming and have suboptimal  accuracy6,7. Therefore, the clinical problem is two-fold as positive margins are 
detected after the procedure leading to relatively high reoperative rates. Additionally, intraoperative histological 
analysis is a destructive process that limits post-operative histological evaluation. There is a clear clinical need 
to develop nondestructive intraoperative methods for rapid tumor margin detection to reduce reoperative rates 
and improve patient outcomes.

In the past decade, numerous reports have described prospective methods to improve intraoperative breast 
tissue  characterization6,8. The problem is that a single technique cannot rapidly distinguish tumor margins with 
high sensitivity and deep tissue penetration. Radio frequency spectroscopy and ultrasound imaging can provide 
real-time imaging to reduce intraoperative time, but neither provide compositional or molecular information that 
can enhance cancer tissue  detection9–13. Near-infrared fluorescence imaging has shown potential in providing 
in vivo information during breast cancer  removal14–16, but requires exogenous contrast agents that still must be 
optimized for targeting efficiency, toxicity, and specificity, leading to regulatory approval challenges. Likewise, 
diffuse optical tomography has also been developed for in vivo breast cancer characterization but lacks the 
necessary resolution required to assess tumor  margins17,18. Other optical techniques, such as diffuse reflectance 
imaging, optical coherence tomography, and Raman spectroscopy can provide high-resolution images to better 
characterize breast tumor margins, but these methods generally have long image acquisition times and subop-
timal penetration  depths19–25.

Photoacoustic tomography (PAT) has emerged as a promising label-free method to improve breast margin 
characterization by providing compositional information with superior penetration depth than conventional 
optical  techniques26–29. The photoacoustic effect relies on interactions between pulsed laser light and tissue 
chromophores that generate acoustic waves acquired to reconstruct an image. The wavelength of pulsed laser 
light is tuned to visualize tissue composition, such as hemoglobin and lipid distribution at 1100 nm and 1210 nm 
 light26,30. When combined with conventional ultrasound imaging, the user can visualize both breast tissue struc-
ture and composition. It is hypothesized that PAT can differentiate non-cancerous lipid-rich and abnormally vas-
cularized hemoglobin-rich cancerous  tissue8,31–33. Multiple reports support that dual-modality photoacoustic and 
ultrasound imaging may improve intraoperative breast cancer  detection26–28. More recently, a conflicting study 
suggested that ex vivo PAT imaging of hemoglobin distribution correlates poorly with ultrasound-determined 
tumor  location34. Comparing gold-standard histology, clinical imaging, and photoacoustic data is inherently 
challenging due to image co-registration issues. Thus, these conflicting PAT reports may be partially due to a 
lack of robust co-registration methods to accurately compare histology or gold-standard clinical imaging results 
with photoacoustic imaging datasets at the same location.

Inverted selective plane illumination microscopy (iSPIM) is an advanced optical imaging technique and vari-
ant of light-sheet microscopy that can help address image co-registration challenges for the validation of volumet-
ric label-free imaging modalities. iSPIM uses an excitation light sheet to illuminate a plane of tissue, inducing a 
fluorescence emission collected using a detection objective. This approach allows users to acquire high-resolution 
volumetric datasets with imaging rates 30 × faster compared to conventional microscopy  techniques35. Although 
iSPIM has limited depth penetration for intraoperative use, combined with tissue clearing techniques, it can pro-
vide large volume datasets with histological contrast and resolution that can be co-registered to lower resolution 
label-free  techniques36–42. These high-resolution volumetric datasets can provide structural information regarding 
ducts and blood vessels, lipid distribution, and cellular density. Taken together, iSPIM can help coordinate PAT 
image co-registration with gold-standard histology, and additionally provide independent volumetric high-
resolution histological confirmation of sources of contrast present in 3D label-free PAT images.

Here, we present a novel multimodality imaging workflow to quantify the utility of PAT for breast biopsy char-
acterization (Fig. 1). To do this, we developed a method using high-resolution iSPIM imaging to facilitate image 
co-registration between PAT-ultrasound datasets and gold-standard histology. We chose rapid, high-resolution 
PAT and ultrasound as a proposed method for depth-resolved tumor margin characterization due to their ease 
of integration that provides both tissue structure and label-free composition. Additionally, we use co-registered 
iSPIM volumes for independent 3D histological validation due to its rapid, large field of view imaging capabilities 
while being compatible with conventional sample mounting. We take advantage of our nondestructive volumetric 
imaging datasets and also quantify tissue composition and distribution in multiple regions throughout the breast 
tissue sample. Finally, we describe the current challenges regarding clinical multimodality breast tissue imaging 
and potential solutions using emerging engineering approaches.

Methods
Tissue acquisitions and preparation. Six breast cancer tissues from distinct patients were acquired from 
the Indiana University Simon Cancer Center (IUSCC) Tissue Bank. All six samples were imaged and three 
heterogenous biopsies were chosen for quantitative analysis. Samples were excised from female patients who 
underwent lumpectomy procedures and were subsequently diagnosed with infiltrating/invasive ductal carci-
noma. Tissues were initially frozen followed by fixation in 4% paraformaldehyde for 24 h. These samples were 
then submerged in 0.1% paraformaldehyde and stored in a 4 °C refrigerator until imaged.

Photoacoustic tomography. A custom designed PAT system was used to acquire 3D compositional 
information from the breast cancer biopsies (Supplementary Fig. S1). This system consisted of a high-resolution 
small animal ultrasound system (Vevo2100, FUJIFILM VisualSonics) with a 128 element, 40 MHz central-fre-
quency probe coupled with a Nd:YAG optical parametric oscillator laser (Surelite EX, Continuum). Nd:YAG 
laser delivered a 10 Hz, 5 ns pulse ranging from 670 to 2300 nm to the tissue through a fiber optic bundle. The 
fiber optic bundle had an opening diameter of 1.0 cm and rectangular terminals of 12 × 2  mm2. These rectan-
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gular terminals were attached to the sides of the ultrasound transducer to couple light delivery and ultrasound-
PAT signal acquisition. Synchronization of pulse delivery and signal acquisition was performed using a func-
tion generator (33220A, Agilent) that delivered a 10 Hz, 10 µs transistor-transistor logic signal to the laser and 
ultrasound system. PAT and ultrasound co-registration was achieved using a delay generator (DG535, Stanford 
Research System). For this study, we used 1100 nm light to produce hemoglobin-specific contrast, 1210 nm light 
to produce lipid-specific contrast, and 1400 nm light as an off-resonance control.

To minimize tissue movement during 3D scans, the breast cancer biopsies were fixed in place using 1% low-
melt agarose in a silicon petri dish. Deionized water was used as an acoustic coupling media to eliminate bubble 
artifacts that are commonly observed with ultrasound gel. A MATLAB algorithm was then used to control a 3D 
step-wise motor to translate the PAT probe across the breast cancer biopsy in the y-direction and acquire both 
PAT and ultrasound images. The 3D motor was moved 0.193 mm across the sample and then paused to acquire 10 
PAT images. This process was repeated for the anterior and posterior sides of the breast biopsies. Once the entire 
sample was imaged, the data was exported and processed using median averaging of 10 images for every location.

Inverted selective plane illumination microscopy. The ASI iSPIM system has been described in our 
previous publications and is also illustrated in Supplementary Fig. S241. This system was equipped with 488 nm 
and 647 nm laser sources (Omicron), fiber-coupled laser scanner (ASI) to generate a scanned light sheet, multi-
immersion cleared tissue objectives (CTO, ASI/Special Optics) and CMOS cameras (ORCA-Flash 4.0, Hama-
matsu). Two immersion objectives were aligned perpendicular to each other, with each having a 45° angle to 
the horizontal  plane41. Both objectives switched roles between illumination and detection, making isotropic 
resolution possible by deconvolving dual view  stacks40. However, in this experiment a single view was utilized. 
The field of view was 0.8 mm by 0.8 mm when the refractive index of immersion solution was 1.46. When large 
samples were imaged, 3D imaging could be realized by using a motorized stage with sub-micron repeatability to 
reconstruct samples in three dimensions.

After ultrasound-PAT imaging, the breast tissue samples underwent X-CLARITY polymerization and elec-
trophoresis accelerated clearing (XCLARITY, Logos Biosystems) for one week. All cleared samples were stained 
in 50 µM DRAQ5 solution diluted in phosphate buffered saline overnight (Biostatus, Ltd), and then in 2 mg/
mL Eosin Y solution diluted with 80% ethanol for 30 min (Sigma). After the staining procedure, samples were 
rinsed three times with deionized water for one minute, X-CLARITY mounting solution for 10 min, and fresh 
X-CLARITY mounting solution for one additional hour. This process helps match the sample’s refractive index to 
the mounting solution. Samples were fastened on the bottom of the imaging chamber with silicone gel (Dowsil) 
and then imaged with the iSPIM system. During imaging, the step size between two light sheets was set as 2 μm, 
overlap between two strips was 15%, and the layer step size was 450 μm. A 488 nm laser source was used for 
illumination of the Eosin channel and a 647 nm laser source was used for the DRAQ5 channel. Since the iSPIM 
system is able to image the breast samples cleared by X-CLARITY within a depth of 2 mm, e imaged both the 
anterior and posterior sides of the breast tissue sample. After imaging, the image stacks of the light sheet strips 
were reconstructed in a customized MATLAB  program43, then stitched with the FIJI stitching  plugin44, converted 
to pseudo-color images similar to hematoxylin and eosin (H&E) stained  slide45, and visualized in  Amira40,46.

Figure 1.  Overview of multimodality workflow used to characterize human invasive ductal carcinoma breast 
tissues. Qualitative breast tissue analysis was first performed by co-registering PAT, ultrasound, and iSPIM 
images with histology using overall morphology, internal structures, and composition. Quantitative breast tissue 
characterization was performed by verifying PAT-ultrasound and iSPIM co-registration using lipid-weighted 
threshold images, as well as co-registering high-resolution iSPIM images with histology. We then used iSPIM 
to facilitate co-registration between PAT-ultrasound and histology to assess how tissue composition changes in 
cancerous and non-cancerous regions.
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Histology. After completion of ultrasound, PAT and iSPIM imaging, the breast cancer biopsies were sent 
for standard histological sectioning. Tissues were paraffin embedded and cut with a slice thickness of 4 μm for 
histological sections. We used a step size of 200 μm for qualitative comparison and 30 μm for quantitative analy-
sis. The slides were stained using H&E and then underwent blinded review by a board-certified pathologist to 
identify cancerous and non-cancerous regions.

Image processing for quantitative analysis. All volumetric datasets underwent image thresholding to 
assess the percent and spatial composition of the breast biopsies. We first matched H&E histology sections with 
ultrasound, PAT, and iSPIM datasets based on the overall tissue morphology, internal structures (e.g., ducts), 
and composition. We then created iSPIM and PAT analysis regions consisting of one imaging slice matched with 
histology, as well as two imaging slices adjacent to the histology-matched imaging slice. A total of five analysis 
regions were created for each biopsy, consisting of three images that occupied a biopsy length of 0.386 mm.

The PAT images were cropped to the imaging depth of the iSPIM images prior to post-processing. Both data-
sets initially underwent edge-aware local contrast enhancement to improve morphological contrast and identifi-
cation of structural edges. We then applied image binarization using Otsu’s method to identify PAT-specific lipid 
and hemoglobin  pixels47. The iSPIM datasets underwent conventional thresholding using the image histogram 
to identify a threshold point in each region. The threshold points were averaged between regions and applied 
to the dataset to discriminate between lipid and stromal tissue, as well as DRAQ5-specific pixels that represent 
nuclei. Finally, we created tissue composition maps by averaging the binarized biopsy images to topologically 
visualize tissue composition and calculate percent composition in each region.

We then assessed how breast tissue composition differs in cancerous and non-cancerous regions. To do this, 
we assigned non-cancerous (presumed healthy) and suspicious cancerous ROIs to our tissue composition maps. 
ROI size was defined as 1/3 of the 2 mm imaging depth, or 0.66 × 0.66 mm. We first placed 20 ROIs in suspicious 
cancerous breast tissue determined by a board certified pathologist. We then placed 30 ROIs in non-cancerous 
breast tissue with lipid, hemoglobin, or nuclei content. ROIs were scored 1–3 using the compositional positive 
pixels, calculated by summing the number of binarized images that expressed lipid, hemoglobin, or nuclei con-
trast for a given pixel. ROIs with no hemoglobin or lipid contrast were scored as 1, composition positive pixels 
between one or two were scored as 2, and composition positive pixels greater than or equal to two composing at 
least 50% of ROI were scored 3. Nuclei ROI with no cellular content were scored as 1, composition positive pixels 
between one and two were scored 2, and composition positive pixels greater than or equal to two were scored 3.

Statistical analysis. Linear regression statistics was used to evaluate the correlation between iSPIM and 
PAT-derived lipid composition, as well as the correlation between iSPIM nuclei and PAT hemoglobin com-
position. Shapiro–Wilk normality test was performed on all lipid, hemoglobin, and nuclei composition data-
sets. Datasets that failed normality test underwent log(y) or 1/y transformations. One way analysis of variance 
(ANOVA) with a Tukey post-hoc test was then performed to determine statistical significance in lipid, nuclei, 
and hemoglobin composition amongst the biopsies and analysis regions. Kruskal–Wallis test with Dunn’s multi-
ple comparisons test was performed on ROI analysis data. The diagnostic ability of lipid, nuclei, and hemoglobin 
composition was quantified by calculating the area under the curve from receiver operating characteristics 
(ROC) curves. Statistical significance was considered at p < 0.05. Data are shown as mean ± standard deviation.

Results
Qualitative multimodality image comparison. Ultrasound and PAT images provided morphologi-
cal and compositional information that was comparable to histology (Fig.  2a–c). Ultrasound images clearly 
resolved overall tissue morphology, including specific internal structures such as ducts (Fig. 2d–f). PAT images 
allowed for visualization of hemoglobin-rich regions via 1100 nm light (Fig. 2g–i) and lipid-rich adipose tis-
sue via 1210 nm light (Fig. 2j–l). We see in sample 1 and 3 that lipid-rich tissues match well between histology 
and 1210 nm PAT images. Further, in sample 2 and 3 we see the ability of PAT to resolve large blood vessels 
(Fig. 2b,h), as well as smaller vessels that may feed the ductal carcinoma (Fig. 2c,i). Perfect co-registration in 
breast sample 2 was difficult between the lipid signal and traditional histology sections due to slight differences 
in the sectioning/imaging planes and varying step sizes. Adjacent histological sections to breast sample 2, how-
ever, reveal greater lipid-rich adipose tissue. Interestingly, breast sample 1 did not produce blood contrast sur-
rounding the ductal carcinoma.

Comparison between iSPIM pseudo-color image and H&E-stained histological slides revealed similar com-
positional information (Fig. 3a,b). Texture-based volumetric rendering (TVR; Fig. 3a inset) was used to identify 
iSPIM images that match H&E histology. We were able to clearly identify nuclei structure and density, as well 
as spatially-resolve breast biopsy tissue composition. Indeed, iSPIM and H&E histology both revealed regions 
with adipose tissue (Fig. 3c,f), pseudoangiomatous stromal hyperplasia (Fig. 3d,g), and ductal carcinoma in situ 
(Fig. 3e,h).

Threshold validation and regional compositional analysis. Image thresholding for breast biopsy 
composition adequately distinguished stroma (Fig.  4a,b), adipose tissue (Fig.  4e,f), nuclei (Fig.  4c,d), and 
hemoglobin-rich regions (Fig. 4g,h). We qualitatively identified comparable ultrasound, PAT, and iSPIM images 
using overall biopsy morphology and internal structures (e.g., ducts). A total of 15 regions were quantitatively 
analyzed, with each region comprising three image slices. This resulted in 45 total post-processed images. Co-
registered images first underwent image thresholding to calculate the percent of the biopsy composed of stromal 
and lipid-rich adipose tissues. Linear regression revealed strong correlation in lipid composition between iSPIM 
and PAT data (Fig. 4i,  R2 = 0.78, p < 0.05). Variation of tissue composition can be attributed to iSPIM stitching 
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artifacts that were manually segmented and not included in the analysis. Interestingly, there was no correlation 
between hemoglobin and nuclei content in these biopsies (Fig.  4j,  R2 = 0.03, p = 0.56), suggesting that nuclei 
dense regions do not necessarily coincide with hemoglobin-rich regions.

We quantified breast tissue composition and averaged imaging slices within each region (Fig. 5a) to topologi-
cally visualize lipid-rich adipose and fibrotic stromal tissue distribution (Fig. 5b,c), as well as nuclei (Fig. 5d) and 
hemoglobin distribution (Fig. 5e). Pooled iSPIM and PAT lipid analysis results revealed average lipid composition 
of 30.6 ± 9.0% in breast sample 4, 10.3 ± 4.2% in breast sample 5, and 13.8 ± 9.1% in breast sample 6 (Fig. 5f). 
Hemoglobin contrast also varied greatly amongst different regions and samples, revealing 70.7 ± 5.8% in breast 
sample 4, 12.9 ± 6.6% in breast sample 5, and 30.0 ± 20.6% in breast sample 6 (Fig. 5g). Both lipid and hemoglobin 
composition were statistically greater in breast sample 4 than breast sample 5 and 6 (p < 0.05). Average nuclei 
content comprised 2.1 ± 1.3% of all three breast samples (Fig. 5h), but localization of cellular contrast varied 
greatly between regions and samples.

Regional analysis confirmed comparable lipid and stromal composition between iSPIM and PAT images, 
with greater variation amongst nuclei and hemoglobin composition. Pooled lipid composition differed slightly 
between regions but varied amongst the three breast tissue samples. (Fig. 6a–c). We found that hemoglobin 
content was statistically greater in regions 1 (78.9 ± 2.0%) and 2 (73.6 ± 0.6%) than regions 3 (67.6 ± 2.5%), 4 
(68.0 ± 1.2%), and 5 (65.3 ± 0.8%) from breast tissue sample 4; region 4 (17.5 ± 2.4%) and region 5 (22.4 ± 4.8%) 
than regions 1 (6.5 ± 0.6%), 2 (8.5 ± 0.8%), and 3 (9.7 ± 0.6%) in breast tissue sample 5; and regions 2 (59.0 ± 5.0%) 
and 3 (43.8 ± 17.7%) than region 4 (9.5 ± 0.50%) and 5 (14.5 ± 1.7%) in breast tissue sample 6 (Fig. 6d–f). Statisti-
cal analysis also revealed greater nuclei content in region 1 compared to regions 4–5 in breast tissue sample 4, 
and regions 4–5 compared to regions 1–3 in breast tissue sample 6 (Fig. 6d–f).

Quantitative multimodality imaging and histology comparison. ROI analysis allowed us to 
compare breast sample lipid, hemoglobin, and nuclei composition in non-cancerous and cancerous regions 
(Fig. 7a–f). A board certified pathologist identified 20 tissue regions with suspicious cancerous features. Regions 

Figure 2.  Representative histology (a–c), ultrasound (d–f), 1100 nm hemoglobin PAT (g–i), and 1210 nm lipid 
PAT (j–l) images of three breast tissue samples. Histological sections revealed structures including ducts (blue 
arrow), blood vessels (red arrow), chronic inflammation (green arrow), fatty tissue (orange arrow), and ductal 
cancer (black arrow). Ultrasound provided overall tissue morphology and visualization of specific structures 
such as ducts. Lipid-weighted PAT images allowed differentiation between adipose and stromal tissue, while 
hemoglobin-weighed PAT images provided contrast in regions with arteries and arterioles. Panel (a–c) insets 
depict breast sample images with the red dotted line indicating the image acquisition plane. All scale bars denote 
1 mm.
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Figure 3.  A transverse plane selected from the TVR of the iSPIM volumetric data (a) and a histological 
H&E section (b), both from the anterior side of the sample 2 biopsy. Overall, iSPIM images provided similar 
compositional and morphological information as H&E sections. We observed heterogeneous tissue composition 
with regions of adipose tissues (c,f), pseudoangiomatous stromal hyperplasia (d,g) and ductal carcinoma in situ 
(e,h). Scale bars of panel (a) and (b) denote 1 mm and scale bars of panel (c–f) denote 100 μm. The depth of this 
iSPIM volumetric image is 1.98 mm and sectioned iSPIM images (a,c,d,e) are shown at a depth of 640 μm; the 
total dimension of the image volume is 5.34 × 4.71 × 1.98 mm.

Figure 4.  Volumetric iSPIM and PAT imaging datasets were acquired and underwent thresholding to extract 
compositional information. All datasets underwent edge-aware local contrast enhancement followed by 
conventional thresholding to distinguish iSPIM stroma (a,b) and nuclei (c,d) localization (n = 15). Otsu’s 
binarization was used to differentiate lipid-rich (e,f) and hemoglobin-rich (g,h) regions from the PAT 
data (n=15). Linear regression statistics between PAT and iSPIM lipid composition showed positive correlation 
(i,  R2 = 0.78, p < 0.05). Additionally, linear regression statistics between PAT hemoglobin composition and iSPIM 
nuclei composition revealed no correlation (j,  R2 = 0.03, p = 0.56). Scale bars denote 1 mm.
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identified as non-cancerous had significantly higher lipid ROI scores compared to suspicious cancerous regions 
(Fig. 7g; p < 0.05). Specifically, suspicious cancerous lipid ROIs were scored 1.45 ± 0.69 using iSPIM lipid images 
and 1.35 ± 0.59 using PAT lipid images. Non-cancerous lipid ROIs were scored 2.18 ± 0.9 using iSPIM lipid 
images and 2.11 ± 0.92 using PAT lipid images. Non-cancerous and suspicious cancerous regions contained simi-
lar nuclei ROI scores of 1.82 ± 0.82 and 1.5 ± 0.83, respectively (Fig. 7h). Non-cancerous hemoglobin ROIs scored 
significantly higher at 2.54 ± 0.79 compared to suspicious cancerous regions at 1.65 ± 0.88 (Fig.  7h; p < 0.05). 
Finally, ROI analysis scores were then used to generate ROC curves (Fig. 7i), revealing area under the curve of 

Figure 5.  Quantitative analysis of breast tissue composition. A total of five regions (a, blue box) were identified 
from the anterior and posterior (a, black arrows) of three breast tissue samples. Each analysis region consisted 
of three iSPIM and PAT imaging slices (a, red lines). The three threshold imaging slices were averaged to 
obtain tissue composition maps of lipid (b,c), nuclei (d), and hemoglobin (e), as well as quantitative percent 
composition of lipid-rich tissue (f), hemoglobin (g), and nuclei (h). The tissue composition maps allow users to 
topologically visualize breast tissue composition within a sample region, as well as quantify tissue composition. 
Yellow arrow highlights nuclei located in a duct, orange arrows highlight nuclei in stromal tissue, and red 
arrow highlights hemoglobin-rich areas. Scale bar denotes 1 mm. * denotes p < 0.05 between groups. Error bars 
represent standard deviation.

Figure 6.  Quantitative regional analysis of breast tissue sample composition. Breast tissues samples were 
composed largely of stromal-rich tissues (a–c), while hemoglobin and nuclei composition widely varied 
depending on the tissue sample and region (d–f). Statistical significance determined at p < 0.05 (*statistical 
significance compared to region 1, #statistical significance compared to region 2, and &statistical significance 
compared to region 3). Error bars represent standard deviation.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2532  | https://doi.org/10.1038/s41598-022-06501-3

www.nature.com/scientificreports/

0.72 for PAT lipid (p < 0.05), 0.73 for iSPIM lipid (p < 0.05), 0.75 for hemoglobin (p < 0.05), and 0.62 for iSPIM 
cell (p > 0.05).

Discussion
This study presents a multimodality imaging workflow to characterize breast tissue composition using a volu-
metric region-based quantitative method. The breast biopsies obtained for this study were classified as invasive 
ductal carcinoma, where cancer growing in the milk duct begins to infiltrate into surrounding stromal and 
adipose tissue. We first qualitatively assessed how PAT lipid and hemoglobin-contrast and iSPIM lipid and cel-
lular distribution matched with gold-standard histology in three breast tissue biopsies. Dual-modality PAT and 
ultrasound allowed us to visualize the breast tissue sample morphology and differentiate stromal tissue from 
lipid-rich adipose tissue using 1210 nm light (Fig. 2j–l). PAT also provided hemoglobin contrast using 1100 nm 
light that correlated with regions with arterioles or large arteries (Fig. 2h,i). We chose a single near-infrared 
wavelength for lipid and hemoglobin imaging to minimize image acquisition time and maximize penetration 
depth. High-resolution iSPIM provided detailed, histology-like volumetric images that allowed visualization of 
nuclei-rich areas such as ducts and blood vessels and tissue composition, including adipose tissue (Fig. 3c,f), 
stroma (Fig. 3d,g), and ductal carcinoma in situ (Fig. 3e,h). We experienced challenges, however, when compar-
ing volumetric datasets with traditional histology sections, due to variable image acquisition planes, histological 
artifacts, and substantial changes in breast tissue composition between 200 μm histology sections (Fig. 2b,k), 
supporting the need for iSPIM 3D histological imaging as a replacement for traditional histology sections in 
this context.

In three additional breast tissue biopsies, we created a systematic approach to compare multimodality imaging 
datasets and quantify lipid, stroma, nuclei, and hemoglobin distribution. PAT and iSPIM imaging slices obtained 
from the same volumes were first co-registered using overall tissue sample morphology, internal structures, and 
lipid distribution. High-resolution iSPIM images were also compared to gold-standard histology, allowing us to 
verify and use iSPIM as a 3D replacement for traditional histological validation. The three breast biopsies used 
for quantitative analysis were divided and analyzed into five subregions to topologically visualize and quantify 

Figure 7.  Comparison of lipid, hemoglobin, and nuclei composition in cancerous and non-cancerous breast 
tissues. A board certified pathologist first diagnosed suspicious tissue regions using H&E histology images (a). 
Ultrasound (b), PAT lipid (c), iSPIM lipid (d), PAT hemoglobin (e), and iSPIM nuclei (f) were used to assign 
cancerous (black box) and non-cancerous tissue (white box) ROIs. Each ROI was then assigned a score using 
predetermined rules. ROI analysis suggests that lipid rich regions correlate with non-cancerous breast tissue 
and stromal-rich regions correlate with cancerous tissues (g). Hemoglobin and nuclei content, however, did not 
positively correlate with regions with increased breast cancer prevalence (h). ROC area under the curve analysis 
suggests that lipid and hemoglobin contrast can help distinguish cancerous and non-cancerous region (i). 
*Denotes p < 0.05 between groups. Error bars represent standard deviation.
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tissue composition throughout the tissue. This approach allows the user to quickly visualize how lipid, stroma, 
hemoglobin, and nuclei are distributed throughout breast biopsy sub-regions compared to a representative 
histology image.

Image thresholding was performed to extract breast tissue composition in multiple tissue regions. Each 
thresholding method was tailored to a subset of PAT and iSPIM imaging slices and then applied to the entire 
breast tissue sample dataset. We found a positive correlation between iSPIM and PAT lipid composition  (R2 = 0.78, 
p < 0.05), suggesting our thresholding method applied to label-free PAT imaging can be used to segment lipid-
rich regions. Interestingly, we found no correlation between PAT hemoglobin composition and iSPIM nuclei 
composition  (R2 = 0.03, p = 0.56), suggesting that iSPIM and PAT can provide unique compositional information 
to improve tissue characterization. In fact, the regional analysis showed that nuclei content comprises approxi-
mately 2.1 ± 1.3% of all three biopsies, while hemoglobin contrast varied from 12.9 ± 6.6% to 70.7 ± 5.8%. These 
results suggest iSPIM and PAT images can be co-registered using tissue morphology and composition to obtain 
lipid, stroma, hemoglobin, and nuclei distribution.

After validating our multimodality comparison method, we assessed tissue composition in cancerous and 
non-cancerous regions. We first assigned ultrasound, PAT, and iSPIM image ROIs in suspicious cancerous 
regions confirmed by a board-certified pathologist. We then placed ROIs in non-cancerous regions with lipid, 
hemoglobin, and nuclei contrast. ROIs were placed in the same location on the PAT, ultrasound, and iSPIM 
image and then scored using a predefined set of rules. Overall, our lipid-rich ROI scoring was not statistically 
different between iSPIM and PAT images, corroborating that PAT contrast at 1210 nm is lipid-specific and that 
we are comparing similar regions between volumetric datasets. Our ROI scoring and ROC area under the curve 
analysis suggest that lipid-rich regions are more likely to express non-cancerous phenotypes and regions with 
diminished lipid content are more likely to express cancerous phenotypes. This is consistent with histopathology 
reports that show that malignant cancerous cells migrate from the breast duct to the surrounding stroma, thus 
transforming ductal carcinoma in situ to invasive ductal  carcinoma48. Cancer cell migration into adipose tissue 
may also decrease lipid content in the infiltrated region. Recent reports using PAT and broadband near-infrared 
mammography study found that reduced lipid concentration was an indicator of malignant breast  tissue33,34. 
Therefore, lipid-weighted PAT images may enhance positive breast margin detection and allow clinicians to 
quantify cancer aggressiveness.

Pathologists routinely assess breast tumor grade using a modified Bloom-Richardson system to semi-quanti-
tatively assess nuclear  atypia49. Here, we visualized nuclei distribution throughout the breast tissue sample using 
image segmentation and then compared how nuclei distribution correlates with non-cancerous and cancerous 
breast tissue regions. Our ROI analysis suggested that nuclei distribution was similar in both non-cancerous 
and cancerous breast tissue regions. This data may indicate cancerous cells infiltration from the ducts into the 
surrounding non-cancerous tissues, but healthy control breast biopsies are needed to confirm this hypothesis. 
ROC area under the curve analysis also suggests limited diagnostic ability of iSPIM nuclei contrast alone. The 
diagnostic ability of nuclei weighted images may be improved by combining our method with automated seg-
mentation techniques to quantify heterogeneous cancer nuclei characteristics such as enlarged and irregularly 
shaped nuclei throughout the breast  biopsy50.

Interestingly, non-cancerous regions also showed greater PAT hemoglobin-weighted contrast compared to 
cancerous regions. This result contradicts the previously proposed hypothesis that regions with increased PAT 
hemoglobin contrast may indicate high-vascularized cancerous  regions31–33. Excised breast biopsies lack dynamic 
blood flow causing blood vessels to collapse and altering blood distribution within the tissue sample. Addition-
ally, hemoglobin distribution is likely altered through the tissue handling  process8,34, which in this study includes 
washes after tissue resection, fixation, agarose embedding, and imaging with multiple modalities. Hemoglobin 
redox state also changes in excised tissues, causing oxygenated and deoxygenated hemoglobin to slowly convert 
into  methemoglobin51. Changes in hemoglobin oxygenation and redox state will alter hemoglobin absorption 
spectra and subsequent PAT  contrast42. Our results are also supported by Kosik et al., who reported that 690-nm 
deoxyhemoglobin-weighted PAT images correlated poorly with ultrasound-determined cancer regions in freshly 
excised  biopsies34. These factors highlight a need to establish breast biopsy preservation guidelines to preserve 
hemoglobin distribution and redox state after tissue resection.

The dual-modality PAT-ultrasound imaging used in this study can be further improved for intraoperative 
breast tumor analysis. We used high-resolution ultrasound to facilitate iSPIM and PAT co-registration; however, 
ultrasound elastography can be adapted to provide tissue stiffness measurements that may further improve diag-
nostic  accuracy52–54. Bae et al. recently used shear-wave elastography to measure mean and maximum stiffness 
and elasticity ratio in 228 breast lymph nodes obtained from 55  patients52. Their results suggest that metastatic 
breast lymph nodes are significantly stiffer than non-metastatic breast tissue lymph nodes. The elasticity ratio 
was also higher in metastatic lymph nodes compared to non-metastatic lymph nodes. This pilot study highlights 
the potential of ex vivo shear wave elastography to enhance intraoperative breast cancer characterization.

PAT image quality is dependent on the light penetration, as photons are more likely to be scattered and 
absorbed when traveling deep inside tissue. Therefore, heterogeneous light distribution in tissue limits PAT image 
contrast quantification as superficial tissue absorbs more light and generates greater PAT signal than deep tissue. 
To our knowledge, PAT transducer frequency and illumination geometry have not been optimized for PAT signal 
generation in the first 2 mm of the breast biopsy. Previous PAT studies characterize cancerous breast tissue using 
2, 12, and 21 MHz center frequency  transducers26,32,55, while our study used a 40 MHz transducer. Similar to 
ultrasound, PAT imaging that relies on higher frequency acoustic waves acquisition provides superior resolution, 
but diminished penetration depth compared to lower frequency acoustic waves acquisition. Additionally, the 
photoacoustic signal is the product of the physical properties of the tissue known as the Grüneisen coefficient, 
tissue-specific optical absorption coefficient, and light fluence. The optical absorption coefficients and Grü-
neisen coefficients have has been characterized for many different issues, but there is still room to optimize light 
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illumination geometry to maximize light fluence into the region of  interest56,57. Therefore, transducer frequency 
and illumination geometry studies should be performed to obtain the greatest penetration depth and signal-
to-noise ratio in the first 2 mm of the breast biopsy tissue. Optimized photoacoustic illumination geometries 
coupled with deep learning algorithms can enhance image contrast in low-fluence regions and sparse  data58,59.

Light penetration also affects iSPIM penetration depth. More effective tissue clearing methods, including 
Ethyl Cinnamate clearing (ECi), clearing-enhanced 3D (Ce3D), and clear, unobstructed brain/body imaging 
cocktails (CUBIC), can help reduce light scattering and increase the signal-and-noise ratio in deep tissue regions. 
These methods have been previously used for human kidney, lung, and prostate  tissue21,60,61. Enhanced image 
contrast from optically cleared tissues may also serve as controls to show that the wavelength used during PAT 
provides contrast from the correct tissue  type62. Furthermore, the limited iSPIM field of view requires that mul-
tiple sub-volumes are stitched to reconstruct 3D datasets. iSPIM stitching introduces image artifacts that limit 
quantitative analysis. The stitching artifact could be diminished by using stitching algorithms or acquisition 
techniques such as electronic confocal slit detection or structured illumination, to enhance image contrast in 
deeper tissue  regions41. Together, these methods enable more comprehensive supplements to help validate PAT 
for breast tumor margin detection.

Multimodality approaches inherently require additional manpower to acquire, post-process, and interpret 
volumetric datasets, which can quickly increase intraoperative margin assessment. Artificial intelligence has 
the potential to significantly improve multimodality intraoperative workflow by deciding which modalities are 
needed to assess breast margins, improving image quality, and automating complex volumetric image analysis. 
Li et al. calculated a theoretical PAT image acquisition rate of approximately 36  cm2/min using two wavelengths 
through a 10 Hz laser, with a 15 mm × 15 mm illumination area and a 200 μm translational step  size26. On the 
other hand, iSPIM has a theoretical image acquisition rate of 0.008  cm2/min after sample staining and clearing. 
In the future, it may be possible to use PAT for initial breast margin assessment and then use iSPIM imaging to 
acquire high-resolution datasets in smaller rapidly-cleared regions where artificial intelligence-determined mar-
gin assessment is unclear. Moreover, manual thresholding and image segmentation of large volumetric datasets 
was labor-intensive in this study and exacerbated by imaging artifacts. Machine learning algorithms can improve 
image quality by improving image contrast, decreasing background noise, and identifying image  artifacts58,63,64. 
Artificial intelligence is actively being developed to analyze mammography and pathological  images65,66. Pacilè 
et al. recently performed a multireader, multicase retrospectively study using 14 radiologists and artificial intel-
ligence to assess 240 digital two-dimensional breast cancer mammography  images65. The authors of this study 
found that artificial intelligence improved breast cancer diagnostic performance without prolonging the radiolo-
gists’ workflow. Data obtained from ultrasound, PAT, and iSPIM can be input into deep learning algorithms to 
differentiate positive and negative breast tissue margins. However, this approach requires quantitative methods 
to determine where the cancer is located within the biopsy, as presented in this article.

Conclusion
We developed a systematic method that uses iSPIM to rigorously compare volumetric ultrasound and PAT with 
gold standard histological sections and demonstrate the use of virtual histological imaging as an independent 
validation tool for label-free volumetric imaging techniques. Diagnostic features, such as lipid and stromal dis-
tribution and hemoglobin and nuclei localization, were extracted from multiple breast tissue regions and topo-
logically visualized. Our results suggest that PAT and iSPIM lipid contrast can differentiate cancer-rich stromal 
tissue and non-cancerous lipid-rich adipose tissue. Nuclei data showed similar cellular content in cancerous and 
non-cancerous tissue, potentially indicating cancer infiltration from the milk duct to the surrounding tissue. 
Finally, hemoglobin-weighted PAT images suggest that non-cancerous regions contain more hemoglobin contrast 
than cancerous regions, conflicting with previously published reports. Together, a multimodality approach has 
the potential to enhance breast tumor margin characterization compared to a single imaging technique. Our 
systematic method comparing multiple modalities can also advance artificial intelligence methods aimed at dif-
ferentiating positive and negative breast tumor margins.
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